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Abstract 
 

Let N be a prime -near-ring and  be an automorphism on N. In this paper, we prove that if 

d is a -derivation of N such that d = d with d2 = 0, then d = 0. The composition of two 

derivations  and τ are considered and investigated the conditions that the derivation is a 

στ-derivation. 
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1.  Introduction 

 A -near-ring is a triple (N, +, ), where: 
 

(i) (N, +) is a group (not necessarily abelian), 

(ii)  is a non-empty set of binary operations on N such that for each , (N, +, ) is 

a left near-ring. 

(iii) x(yz) = (xy)z,  for all x, y, z N and , . 
 

Exactly speaking, it is a left -near-ring because it satisfies the left distributive law. 

We will use the word -near-ring to mean left -near-ring. For a -near-ring N, the set N0 

= {x ∈  N : 0x = 0,  ∈  } is called the zero-symmetric part of N. A -near-ring N is 

said to be zero-symmetric if N = N0. Throughout this paper, we consider N to be a zero 

symmetric left -near-ring with center Z(N). The -near-ring N is called a prime -near-

ring if xNy = {0} with x, yN implies x = 0 or y = 0. An additive mapping d: N  N is 

called a derivation if d(xαy) = xαd(y) + d(x)αy holds for all x, yN, α. 

In ref. [1], Bell and Mason introduced the notion of derivations in near-ring and 

obtained basic properties of derivations in near-rings. They also studied some remarkable 

results [2]. Afterwards Cho [3] worked on derivations in prime near-rings. In ref. [4], 

Kamal studied the characterizations of -derivations on prime near-rings. Kazaz and 

Alkan [5] introduced the notion of two sided -derivations of a -near-ring and obtained 
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some generalizations of the works of Argac [6, 7]. Samman [8] studied on an -

derivations of prime -near-rings. He also obtained the composition for -derivation and 

a Posner-type result with this. In refs. [9-11], Dey et. al. worked on derivations and 

generalized derivations of -rings and -near-rings and obtained some important 

properties of these rings. Also Dey and Paul [12] extended the results of near-rings to -

near-rings. 

In this paper, we define a -derivation in -near-rings. An example of this type of this 

derivation is given to ensure its existence. We generalize the results of ref. [13] in -near-

rings. One of our results in -rings is an analogous version of a well-known result of 

Posner for the composition of derivation of rings and near-rings. 

 

2. Prime -Near-Rings with -Derivations 

 

Let N be a -near-ring and let  be an automorphism of N. An additive mapping d: N  N 

is called a right -derivation (simply we call -derivation) if d(xy) = (x)d(y) + d(x)y 

for all x, yN, . The composition of derivations of -rings is obtained for the case of 

-near-rings. The existence of such a derivation is ensured by the following example. 

 

Example 2.1. Let J be a -near-ring satisfying the condition abc = abc which is not 

a -ring such that (J, +) is abelian. Let M be commutative -ring satisfying the condition 

as in J. Take N = J  M. Then it is clear that N is a -near-ring but not a -ring. It is seen 

that M is an ideal of N and its elements commute with all elements of N. Let  be a 

nontrivial automorphism of N and take mM. Define d


m: N  N by d


m(x) = (x)m - 

xm for all xhen we shall show that d


m is a -derivation. For all x, 

y

d


m(xy) = (xy)m - xym = (xy)m - (x)ym + (x)ym - xym 

= (x)(y)m - (x)ym + y[(x)m - mx] = (x)[(y)m - ym] + [(x)m - 

mx]y 

= (x)d


m(y)  + d


m(x)y 

This shows that  

d


m(xy) = (x)d


m(y)  + d


m(x)y for all x, yN, , . 

Hence d


m is a -derivation. 

We begin with the following Lemmas which are more useful to develop our main 

results. 

Lemma 2.2. Let d be an additive endomorphism of a 2-torsion free -near-ring N. Then d 

is a -derivation if and only if d(xy) = d(x)y + (x)d(y) for all x, yN, . 

Proof. By definition, if d is a -derivation then for all x, yN, ,  
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d(xy) = (x)d(y) + d(x)y. Then d(x(y + y)) = (x)d(y + y) + d(x)(y + y) = 

2(x)d(y) + 2d(x)y, 

and 

d(xy + xy) = 2d(xy) = 2((x)d(y) + d(x)y),  

so that  

      (x)d(y) + d(x)y = d(x)y + (x)d(y).  

The proof of the converse statement is similar. 

This Lemma indicates an equivalent definition of a -derivation. 

Lemma 2.3. Let d be a -derivation on a 2-torsion free-near-ring N. Then for all x, y, 

zN, , ,  

(i) ((x)d(y) + d(x)y)z = (x)d(y)z + d(x)yz. 

(ii) (d(x)y + (x)d(y))z = d(x)yz + (x)d(y)z. 

Proof. (i) Let x, y, zN, , . Then  

d(x(yz)) = (x)d(yz) + d(x)(yz)  

= (x)((y)d(z) + d(y)z) + d(x)(yz) 

= ((x)(y))d(z) + (x)d(y)z + d(x)(yz) 

= (xy)d(z) + (x)d(y)z + d(x)yz.                                                                    (1) 

Also, 

d((xy)z) = (xy)d(z) + d(xy)z 

= (xy)d(z) + ((x)d(y) + d(x)y)z.                                                                     (2) 

From (1) and (2), we get 

((x)d(y) + d(x)y)z = (x)d(y)z + d(x)yz. 

(ii) By using Lemma 2.2, we obtain (ii). 

Lemma 2.4. Let d be a -derivation of a 2-torsion free prime -near-ring N and let aN 

such that ad(x) = 0 (or d(x)a = 0) for all xN. Then a = 0 or d = 0. 

Proof. For all x, yN, , , 

0 = ad(xy) = a((x)d(y) + d(x)y) = a(x)d(y) + ad(x)y 

= a(x)d(y) + 0 = a(x)d(y) = a(x)d(y),  

since σ is an automorphism. Thus aNd(y) = 0. Since N is prime, we get a = 0 or d = 0.  
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To prove the case when d(x)a = 0, we need Lemma 2.2. So if d(x)a = 0 for all xN, 

then for all x, yN, , we have  

0 = d(yx)a = ((y)d(x) + d(y)x)a = (y)d(x)a + d(y)xa, by Lemma 2.2, 

= 0 + d(y)xa = d(y)xa. 

Thus d(y)Na = 0. By the primeness of N implies that d = 0 or a = 0.  

 

Theorem 2.5. Let N be a 2-torsion-free prime -near-ring. Let d be a -derivation on N 

such that d = d. Then d
2
 = 0 implies d = 0. 

Proof. Suppose that d
2
 = 0. Let x, yN, . Then 

d
2
(xy) = 0 = d(d(xy)) = d((x)d(y) + d(x)y) 

= d((x)d(y)) + d(d(x)y) 

= 
2
(x)d

2
(y) + d((x))d(y) + (d(x))d(y) + d

2
(x)y 

= d((x))d(y) + (d(x))d(y) 

= 2d((x))d(y). 

Hence, 2d((x))d(y) = 0. Since N is 2-torsion-free, we have d((x))d(y) = 0. Since  

is onto, we get d(x)d(y) = 0 and hence by Lemma 2.4, d = 0. 

The following theorem displays the commutativity of automorphisms of N and the 

derivation which we are considering on N. 

Theorem 2.6. Let d be a -derivation on a -near-ring N. Let  be an automorphism of N 

which commutes with d. Then ((x)(d)(y) = ()(x)(d)(y) for all x, yN, . 

Proof. Let x, yN, , . Then 

(d)(xy) = ((x)d(y) + d(x)y) = ()(x)(d)(y) + (d)(x)(y).                          (3) 

and, 

(d)(xy) = d((x)(y)) = ()(x)d((y)) + d((x))(y).                                         (4) 

Since d = d, equations (3) and (4) imply that  

()(x)(d)(y) = ()(x)(d)(y). 

Theorem 2.7. Let d1 be a -derivation and d2 be a -derivation on a 2-torsion free prime 

-near-ring N such that d1 = σd1 and d2 = d2. Then d1d2 is a -derivation if and only if 

d1 = 0 or d2 = 0. 

Proof. Let d1d2 be a -derivation. For x, yN, , we have 
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(d1d2)(xy) = ()(x)d1d2(y) + (d1d2)(x)y.                                                                (5) 

Also, 

(d1d2)(xy) = d1(d2(xy)) 

= d1((x)d2(y) + d2(x)y) 

= d1((x)d2(y)) + d1(d2(x)y) 

= ()(x)d1d2(y) + (d1)(x)d2(y) + (d2)(x)d1(y) + d1d2(x)y                                 (6) 

From (5) and (6), we get 

(d1)(x)d2(y) + (d2)(x)d1(y) = 0.                                                                             (7) 

Replacing x by xd2(z) in (7), we get 

(d1)(xd2(z))d2(y) + (d2)(xd2(z))d1(y) = 0, 

and so, 

(d1)(xd2(z))d2(y) + (d2)(xd2(z))d1(y) = 0.                                                          (8) 

Using Lemma 2.2, Eq. (8) becomes 

(d1(x)d2(z) + (x)d1d2(z))d2(y) + ((x)d2
2
(z) + d2(x)d2(z))d1(y) = 0, 

(d1(x)d2(z) + (x)d1d2(z))d2(y) + ((x)d2
2
(z) + d2(x)d2(z))d1(y) = 0                    

                                                                                                                                      (9) 

Using Theorem 2.5 and the hypothesis, equation (9) becomes 

(d1(x)d2(z) + (x)d1(d2(z)))d2(y) + ((x)d2
2
((z) + d2(x)d2((z)))d1(y) = 

0.                                                                                                                                 (10) 

Using Lemma 2.2, Eq. (10) becomes 

d1(x)d2(z)d2(y) + (x)d1(d2(z))d2(y) + (x)d2
2
((z))d1(y) + 

d2((x))d2((z))d1(y) = 0, 

d1(x)d2(z)d2(y) + ()(x)(d1(d2(z))d2(y) + d2
2
((z))d1(y)) + 

d2((x))d2((z))d1(y) = 0.                                                                                       (11) 

Replacing x by d2(z) in (7), we get 

(d1)(d2(z))d2(y) + (d2)(d2(z))d1(y) = 0, 

or 

d1(d2(z))d2(y) + d2
2
((z))d1(y) = 0.                                                                     (12) 

Since N is zero symmetric, Eqs. (11) and (12) imply that 

d1(x)d2(z)d2(y) + d2((x))d2((z))d1(y) = 0.                                                 (13) 

Replacing now x by z in (7), we get 
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(d1)(z)d2(y) + (d2)(z)d1(y) = 0, 

or 

d2(z)d1(y) = − d1((z))d2(y).                                                                                 (14) 

Replacing y by (z) in (7), we get 

(d1)(x)d2((z)) + (d2)(x)d1((z)) = 0. 

So, 

d1((x))d2((z)) = − d2((x))d1((z)).                                                                     (15) 

Combining (13), (14) and (15) we get 

(− (d2((x))d1((z))))d2(y) + d2((x))(− (d1((z))d2(y))) = 0.                             (16) 

To simplify notations, we put u = d2((x)), v = d1((z)), and w = d2(y). Then 

− (uv)w + u(− vw) = 0, 

 u(− v)w + u(− vw) = 0, 

 u(− v)w – u(vw) = 0, 

 − uvw − uvw = 0, 

 uvw + uvw = 0, 

 u(2vw) = 0. 

If u  0 (i.e. d2  0), then by Lemma 2.4, 2vw = 0, that is, v(2w) = 0. Again if w  0 

(i.e. d2  0), then by hypothesis 2w  0, and then by Lemma 2.4 we have v = 0, that is d1 = 

0. This shows that if d2  0 then d1 = 0 which completes the proof.  
 

Remarks 2.8. In the above theorem, the composition that N is a 2-torsion free may be 

weakened if we do not take the existence of an element y in N such that 2d2(y)  0. The 

same proof will lead to the conclusion that d1 = 0. 
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