Convex sublattices of a lattice have been studied by many authors including Koh [1-2]. Set of all convex sublattices of a lattice L is denoted by $CS(L)$. By K. M. Koh [2] $CS(L)$ with the empty set is a lattice. On the other hand standard convex sublattices of a lattice L have been studied by Fried and Schmidt [3]. Recently Lavanya and Bhatta [4] have introduced a new partial ordering relation on $CS(L)$, under which $CS(L)$ is a lattice. Moreover L and $CS(L)$ are in the same equational class. On $CS(L)$, they defined the partial order “\leq” as follows:

For $A, B \in CS(L)$, $A \leq B$ if and only if “for every $a \in A$ there exists a $b \in B$, such that $a \leq b$ and for every $b \in B$ there exists an $a \in A$, Such that $b \geq a$.” It is easy to see that ‘\leq’ is clearly a partial order and $(CS(L); \leq)$ forms a lattice, where for $A, B \in CS(L)$,

$\text{Inf } \{A, B\} = A \wedge B$

$= \langle\{a \wedge b|a \in A, b \in B\}\rangle$

$= \{x \in L|a \wedge b \leq x \leq a_1 \wedge b_1 \text{ for some } a, a_1 \in A \text{ and } b, b_1 \in B\}$

$\text{Sup } \{A, B\} = A \vee B$

$= \langle\{a \vee b|a \in A, b \in B\}\rangle$

$= \{x \in L|a \vee b \leq x \leq a_1 \vee b_1 \text{ for some } a, a_1 \in A \text{ and } b, b_1 \in B\}$
and for any non-empty subset \(H \) of \(L \), \(\langle H \rangle \) denotes the convex sublattice generated by \(H \). Note that \(A \land B \) and \(A \lor B \) have also been studied by J. Nieminen [5], where the author studied the distributive and neutral sublattices.

In this paper we studied the structure of \(\text{CS}(L) \) with this new approach and then include some properties of \((\text{CS}(L); \leq)\). We have also given a nice characterization of a standard element of \(\text{CS}(L) \).

We start with the construction of \((\text{CS}(L); \leq)\) of a lattice \(L \) of Fig. 1.

![Fig. 1.](image1)

![Fig. 2.](image2)

It is easy to check that Fig. 2 represents the lattice “\((\text{CS}(L); \leq)\)”. Now we include some properties of “\((\text{CS}(L); \leq)\)”. We know that for any congruence of a lattice \(L \), each congruence class is an element of \(\text{CS}(L) \). We have the following results:

Theorem 1. For any Congruence \(\Theta \) of a lattice \(L \), \([a] \Theta \leq [b] \Theta \) in \(\frac{L}{\Theta} \) if and only if \([a] \Theta \leq [b] \Theta \) in \(\text{CS}(L) \). In other words, the quotient lattice \(\frac{L}{\Theta} \) is a subposet of \((\text{CS}(L); \leq)\) but \(\frac{L}{\Theta} \) is not necessarily a sublattice of \(\text{CS}(L) \).

Proof: Suppose \([a] \Theta \leq [b] \Theta \) in \(\frac{L}{\Theta} \). Let \(s \in [a] \Theta \) then \([s] \Theta = [a] \Theta \leq [b] \Theta \) in \(\frac{L}{\Theta} \). Thus \([b] \Theta \leq [b] \Theta \odot [s] \Theta = [b \lor s] \Theta \), this implies that \(b \lor s e \in [b] \Theta \) and \(s \leq b \lor s \). On the other hand, let \(t \in [b] \Theta \). Then \([a] \Theta \leq [b] \Theta \leq [t] \Theta \) in \(\frac{L}{\Theta} \). Thus \([a] \Theta = [a] \Theta \land [t] \Theta = [a \land t] \Theta \), which implies that \(a \land t \in [a] \Theta \) and \(t \geq a \land t \). Therefore, by the definition of ‘\(\leq \)’ in \(\text{CS}(L) \), \([a] \Theta \leq [b] \Theta \) in \(\text{CS}(L) \).

Conversely, let \([a] \Theta \leq [b] \Theta \) in \(\text{CS}(L) \). Since \(a \in [a] \Theta \) there exists \(t \in [b] \Theta \) such that \(a \leq t \). Then \(a = a \land t = (a \land b) \Theta \) and so \([a] \Theta = [a \land b] \Theta = [a] \Theta \land [b] \Theta \) in \(\frac{L}{\Theta} \). Thus implies \([a] \Theta \leq [b] \Theta \) in \(\frac{L}{\Theta} \).

To prove the last part, consider the following lattice \(L \) in Fig. 3.
Consider the congruence $\Theta = \{0, a\}, \{b\}, \{c\}, \{1\}$. In L, $[b] \cap [c] \in \Theta = [b \cap c] \in \Theta = [a] \in \Theta$. But in $CS(L)$, $[b] \cap [c] \in \Theta \neq \{a\}$. Therefore L is not a sublattice of $CS(L)$.

Theorem 2. For any $A, B \in CS(L)$, $A \leq B$ if and only if $(A) \subseteq (B)$ and $(A) \supseteq (B)$.

Proof: Suppose $A \leq B$, let $a \in (A)$, then $a \leq a_1$ for some $a_1 \in A$. Since $A \leq B$, so there exists a $b_1 \in B$ such that $a \leq b_1$ and so $a \in (B)$. Hence $(A) \subseteq (B)$. Now let $b \in [B]$, then $b \geq b_1$ for some $b_1 \in B$. Since $A \leq B$, so there exists $a_1 \in A$ such that $b_1 \geq a_1$. Thus $b \geq a_1$, which implies that $b \in (A)$. Hence $(A) \subseteq (B)$.

Conversely, suppose $(A) \subseteq [B]$ and $(A) \supseteq [B]$. Let $a \in A$, then $a \in (A) \subseteq (B)$. This implies that $a \leq b$ for some $b \in B$. Again for any $b \in B$, $b \in [B] \subseteq [A]$ and so $b \geq a$ for some $a \in A$. Hence by definition, $A \leq B$ in $CS(L)$.

For a lattice L, $I(L)$ and $D(L)$ are Lattice of ideals and dual ideals respectively. From the above theorem, we have the following corollary.

Corollary 3. For $I, J \in I(L)$, $I \leq J$ if and only if $I \subseteq J$ and for $D, K \in D(L)$, $D \leq K$ if and only if $D \supseteq K$.

Theorem 4. For any lattice L, $I(L)$ is a principal ideal generated by L in $CS(L)$ and $D(L)$ is a principal dual ideal generated by L in $CS(L)$.

Proof: By Corollary 3, $I(L)$ is a sublattice of $CS(L)$ with L as its largest element. Now let $I \in I(L)$ and $A \in CS(L)$ with $A \leq I$. We need to show that A has the hereditary property. Suppose, $x \in A$ and $y \leq x$. Since $x \in A$ and $A \leq I$, so by definition there exists $i \in I$, such that $x \leq i$. Since I is an ideal, so $y \leq x \leq i$ implies that $y \in I$. Now $A \leq I$ implies that there exists an element $z \in A$, such that $y \geq z$. Then $z \leq y \leq x$ and so by convexity $y \in A$. Hence A has the hereditary property and thus A is an ideal, that is, $A \in I(L)$. Therefore $I(L)$ is an ideal of $CS(L)$ with L as its largest element and so it is a principal ideal generated by L. Similarly, we can show that $D(L)$ is a principal dual ideal generated by L. Therefore, we can show that $D(L)$ is a principal dual ideal generated by L.

Observe that in Fig. 2, both $I(L)$ and $D(L)$ are principal ideal and principal dual ideal respectively, in $CS(L)$ generated by L.

Fig. 3.
Since $I(L)$ is a sub lattice of $CS(L)$, we have the following result.

Theorem 5. The mapping $f: L \rightarrow CS(L)$ defined by $f(a)=(a)$ is an embedding. Moreover, an element a is join irreducible in L if and only if $f(a)$ is join irreducible in $CS(L)$.

Proof: The mapping f is obviously an embedding of L into $CS(L)$. Now suppose a is join irreducible in L. Let for $A, B \in CS(L)$, $A \lor B=f(a)=(a)$, implies $A \subseteq (a)$ and $B \subseteq (a)$ in $CS(L)$. Then each $x \in A$ implies $x \leq a$, so $x \in (a)$ and hence $A \subseteq (a)$. Similarly $B \subseteq (a)$. Since $a \in A \lor B$, so by definition $a_1 \lor b_1 \leq a_2 \lor b_2$ for some $a_1,a_2 \in A$ and $b_1,b_2 \in B$. Now $A, B \subseteq (a)$ so $a_2,b_2 \leq a$. Without loss of generality, suppose $a=a_2$, then $a \in A$. Now we prove that $A=(a)$. If not, then there exist an element $t \in (a)$ such that $t \not\in A$. Since $t \in (a)=(a_2 \lor b_2)$, so there exist $p_1,p_2 \in A$, $q_1,q_2 \in B$, such that $p_1 \lor q_1 \leq t \leq p_2 \lor q_2$ this implies $p_1 \leq t \leq a$ and so by convexity $t \in A$, which is a contradiction. Therefore $A=(a)$. Similarly, by considering $a=b_2$ we can show that $B=(a)$, therefore $f(a)=(a)$ is join irreducible in $CS(L)$.

Conversely, suppose $f(a)$ is join irreducible in $CS(L)$. Let $a=b \lor c$ in L, then $(a)=(b) \lor (c) \subseteq (a)$ in $CS(L)$. Since $f(a)=(a)$ is join irreducible in $CS(L)$, so either $(b)=(a)$ or $(c)=(a)$, that is, either $b=a$ or $c=a$. Therefore a is join irreducible in L.

Since $D(L)$ is also a sub lattice of $CS(L)$ a dual proof of above gives the following result.

Theorem 6. The mapping $f : L \rightarrow CS(L)$ defined by $f(a)=[a)$ is an embedding. Moreover, an element a is meet irreducible in L if and only if $f(a)$ is meet irreducible in $CS(L)$.

The following theorem is due to S. Lavanya and S. P. Bhatta [4]. This gives a clear idea on the structure of $(CS(L);\leq)$.

Theorem 7. For any lattice L the map $f: CS(L) \rightarrow I(L) \times D(L)$ defined by for any $X \in CS(L)$, $f(x)=((X],[X))$ is an imbedding. In fact, $CS(L)$ is isomorphic to the sublattice $\{(I,D) \mid I \in I(L), D \in D(L), I \cap D \neq \emptyset\}$ of $I(L) \times D(L)$.

We know from Grätzer [6] that the identities of lattices are preserved under the function of sublattices, homomorphic images, direct products, ideal lattices and dual ideal lattices. Also it is easily seen that L can be embedded in $CS(L)$. Therefore, by above theorem we have the following result, which is also mentioned by Lavanya and Bhatta [4].

Corollary 8. $CS(L)$ satisfies all the identities satisfied by L and conversely.

Thus in particular, a lattice L is distributive (modular) if and only if $CS(L)$ is distributive (modular).

According to Grätzer [6] an element n of a lattice L is called a standard element if for all $x, y \in L$, $x \land (y \lor n) = (x \land y) \lor (x \land n)$ Element n is called a neutral element if (i) n is standard, and
(ii) \(n \land (x \lor y) = (n \land x) \lor (n \land y) \) for all \(x, y \in L \).

Since \(L \) is the largest element and the smallest element of \((I(L); \subseteq)\) and \((D(L); \supseteq)\) respectively, so it is a neutral element of both \(I(L) \) and \(D(L) \). Therefore, by Theorem 7, we have the following result.

Corollary 9. \(L \) is a neutral element of \(CS(L) \).

We conclude the paper with the following characterization of standard elements of \(CS(L) \)

Theorem 10. For a lattice \(L \), a convex sublattice \(S \) is a standard element of \(CS(L) \) if and only if for any \(a, b \in L \), \(\{a\} \bigwedge (S \bigvee \{b\}) = (\{a\} \bigwedge S) \bigvee (\{a\} \bigwedge \{b\}) \).

Proof: Suppose, \(S \) is standard in \((CS(L); \leq)\). Then of course the given condition holds. Conversely, suppose the given condition holds for any \(a, b \in S \). We have to show that

\[A \bigwedge (S \bigvee B) = (A \bigwedge S) \bigvee (A \bigwedge B) \]

for any \(A, B \in CS(L) \). Since \((CS(L); \bigwedge, \bigvee)\) is a lattice, so clearly \((A \bigwedge S) \bigvee (A \bigwedge B) \leq A \bigwedge (S \bigvee B) \). For the reverse inequality, let \(x \in A \bigwedge (S \bigvee B) \). Then \(x \leq a_1 \land t_1 \) for some \(a_1 \in A \) and \(7t_1 \in S \bigvee B \). Now \(t_1 \in S \bigvee B \) implies that \(t_1 \leq s_1 \lor b_1 \) for some \(s_1 \in S \) and \(b_1 \in B \). Then \(x \leq a_1 \land (s_1 \lor b_1) = y \) (say). But \(y = a_1 \land (s_1 \lor b_1) \in \{a_1\} \bigwedge (S \bigvee \{b\}) = (\{a_1\} \bigwedge S) \bigvee (\{a_1\} \bigwedge \{b\}) \) (using the given condition) \(\subseteq (A \bigwedge S) \bigvee (A \bigwedge B) \). In other words, there exists an element \(y \in (A \bigwedge S) \bigvee (A \bigwedge B) \) with \(x \leq y \). Now let \(p \in (A \bigwedge S) \bigvee (A \bigwedge B) \). Then \(p \geq c_1 \lor d_1 \) for some \(c_1 \in A \bigwedge S \) and \(d_1 \in A \bigwedge B \). Now \(c_1 \in A \bigwedge S \) implies \(c_1 \geq a_2 \land s_2 \) and \(d_1 \in A \bigwedge B \) implies \(d_1 \geq a_3 \land b_3 \) for some \(a_2, a_3 \in A \), \(s_2 \in S \) and \(b_3 \in B \). Thus, \(p \geq (a_2 \land a_3 \land s_3) \lor (a_2 \land a_3 \land b_3) \in (a' \land s_3) \lor (a' \land b_3) \) where \(a' = a_2 \land a_3 \). But \((a' \land s_3) \lor (a' \land b_3) \in \{a'\} \bigwedge S = (\{a'\} \bigwedge S) \bigvee (\{a'\} \bigwedge B) \) (by the given condition) \(\subseteq A \bigwedge (S \bigvee B) \). That is, for \(p \in (A \bigwedge S) \bigvee (A \bigwedge B) \), there exists \(q = (a' \land s_3) \lor (a' \land b_3) \in A \bigwedge (S \bigvee B) \) with \(p \geq q \).

Therefore, \(A \bigwedge (S \bigvee B) \leq (A \bigwedge S) \bigvee (A \bigwedge B) \) and so \(A \bigwedge (S \bigvee B) = (A \bigwedge S) \bigvee (A \bigwedge B) \).

References