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Abstract 

 

We have investigated Vickers hardness and the thermodynamic properties of the recently 
discovered nanolaminate carbide Ti3SnC2 polymorphs using the first-principles calculations. 
The chemical bonding shows a combination of covalent, ionic and metallic types. The 

strong covalent bonding is mainly responsible for high Vickers hardness of Ti3SnC2 
polymorphs. Thermodynamic properties are studied using the quasi-harmonic Debye model. 
The variation of bulk modulus, thermal expansion coefficient, specific heats, and Debye 
temperature with applied pressure (P) and temperature (T) are investigated systematically 
within the ranges of 0 - 50 GPa and 0 - 1000 K. The calculated results have been compared 
with available experimental and theoretical data. 
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1. Introduction 

 

The discovery of the layered ternary ceramics with a common formula Mn+1AXn (MAX) 

phases (with n = 1, 2 or 3, M is early transition metal, A is an A-group element in the 

periodic table, and X is either C or N) by Nowtony et al. [1] have drawn attention among 

the research community due to their outstanding properties having characteristics of both 

ceramic and metal [2]. The MAX compounds exhibit remarkable physical properties, such 
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as high mechanical strength, good electrical conductivity, exceptional shock resistance 

and damage tolerance, fully reversible plasticity, and high thermal conductivity [3-7]. 

These unique set of properties makes them potentially interesting for industrial 

applications.  

Currently there are over 70 MAX [8]. Six members of 312 phases are: Ti3SiC2, 

Ti3GeC2, Ti3AlC2, Ta3AlC2, Ti3SnC2 and V3AlC2. The first Sn-containing 312 phase, 

Ti3SnC2, was discovered by Dubois et al. [9] in 2007. The polymorphism of the MAX 

phases has also attracted some attention in recent years [10]. The polymorphs of Ti3SnC2 

have been identified. Both of them crystallize in a hexagonal structure with the space 

group P63/mmc but have different atomic positions. One is α-Ti3SnC2 and the other one is 

β-Ti3SnC2. Ti3SnC2 polymorphs are promising materials for high temperature 

applications. 

Earlier studies of Ti3SnC2 polymorphs have been reported in literature. The structure 

of the ternary carbide Ti3SnC2, based on first-principles calculations has been presented 

by M. B. Kanoun et al. [11]. M. W. Barsoum et al. also studied the phase stability, 

electronic structure, compressibility, elastic and optical properties [12]. Mechanical 

properties have been studied by S. Dubois et al. [13]. Most of the investigations dealt with 

structural, elastic, electronic and optical properties, but the theoretical hardness and 

thermodynamic properties have not been studied thoroughly. Investigation of the 

thermodynamic properties is important for the understanding of the specific behavior of 

Ti3SnC2 polymorphs under high pressure and high temperature environments. Therefore, 

we have undertaken this project to study the Vickers hardness and thermodynamic 

properties of Ti3SnC2 polymorphs for the first time.  

 

2. Experimental 

 

2.1. Total energy electronic structure calculations 

 

The zero-temperature energy calculations have been carried out using the CASTEP code 

[14] by employing pseudopotential plane-wave approach based on the density functional 

theory (DFT). The electronic exchange-correlation potential is evaluated under the 

generalized gradient approximation (GGA) with the functional developed by Perdew-

Burke-Emzerhog (PBE) [15]. To describe the interaction between ion and electron, 

ultrasoft Vanderbilt-type pseudopotentials are employed for Ti, Sn and C atoms [16]. A 

plane-wave cutoff energyof 500 eV is used for all cases. For the sampling of the Brillouin 

zone, the Monkhorst-Pack scheme [17] is used to generate a uniform grid of k-points 

along the three axes in reciprocal space, and a 11x11x2 special k-points are in use to 

achieve geometry optimization. All the structures are relaxed by BFGS minimization 

technique [18]. Geometry optimization is achieved using convergence thresholds of 5x10-6 

eV/atom for the total energy, 0.01 eV/Å for the maximum force, 0.02 GPa for the 

maximum stress and 5x10-4 Å for maximum displacement.  

 



M. A. Rayhan et al. J. Sci. Res. 7 (3), 53-64 (2015) 55 

 

2.2. Thermodynamic properties 

 

The two specific heats (Cp, Cv), volume thermal expansion coefficient, Debye 

temperature, thermal conductivity, etc., are some of the thermodynamic properties of a 

solids. In order to determine these thermodynamic properties we need E(V) data. But we 

have only equilibrium energy E0 and equilibrium volume V0 data (in addition to zero 

pressure bulk modulus B0 and its derivative '

0B ) from DFT calculations. To proceed we 

use the following procedure. 

The equation of state (EOS) and the chemical potential are two of the key 

thermodynamic properties of a solid. The EOS of a given crystalline phase determines its 

behavior with respect to changes in the macroscopic variables, mainly pressure (P) and 

temperature (T) [19]. The third-order Birch–Murnaghan isothermal equation of state is 

given by  

 

 

                                                  (1) 

 

 

E(V) is found to be  

 

 

                                           (2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The crystal structure of (a) α-  Ti3SnC2 and (b) β-Ti3SnC2. 
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Given the energy of a solid (E) as a function of the molecular volume (V), the Gibbs 

program uses a quasi-harmonic Debye model to generate the Debye temperature, 

normalized volume, specific heat capacity, bulk modulus, volume thermal expansion 

coefficient.  In the quasi harmonic Debye model the non-equilibrium Gibbs function G(T, 

P) can be written as 

 

 G(T, p) = Etot  + (EZPE – T Svib) - T Sconf  +  p V                                                              (3) 

 

Here Etot = Total energy, which is directly obtained from the electronic structure 

calculations at T = 0 and P = 0. The second term is the zero point energy, and the third 

term vibrational entropic.  The fourth term T Sconf is the configurational entropy and the 

last one is the pV term corresponds to the constant hydrostatic pressure condition.  We are 

considering a perfect crystal whose only degrees of freedom are vibrations, and so S = 

Svib+ Sconf = Svib.  We may thus write  

 

G(T, p) = Etot  +  Avib  +  p V,   where Avib = EZPE – T Svib.  

Term vibA  is given in Debye model as [20-24]. 
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where n is the number of atoms per formula unit, D(Θ/T ) represents the Debye integral, 

and for isotropic solid, Θ is expressed as [21] 
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M being the molecular mass per unit cell and Bs the adiabatic bulk modulus. The static 

compressibility is given by [19] 
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The heat capacity Cv and thermal expansion coefficient α are given as follows [25] 
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where γ is the Grüneisen parameter, defined as 
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 
Vd

Vd

ln

ln
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3. Results and Discussion  

 
3.1. Vickers Hardness 

 

The Mulliken bond populations are calculated to understand the bonding behavior as well 

as to obtain Vickers hardness (HV) of α- and β-Ti3SnC2 polymorphs. The relevant formula 

for the hardness is given as [26, 27] 

 

 
                                                                                                                            (10) 

where Pµ is the Mulliken overlap population of the µ-type bond, 
V

n
P

free


  ( freen
is the 

number of free electron and V is the crystal volume) is the metallic population and  


bV   is 

the bond volume of µ-type bond. The coefficient 740 is due to the diamond like bond. 

The calculated results are given in Table 1.1. The Mulliken bond populations give the 

degree of overlap of electron clouds of the two bonding atoms. The strong covalency of 

the chemical bonding occurs due to the highest value of bond populations and its low 

value implies that the chemical bond exhibits strong ionicity. Therefore, it can be seen that 

the Ti1-C bonds possess stronger covalent bonding than Ti2-C bond in α-Ti3SnC2 phase. 

In case of α-Ti3SnC2 the population of Ti1-Ti1 bond is low. This indicates that, the Ti1-

Ti1 bonds of α-Ti3SnC2 possess lower covalency. Similarly, for β-Ti3SnC2, the Ti1-C 

bonds possess stronger covalent bonding than Ti2-C bond. The bond of zero population 

does not contribute to the hardness calculation, so the hardness of α- and β-Ti3SnC2 is due 

to the hardness of Ti1-C and Ti2-C bond. Here in Ti-C bond, the electronegativity 

difference between Ti (1.54) and C (2.55) is 1.01 and in Ti-Ti bond the difference is 

exactly zero. As per this rule, the Ti-C bonds possess polar covalent bonding and Ti-Ti 

bonds hold non-polar covalent bonding. Polar covalent bonds are always stronger than 

non-polar covalent bonds. Again, the degree of metallicity may be defined as fm =  PP
 . 

In our calculations, the value of fm for Ti1-Ti1 bond in α-Ti3SnC2 phase is 0.11, 

which is larger than that of other bond (i.e. Ti1-C, Ti2-C: 0.011, 0.015), indicating that the 

Ti1-Ti1 bond is more metallic than other bonds. Ti2-C bond is more metallic than Ti1-C 

bond in β-Ti3SnC2 phase. After calculating the individual bond hardness of all bonds in 

the crystal the total Vickers hardness of the compound is found by taking geometric 

average of these bonds’ hardness. The theoretically calculated values of the Vickers 

hardness for α- and β-Ti3SnC2 phase are 9.6 GPa and 4.9 GPa respectively. The 

experimental hardness of α-Ti3SnC2 is found to be 9.3 GPa [28] by the nanoindentation 

process with Nix and Gao model [29]. We may conclude that β-Ti3SnC2 phase is 

relatively soft and easily machinable compared to α-Ti3SnC2 phase. From Table 1 we 
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observe that, the calculated Vickers hardness of α-Ti3SnC2 is almost two times greater 

than that of β-Ti3SnC2 which is expected. 

 

Table 1. Calculated Mulliken bond overlap population of µ-type bond P , bond length d , metallic 

population P , bond volume


bV and Vickers hardness of µ-type bond 


VH  and Hv of α- and β-

Ti3SnC2 polymorphs. 

[HV
Th Theoretical hardness,  HV

Exp. Experimental hardness] 

 

3.2 Thermodynamic Properties 

 

We have investigated thermodynamic properties of Ti3SnC2 polymorphs by using the 

quasi-harmonic Debye model, detailed description of which can be found in literature 

[30,31]. The thermodynamic properties are calculated in the temperature range from 0 to 

1000 K, where the quasi-harmonic Debye model remains fully applicable. The pressure 

effect is studied in the 0 to 50 GPa range. Here we have calculated the bulk modulus, 

normalized volume, specific heats, thermal expansion coefficient and Debye temperature 

at various temperatures and pressures for the first time. For this we have made use of E-V 

data obtained from the third-order Brich-Murnaghan equation of state [32] using zero 

temperature and zero pressure equilibrium values, E0, V0, B0, obtained from first principles 

calculations as discussed earlier. It can be seen that, there is no noticeable difference for 

the temperature and pressure dependence properties between the two polymorphs under 

study (Fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. (a) Temperature dependence and (b) pressure dependence of the bulk modulus for α- and β-

Ti3SnC2. 
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Ti3SnC2 

Ti1-C 2.09729 1.21 0.013 5.124 58.461 9.6 9.3 [28] 

 Ti2-C 2.21927 0.87 0.013 6.072 31.075   
 Ti1-Ti1 4.70138 0.12 0.013 57.73 0.079   
β-
Ti3SnC2 

Ti1-C 2.09803 1.21 0.074 18.5070 6.725 4.9  
Ti2-C 2.21036 0.87 0.074 21.6413 3.534   
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We see that from Fig. 2(a), there is hardly any difference in the values of B for the 

two phases and these vary almost identically as a function of temperature. That means for 

the same compressive stress applied to both the phases at a particular temperature results 

in the same volume strain in both phase. At 0 K, the bulk modulus is 160 GPa for α-

Ti3SnC2 and is 162 GPa for β-Ti3SnC2, which is consisted with the previous studies 

[11,12]. It is seen that the bulk modulus is nearly a constant when T < 100 K. However, 

for T > 100 K, the bulk modulus decreases with the increasing temperature. 

The bulk modulus of α-Ti3SnC2 and β-Ti3SnC2 drops by 13.5% and 12.8%, 

respectively, from 0 to 1000 K. From Fig. 2(b), it is seen that bulk modulus increases with 

increasing pressure and the shape of curve is nearly linear for both the phases. 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Normalized volume-pressure diagram for (a) α-Ti3SnC2 and (b) β-Ti3SnC2 at different 

temperatures. 

 

The pressure and temperature dependence of the relative volume V/V0 of α- and β-

Ti3SnC2 are shown in Fig. 3(a) and 3(b). It is seen that the unit cell volume decreases 

smoothly and no abrupt change occurs with increasing pressure for both the phases, 

indicating that the crystal structure is stable up to a pressure of 50 GPa. It can be seen that 

on compression, the reduction in volume for α-Ti3SnC2 is greater than β-Ti3SnC2, which is 

due to the higher bulk modulus of β-Ti3SnC2.   

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The specific heat (a) at constant volume and (b) constant pressure with temperature 

for α- and β-Ti3SnC2 at pressure P = 0 GPa. 
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The specific heat capacity, CV at constant-volume and CP at constant-pressure for α- 

and β-Ti3SnC2 polymorphs as a function of temperature are calculated and shown in Fig. 

4(a) and 4(b), respectively. The differences in CV and CP of α- and β-Ti3SnC2 polymorphs 

are minute, meaning that the effect of different M-A bonding on the specific heat is 

negligible. It is seen that both heat capacities increase with increasing temperature. These 

results indicate that phonon thermal softening occurs when the temperature is raised. In 

the low temperature limit, CV of α- and β-Ti3SnC2 phases obeys the expected Debye T3 

power law behavior. At high temperature (T > 400 K) it follows the Dulong and Petit law 

and CV approaches the classical asymptotic limit CV=3nNkB = 149.6 J/mol K. The values 

of CP for α- and β-Ti3SnC2 are slightly larger than the CV, which can be explained by the 

relation between CP and CV as follows 

 

 BVTTCC VVP

2               (11) 

 

where αV, B, V and T are the volume thermal expansion coefficient, bulk modulus, volume 

and absolute temperature, respectively. 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The volume thermal expansion coefficient with (a) temperature and (b) pressure for α- and 

β-Ti3SnC2. 
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As a fundamental parameter, the Debye temperature correlates with many physical 

properties of solids, such as specific heat, elastic constants, and melting temperature. At 

low temperatures the vibrational excitations originates solely from acoustic vibrations. 
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Hence, at low T the Debye temperature obtained from elastic constants is the same as that 

determined from specific heat measurements. From the elastic constants, one can get the 

Debye temperature (ΘD) using the following formulae [33]  
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where h is Planck’s constant, kB is Boltzmann’s constant, n is the number of atoms in unit 

cell, and V0 is the unit cell volume. The average sound velocity va is approximately 

expressed as [34] 
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where vt and vl are the transverse and longitudinal elastic wave velocities, respectively, 

which can be obtained from Navier’s equation [33] 
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where G is the shear modulus, BS is the adiabatic bulk modulus and ρ is the density. 

Using above equations, calculated Debye temperatures were found to be 659.9 K and 

494.7 K for α- and β-Ti3SnC2 polymorphs at 0 K and 0 GPa, respectively. Unfortunately, 

there is no availability of theoretical or experimental data for α- and β-Ti3SnC2 

polymorphs. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The (a) pressure dependence of Debye temperature and the (b) pressure dependence of 

Debye temperature for α- and β-Ti3SnC2. 
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Fig. 6(a) shows the pressure dependence of Debye temperature ΘD at 300 K of α- and 

β-Ti3SnC2 polymorphs. It is seen that the Debye temperature increases almost linearly 

with pressure. Fig. 6(b) displays the temperature dependence of ΘD at P = 0 GPa. It is 

clear that ΘD of α- and β-Ti3SnC2 phases remains unchanged as T < 100 K and decreases 

linearly as T > 100 K. Debye temperature ΘD is related to the maximum thermal vibration 

frequency of a solid. The variation of ΘD with pressure and temperature reflects the fact 

that the thermal vibration frequency of the particles in α- and β-Ti3SnC2 phases changes 

with pressure and temperature. Since vibration frequency is proportional to square root of 

the stiffness within the harmonic approximation, ΘD can be used to measure the stiffness 

of solids [35]. Usually, a solid with high modulus and hardness will possess high Debye 

temperature. For example, ΘD of diamond is 2240 K, much higher than 402 K of graphite 

[35]. 

 

4. Conclusion 

 

To investigate the Vickers hardness and thermodynamic properties of α- and β-Ti3SnC2, 

we have used first-principles calculations which are based on density functional theory 

and the well established equation of states. Mulliken population analysis reveals that 

covalent bonding dominates in these polymorphs. For α- and β-Ti3SnC2, it is seen that 

Ti1-C bonding possesses stronger covalency than Ti2-C bonding. Thus the main 

contribution of hardness is come from Ti1-C bonding. The temperature and pressure 

dependence of bulk modulus, normalized volume, specific heats, volume thermal 

expansion coefficient and Debye temperature are studied fruitfully using the quasi-

harmonic Debye model and the results are discussed. The bulk modulus of α-Ti3SnC2 and 

β-Ti3SnC2 decreases with increasing temperature. The reduction in volume for β-Ti3SnC2 

is comparatively lower than that of α-Ti3SnC2 when pressure is applied. This is due to 

higher bulk modulus of β-Ti3SnC2. The heat capacities increase with increasing 

temperature, which confirms that phonon thermal softening occurs when the temperature 

increases. The volume thermal expansion coefficient αV of α-Ti3SnC2 and β-Ti3SnC2 

increases rapidly with increasing temperature at low temperature region of T < 300 K and 

increases gradually at high temperature region. The Debye temperature ΘD of α- and β-

Ti3SnC2 remains the same when T < 100 K and decreases linearly for T > 100 K. 
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