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Abstract 

 
The steady flow behavior of a viscous, incompressible and electrically conducting fluid 
between two parallel infinite insulated horizontal porous plates with heat transfer is 
investigated along with the effect of an external uniform transverse magnetic field, the 
action of inflow normal to the plates, the pressure gradient on the flow and temperature. 
The fluid viscosity is supposed to vary exponentially with the temperature. A numerical 
solution for the governing equations for both the momentum transfer and energy transfer 
has been developed using the finite difference method. The velocity and temperature 
distribution graphs have been presented under the influence of different values of magnetic 
inclination, fluid pressure gradient, inflow acting perpendicularly on the plates, temperature 
dependent viscosity and the Hartmann number. In our study viscosity is shown to affect the 
velocity graph. The flow parameters such as viscosity, pressure and injection of fluid 
normal to the plate can cause reverse flow. For highly viscous fluid, reverse flow is 
observed. The effect of magnetic force helps to restrain this reverse flow.  
 
Keywords:  Heat transfer; Temperature dependent; Porous plates; Conducting fluid; 
Magnetic field. 
 
© 2015 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. 
 

 doi: http://dx.doi.org/10.3329/jsr.v7i3.22574                    J. Sci. Res. 7 (3), 21-31 (2015) 
 
 
 
 
1. Introduction 
 
The magnetohydrodynamic fluid flow between two parallel plates has wide applications 
in various fields such as petroleum industries, power generators, polymer technology, 
aerodynamic heating and also in the purification of crude oil. Steady viscous fluid flow 
between two plates under the action of magnetic force is utilized in bearings with liquid-
metal lubricators. Channel-flow problems are practically important when the effect of 
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viscosity and its variation is included. It has wide applications in lubrication based 
machinery. 

Magnetohydrodynamic (MHD) is the science of motion of an electrically conducting 
fluid like mercury, molten iron and ionized gases known as plasma under the influence of 
magnetic field. Other names such as hydromagnetics, magnetic fluid mechanics are also in 
use. When a conductor moves in a magnetic field, the two consequences arise. Firstly, the 
electric current is induced and this current experiences a force known as Lorentz force and 
secondly an induced magnetic field is produced and is added to the primitive magnetic 
field [1-4]. Such type of study is mostly coined, concentrated and enunciated extensively 
by Alfvén [5] in 1942. A classical problem accorded with the hydromagnetic channel flow 
yields the exact solutions [6]. 

The exact solutions for the fluid and temperature fields of simplified problems can be 
found through the references [7-9]. The laminar flow governing equations in a channel are 
generally the Navier-Stoke’s and energy equations and theses equations are mutually 
coupled and reduce to non-linear form when there is a temperature dependent fluid 
viscosity and consequently it results in the effect of viscosity variation or viscous 
dissipation [10-13]. A few property laws can help to solve the hydrodynamic problem to 
account for variable viscosity and to avoid the coupling of the governing equations. 

In the present note, the steady flow behavior of an electrically conducting, viscous, 
incompressible fluid bounded by two parallel infinite insulated horizontal porous plates 
under the action of an external uniform magnetic field applied perpendicularly to the 
plates is studied with the assumption of the fluid viscosity to vary exponentially with the 
temperature and the plates are kept at different but constant temperatures. The fluid 
motion is also under the influence of a uniform suction and injection at the upper and 
lower plates respectively. The upper plate moves with a horizontal uniform velocity and is 
subjected to a pressure gradient in the horizontal direction. The fluid flow and the 
temperature distributions are governed by the coupled set of the mass conservation 
equation, momentum transfer equation and the energy equation and consequently the non- 
linear ordinary differential equations are solved numerically employing the finite 
difference methods. The effects of the inclined magnetic field, variable viscosity on both 
the flow and temperature at various inclinations of the magnetic field and Hartmann 
number are studied through graphical representations. 
 
2. Mathematical formulation of the problem 

 
Let the viscous, incompressible and electrically conducting fluid move with velocity  
between two parallel infinite insulated horizontal porous plates under the influence of a 
magnetic field  acted perpendicularly upon the plates. The origin is located in the lower 
plate with x-axis along the main flow and y-axis perpendicular to both the plates. The 
plates are assumed to be infinitely long in the x and z -directions .The layer in contact 
with the lower plate is obviously on XOZ plane. Consequently the problem becomes one- 
dimensional and the fluid velocity component  in the x-direction and the temperature T, 
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both are functions of y only except the pressure gradient term in the direction of x-axis. 
Due to no slip condition at the lower plate with no motion, the component u is zero and 
using the mass conservation equation the y-component of the fluid velocity  is always 
constant and is equal to the suction velocity  whereas at the upper plate the component 

 is equal to the velocity of the plate . The uniform magnetic field  is directed along 
the direction of y-axis by neglecting the induced electric and magnetic fields. The 
electromagnetic influence is employed to restrain the fluid motion subject to imposition of 
a force proportional to the fluid velocity which is under the effect of a pressure gradient in 
the x- direction. Also the fluid temperature T at the lower plate is  while that at the 
upper plateis . 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Model of the problem. 
 

The electric field vector  is produced [9] at right angles to both the fluid velocity  
and the magnetic field  and is given by  

 
                                                                                                          (1) 
 

Let the electrically conducting fluid be isotropic in spite of the magnetic field  . As a 
result an electrical conductivity  will be related with electric current density  and 
electric field   given by Ohm’s law [10] in the following manner; 
 
                                                       (2) 
 
where      and  

 
or,                                                 (3) 
 

The term  is negligible in comparison with the term , if we take MHD 
approximations into account. 
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Again at the same time the induced current denoted by the Lorentz force  is given 
by  
                
                                             (4) 
 
which is being due to the electric generator, the conducting fluid and the temperature cut 
the lines of the magnetic field. The vector  is parallel to both the fluid velocity vector  
and the temperature T but in opposite directions. Such a laminar flow through parallel 
plates under the influence of the magnetic field has been studied by many authors in 
recent years [14-16] in the applications in MHD generator, MHD pumps and 
electromagnetic flow meters. 

The momentum transfer and energy equations when applied to the fluid reduce to the 
forms [17, 18] given as below 
   

 =                (5)

         
and 

               (6)

         
where = fluid density, k = specific heat of the fluid, fluid viscosity = , 

,  is the characteristic velocity of the fluid and  is the characteristic 
viscosity of the fluid at y = 0. 

Now, it is interesting to investigate the effect of an inclined magnetic field on the 
fluid velocity and the temperature distribution. This behavior is modeled by introducing 
an angle of inclination to the last terms of the right hand side of the equations (5) and 
(6) and these equations get modified respectively in the following manner: 
 
                 =                                               (7) 

and 

                          (8) 

       
The equations (7) and (8) can be solved subject to the initial and boundary conditions: 

 
u = 0, T =  at y = 0 
u =  , T =  at y = h, where h is the distance between the two plates.                    (9)  
 

Substituting the following non-dimensional variables: 
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  ,  ,  ,  , 

 =  ,   
 

        (10) 

=  ,  being the Reynolds number. 

into the equations (7), (8) and (9) and dropping the stars for convenience, we get  
 
            (11) 

     

     (12) 

    

Where M = ,  ,   being the Hartmann number;  are the 

Prandtl and Eckert numbers respectively. 
and 
 u = 0, T = 0 at y = 0                     (13) 
 u =   , T =  at y = 1                                                                                                                             
Equations (11) and (12) denote a system of coupled and non-linear ordinary differential 
equations subject to the conditions (13). Let the fluid viscosity vary exponentially with the 
temperature, then the function  takes the form (14) in the following manner: 
 
                               (14) 

where  is the fluid viscosity parameter and is given by  log );  being the two 

values for the coefficients of fluid viscosity determined respectively at the lower plate 
temperature  and at the upper plate temperature . 
 
3. Numerical Solution of the Problem 
 
The equations (11) and (12) constitute a system of coupled and non-linear ordinary 
differential equations and can be solved subject to the initial and boundary conditions (13) 
employing a two- point finite difference methods [17,18]. 

Now let us introduce  and  defined respectively by  and  . Using (14) 

along with these substitutions, the equations (11) and (12) reduce to the following forms 
respectively: 
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and                         (15) 

       
 
subject to the initial and boundary conditions (13). 

The governing non-linear ordinary differential equations can be solved through 
iteration techniques in which the computational domain has been divided into N intervals 
in the y-direction and then in relation to the variables ζ and . We obtain the finite 
difference equations by writing these equations at the mid-point of the computational cell 
and then again replacing the different terms by their second order central difference 
approximations. The difference equations obtained as such are to be solved numerically 
using Thomas’ algorithm [17,18]. 
 
3. Results and Discussions 

 
The study of flow of an electrically conducting viscous fluid between two infinite 
horizontal plates requires rigorous calculations. Under various variable conditions i.e. the 
magnetic field with and without magnetic inclinations, fluid pressure gradient, inflow 
normal to the porous plates and temperature dependent viscosity we represent the velocity 
and temperature distributions through graphs. The non-dimensional velocity of the upper 
plate  is taken to be unity which leads to a unit Reynolds number. 

Fig. 2 represents the influence of pressure on the fluid flow in absence of M and λ but 
µ = 1. It shows the velocity distributions u against the vertical distance y for various 
values of the pressure gradient P from -3 to 3. It is observed that for P = -3 i.e. for 
negative pressure gradient, reverse flow occurs, and for P = -1, the flow becomes linear. 
For P = 0, the flow seems to be slightly above the line of linearity due to the presence of 
the fluid viscosity. When P = 3, it is observed that the fluid velocity increases. 

Fig. 3 shows that the effect of inflow due to injection on the velocity distribution for 
the values of  λ = 0, 2, 6, 10 while Ha = 3, α = 0, µ = 1, P = -3, and θ = 60°. It is seen that 
increasing λ the reversed flow depth increases but when λ = 10 taken arbitrarily, the 
recirculation flow depth reduces initially to some extent and suddenly the depth increases. 
Fig. 4 indicates the velocity profiles against the viscous parameter in the presence of 
pressure. Setting the parameters P = -5, λ = 0, Ha = 0, T = 1. It is observed that the depth 
of the reversed flow increases with the increase of α. It indicates that as viscosity 
increases, the reversed flow becomes deeper. 

Fig. 5 reveals the effect of viscosity parameter α ranging from -2, 0, 1, 1.5 on velocity 
profiles when the other parameters are taken as M = 0, P = 0, λ = 0, T  = 1. In the absence 
of Hartmann number, pressure gradient, inflow, the viscosity induces substantial effect on 
the velocity distribution. As the viscosity parameter α increases, viscosity decreases and 
consequently velocity increases, it is observed that the mass flow rate indicated by the 
area between the flow velocity curves and the y-axis is reduced. It is also observed 
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through the reference [4] that as α decrease, viscosity increases with temperature i.e. for 
the negative values of α, the mass flow rate increases. 

Fig. 6 shows the flow profiles for different values of Hartmann numbers (variable 
magnetic intensity), keeping the other parameters fixed. It is concluded that the depth of 
reversed flow reduces with an increase of magnetic field. For values of the viscosity 
parameter α, it is observed that the increase of α reduces the mass flow rate which is 
indicated by the area between the flow velocity curves and the y-axis. It is also observed 
through the reference [4] that viscosity increases with temperature, in other words 
viscosity parameter α is of negative value, the mass flow rate increases as indicated in the 
Figure as α changes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2. Velocity profile for different values of P when M = 0, µ = 1, λ  =  0.  
 
 
 
 
 
 
 
 
 
 
 
 
 
      

 

Fig. 3. Velocity profile for different values of λ when P = -3, µ = 1, Ha = 3, θ = 60°. 
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Fig. 7 reveals two facts about the relationship of magnetic inclination θ  and viscosity 
parameter α on the fluid flow. It is clear that the rate of the reversed flow depth decreases 
with an increase of magnetic inclination θ. As the rate of fluid flow is also dependent 
upon the viscosity of the fluid, it is observed that this rate is much more dependent upon 
viscosity and for a fluid of less viscosity, we get comparatively higher rate of reversed 
flow. The reversed flow is due to high viscosity of the fluid and its rate decreases 
substantially if viscosity decreases. 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Velocity profile for different values of α when P = - 5, M = 0, λ = 0.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Velocity profile for different values of α when P = 0, M = 0, λ = 0, T = 1. 
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Fig. 8 indicates the influence of the viscosity parameter α in the temperature 
distribution when P = 0, M = 0, and λ = 0. It is clear from the Figure that as α increases, 
the temperature decreases. Further if , viscous dissipation occurs and in the long 
run the temperature profile becomes linear. Again if α is negative, then both the viscosity 
and temperature increase. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 6. Velocity profile for different values of α and M keeping the rest parameters fixed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 7. Velocity profiles subject to the prescribed conditions. 
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Fig. 8. Temperature profile. 
 
4.  Conclusion 
 
The finite difference method is utilized to solve the momentum transfer and energy 
equations for the flow of an electrically conducting, viscous, incompressible fluid between 
two parallel infinite horizontal porous plates when the flow is considered to be laminar. 
The profiles for velocity and temperature are represented graphically under the influence 
of an external inclined uniform magnetic field, pressure gradient, inflow normal to the 
porous plates and temperature dependent viscosity. Comparative studies of velocity and 
temperature distributions in the light of magnetic inclinations have been explained for the 
cases of constant fluid viscosity as well as variable fluid viscosity. We observe that the 
parameters involved in the determination of velocity and temperature profiles play vital 
role in the flow. The fluid with high viscosity causes reversed flow and the applied 
magnetic force at different inclination controls this flow. Besides this we observe the 
temperature distribution in fluid layers is directly linked with its viscosity. 
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