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Abstract 
 

We show that the Fejér kernel generates the fifth-kind Chebyshev polynomials. 
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1. Introduction 
 
In the original approach to Fourier series, it is convenient to consider the following partial 
sums for the interval [ , ]π π− : 
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We investigate what happens if n increases to infinity. From (1) and (2) we obtain: 
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With the Dirichlet kernel [1-3]: 
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Then we hope that with n increasing to infinity, ( )nf y  approaches ( )f y  with an error 
which can be made arbitrarily small. This requires a very strong focusing power of 

, that is, we would like to have the strict property: (n
D

K t y− )
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However, Eq. (4) simulates a Dirac delta only until certain approximation, then the 
convergence: 
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has to be restricted to a definite class of functions ( )f y

(

 which are conveniently smooth to 
counteract the insufficient focusing power of )n

D
K t y− ; the corresponding restrictions on 

( )f y  are the known Dirichlet conditions [1-3] for infinite convergent Fourier series. 
From Eq. (4) we see that ( )n

D
K θ  is an even function. Here we consider it for [0, ]θ π∈ : 
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thus 
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Fig. 1. Some fourth-kind Chebyshev polynomials. 
 
 
It is then natural to introduce the polynomials: 
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which were named “fourth-kind Chebyshev polynomials” by Gautschi [4,5]. We thus 
have: 
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These are shown in Fig. 1. In the next section we exhibit a set of associated polynomials 
to Fejér kernel [1-3]. 
 
2. Chebyshev-Fejér polynomials 
 
Fejér [5] invented a new method of summing the Fourier series by which he greatly 
extended the validity of the series. Using the arithmetic means of the partial sums (Eq. 1), 
instead of the ( )nf y  themselves, he could sum series which were divergent. The only 
condition the function still has to satisfy is the natural restriction that ( )f y  shall be 
absolutely integrable.  
 

Then, in the Fejér approach we construct the sequence: 
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Accepting the expressions (1) and (2), therefore: 
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We thus see that Fejér results come about by the fact that his method is related with 
the following kernel [1-3]: 
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This possesses a strong focusing power, that is, it satisfies (5), then a ( )f y  absolutely 
integrable in [ , ]π π−  guarantees the convergence of ( )ng y  towards ( )f y . 

Now we consider the Fejér kernel: 
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that is: 
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Then it is natural to introduce the functions: 
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We name these “fifth-kind Chebyshev polynomials”, which are not explicitly in the 
literature. Therefore: 
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Thus (1) 1nW =% , and so on. We plot these in Fig. 2. 

 
 

Fig. 2. Some fifth-kind Chebyshev polynomials. 
 
 

Eqs. (17) are the solutions of the non-homogeneous differential equation: 
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In a forthcoming  paper we will consider topics such as recurrence, Rodrigues formula, 
interpolation properties, orthonormality, generating function, and so on for fifth-kind 
Chebyshev polynomials introduced in this work. 
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