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Abstract

The exp(®(y))-expansion method is applied to find exact traveling wave solutions to the
(2+1)-dimensional Boussinesq equation which is an important equation in mathematical
physics. The traveling wave solutions are expressed in terms of the exponential functions,
the hyperbolic functions, the trigonometric functions and the rational functions. The
procedure is simple, direct and constructive without the help of a computer algebra system.
The applied method will be used in further works to establish more new solutions for other
kinds of nonlinear evolution equations arising in mathematical physics and engineering.
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1. Introduction

Nonlinear complex physical phenomena are related to nonlinear partial differential
equations (PDEs) which are involved in many fields from physics to biology, chemistry,
mechanics, etc. Searching for exact solutions of nonlinear PDEs plays an important role in
the study of these physical phenomena and gradually becomes one of the most important
and significant tasks.

A great deal of research work has been carried out during the past decades for the study
of the nonlinear evolution equation. Powerful methods which make it possible to generate
exact traveling wave solutions to nonlinear equations have emerged from the literatures in
the past decades. Among them are the tanh-function method [1], the Hirota’s bilinear
method [2], the auxiliary equation method [3], the inverse scattering transform [4], the
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complex hyperbolic function method [5,6], the rank analysis method [7], the ansatz
method [8,9], the (G/G)-expansion method [10-21], the exp-functions method [22], the
modified simple equation method [23,24], the Jacobi elliptic function expansion method
[25,26], the Adomian decomposition method [27,28], the homogeneous balance method
[29-31], the F-expansion method [32,33], the Backlund transformation method [34], the
Darboux transformation method [35], the homotopy perturbation method [36,37], the
generalized Riccati equation method [38], the tanh-coth method [39], the exp(-¢(n))-
expansion method [40-43] and so on.

The objective of this article is to implement the exp(-¢(n))-expansion method to
construct exact solutions for the nonlinear evolution equations in mathematical physics
via the (2+1)-dimensional Boussinesq equation for the first time. However, the exp(-
o(n))-expansion method have provided some new analytical solutions than the other
methods. The (2+1)-dimensional Boussinesq equation is an important class of NLEEs and
arises in physics, biophysics, optical fibers, propagation of shallow water waves, plasma
physics and quantum mechanics to analyze the basic properties of nonlinear propagation
of many physical phenomena. Water flow to subterranean drains is described by the
(2+1)-dimensional Boussinesq equation. The (2+1)-dimensional Boussinesq equation
describes the propagation of long waves in shallow water under gravity propagating in
both directions. It also arises in other physical applications such as nonlinear lattice
waves, iron sound waves in plasma and in vibrations in a nonlinear string. It is used in
many physical applications such as the percolation of water in porous subsurface of a
horizontal layer of material.

The rest of the paper is organized as follows: In Section 2, we give a description of the
exp(-¢(n))-expansion method. In Section 3, we apply this method to the (2+1)-
dimensional Boussinesq equation and graphical representations of the solutions. In
Section 4, we have compared the obtained solutions with Zheng’s [21] solutions and
Conclusions are given in the last section.

2. Materials and Methods

In this section, we briefly highlight the main features of the exp(®(#))-expansion method.
We refer to [40-43] for more details. The nonlinear wave and evolution equations we want
to investigate are commonly written as

u =F(u,u,,u,.,u,..) oru, =F(u,u,u,,u,..) 1)

Where u=u(x,t) is an unknown function, F is a polynomial in u(x,t) and its derivatives in
which highest order derivatives and nonlinear terms are involved and the subscripts stand
for the partial derivatives. In order to solve eq. (1) by this method, one has to resort the
following steps:

Step 1: To find the traveling wave solution of (1), introduce the wave variable n=x+y+Jz,
so that u=u(x,t) =u(n). Based on this
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and so on for other derivatives. With the help of (2), the NLEE (1) changes to an ODE as

iR(U,U',U”,U”’,".)ZO’ (3)

where ‘R is a polynomial of u and its derivatives and the superscripts indicate the
ordinary derivatives with respect to #.

Step 2: Suppose the traveling wave solution of Eq. (3) can be expressed as follows:

U = Ay + 3 A KPR “)

where A;(0 <i <N) are constants to be determined, such that Ay# 0 and @ =®(y) satisfies
the following ordinary differential equation:

@'(n7) = exp(=@(17)) + pexp(®(n)) + 4, (5)

Eqg. (5) gives the following solutions:
Cluster 1: When p# 0, 22 -4p > 0,
2 -
(72— tanh(w(rﬁ E))—l) ©)

2u
Cluster 2: When p#0, 2 -4u <0,

®(17) = In(

Jan— 2y an( ) ey
() = In -2 ) "
7

Cluster 3: When g = 0, A # 0, and A% -4u > 0,

TV 8)
®0)= In(exp(ﬂb(n +E)) —1)

Cluster 4: When u # 0, 2 # 0, and 4 -4p = 0,

_20n+E)+2), ©)

D (17) = In( 20+ E)

Cluster 5: When i = 0, 4 = 0, and 2> -4u = 0,

®(n7) =In( +E) (10)
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Ay,----,V, 4, U are constants to be determined latter, 4n # 0, the positive integer N can be
determined by considering the homogeneous balance between the highest order
derivatives and the nonlinear terms appearing in Eg. (3).

Step 3: We substitute Eq. (4) into Eq. (3) and then we account the function exp(®(7)). As
a result of this substitution, we get a polynomial of exp(®(;)). We equate all the
coefficients of same power of exp(®(;)) to zero. This procedure yields a system of
algebraic equations whichever can be solved to find Ay,---,V, 4, l. Substituting the values
of Ay,---V, 4, W into Eqg. (4) along with general solutions of Eq. (5) completes the
determination of the solution of Eq. (1).

3. Exact solution for the (2+1)-dimensional Boussinesq equation and the graphical
representions to the obtained solutions

3.1. Exact solution for the (2+1)-dimensional Boussinesq equation

In this sub-section we will solve the (2+1)-dimensional Boussinesq equation which
contains the second order partial derivative ug in addition to other partial derivatives. This
family of nonlinear equations gained its importance because it appears in many scientific
applications and physical phenomena. The new family is of the form
Uy — Uy, — U, + p(u) =0, where u(x,y,t) is a function of space x, y and time variable t
and the nonlinear term P(u) = -uXXX-(uz)XX. Therefore, the equation DeCOMES U-Uxx=Uyy~Uysxx-
(U = 0, with u(x,y,t) is a sufficiently often differentiable function. This is called the
(2+1)-dimensional Boussinesq equation. The (2+1)-dimensional Boussinesq equation was
introduced by Boussinesq to describe the propagation of long waves in shallow water
under gravity propagating in both directions. The (2+1)-dimensional Boussinesq equation
describes motions of long waves in shallow water under gravity and in a two-dimensional
nonlinear lattice. This particular form the (2+1)-dimensional Boussinesq equation is of
special interest because it is completely integrable and admits inverse scattering
formalism. However, the good Boussinesq equation or the well-posed equation can be
handled in a like manner.
Let us consider the (2+1)-dimensional Boussinesq equation

utt_uxx_uyy_u _(uz)xxzo' (11)

XXXX

We use the traveling wave variable u(n)=u(x,t), n=x+y-Vt, Eq. (11) is carried to an ODE
VZU”—ZU”—UW—(UZ)”=O- (12)
Eqg. (12) is integrable, therefore, integrating twice with respect to » once yields:

VZ-2u-u"-u’+C=0, (13)
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where C is an integration constant which is to be determined.

Taking the homogeneous balance between highest order nonlinear term u? and linear term
of the highest order u" in Eq. (13), we obtain N=2. Therefore, the solution of Eq. (13) is of
the form:

u@) = A, + A (exp(=D (7)) + A, (exp(-D(17)))*, (14)

where Ay, A1, A, are constants to be determined such that Ay # 0, while 4, u are arbitrary
constants.
Substituting Eq. (14) into Eq. (13) and then equating the coefficients of exp(®(y)) to zero,
we obtain

~6A,— A2 =0, (15)
—2A, —10A,1—2AA, =0, (16)
—2A, +V2A, —8A— A’ —3AL—-2AA, —4A,27 =0, (17)
—2AA +V2A — AL —2A —6A,ul—2Au =0, (18)
C+V2A —2A —2Au* — A’ — Adu =0, (19)

Solving the Egs. (15)-(19) yields

C=-124" — A2 =622 —1*Ay—8A 1, V =+ /> +2+8u+2A,, A=A, A =-61, A=-6

where A, u are arbitrary constants.
Now substituting the values of V', A, A, A, into Eq. (14) yields

u(n7) = A, — 62(exp(=®@(17))) - 6(exp(-0(17)))*, (20)
Where 77 = x — (/2> +24+8u+2A) )t -

Now substituting Egs. (6)-(10) into Eq. (20) respectively, we get the following five
traveling wave solutions of the (2+1)-dimensional Boussinesq equation.
When 1 # 0, A% -4p > 0,

0, (7) = Ay +( L2Au

JA22 —4p tanh(iwlzz_‘”‘(m E))+ A4
_6( 2/” )2.

2 —
J2Z—au tanh(Lz‘”‘(m E))+ 4
where 5 = x — (+4/ 4> +2+8u+2A, )t and E is an arbitrary constant.

When p # 0, A% -4p < 0,

)
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1274
0, () = A~ ( :
Jau-2 tan(ivll’uz_ﬂ(n+ E))—4

—6( 2/1 )2.

Jau-72 tan(i"‘l'uz_iz(n +E)-4

Where 7 = x— (44 A% +2+8u+ 2A)t and E is an arbitrary constant.
When p=0, A # 0, and A2 -4p > 0

)

61 )—6( A ).
exp(A(n+E))-1 exp(A(n+E))-1

where 77 = x — (4 A* + 2+ 8u+2A, )t and E is an arbitrary constant.

When pt#0, A #0, and A% -4u = 0,

U (17) = A, = (

32(n+E) )_E( A(n+E)
(Am+EN+2)" 2 (A(n+E))+2)

where 5 =x— (£ 4> +2+8u+ 2A )t and E is an arbitrary constant.
When p =0, =0, and /% -4 = 0,

U, (1) = A +( )?.

64 Y 1 2,
(n+E) “(n+E)

Us(17) = A, =

where 77 = x— (i\/ﬂp2 +2+8u+2A))t and E is an arbitrary constant.
3.2. Graphical representations of the obtained solutions

The graphical illustrations of the solutions are given below in the Figs. with the aid of
Maple.

= 150000—

Fig. 1. a) Traveling wave solution uy(7) when p =1, A=3, y=0, E=1, Ap=1 and -10 < x,t < 10; b)
Traveling wave solution uy(m) when p =3, 2=1, y=0, E=1, Ag=1 and -1 <x,t<1.
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Fig. 2. a) Traveling wave solution us(n) when p =0, 2=2, y=0, E=5, Ay=5 and -10 < x,t < 10); b)
Traveling wave solution us(m) when p =1, 2=2, y=0, E=1, Ay=1 and -10 < x,t < 10).

Fig. 3. Traveling wave solution us(n) when p =0, A=0, y=0, E=1, y=0, Ap=1 and -10 < x,t < 10).

4. Comparisons between the (G'/G)-expansion method and the exp(-@(¢&))-expansion
method of the (2+1)-dimensional Boussinesq equation

Zheng [21] examined exact traveling wave solutions of the (2+1)-dimensional Boussinesq
equation by using the (G'/G)-expansion method and obtained only three solutions (Al)-
(A3) (see appendix). On the contrary by using the exp(-®(¢))-expansion method we have
obtained five solutions (See section 3) at least two of which are different from Zheng [21]
solutions. On the other hand, the auxiliary equation used in this paper is different.
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5. Conclusion

In this article, the exp(-@(#))-expansion method has successfully been applied to find the
exact solutions for nonlinear partial differential equations, such as the (2+1)-dimensional
Boussinesq equation. The exp(-®(n))-expansion method is used to find a new traveling
wave solution. The results show that the exp(-@&())-expansion method is a powerful
mathematical tool to solve the (2+1)-dimensional Boussinesq equation; it is also a
promising method to solve other nonlinear equations.
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Appendix: Zheng solutions [21]

Zheng [21] studied the exact traveling wave solutions of the (2+1)-dimensional
Boussinesq equation by using the (G"/G)-expansion method and achieved the following
three exact solutions:

0 (6) =K 2~ I (2 4

C, sinh(i"ﬂzgllﬂ &+C, cosh(i"fgzw &)

V2 —4u
2

(A1)

V2 —4u
2

C, cosh( &)+ C, sinh( &)

CLKP KPR 48K —m® 1
2 k?
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-C, sin(i“zwz_}Lz &)+C, cos(i“éwz_lzf)

3 3
Uy (&) ==K? A ==K (du— A7) x (A.2)
2 2 [ _ 32 [ _ 32
Clcos(%lfﬂczsin(ﬂ'ﬂ#ﬂcf)
LKA H+KUA +8k p—m? +I?
2 k?
2 2 2 472 4 2 2
u3(§):§k2/12— 6k°C,” 1k +k'A"+8k u—m” +I (A3)
2 (ClJrczf)2 2 k?

where E=kx+ly+mt+d, K I, m,d, Cy, C; are arbitrary constants.



