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Abstract 
 

In this article, the modified simple equation (MSE) method has been executed to find the 

traveling wave solutions of the coupled (1+1)-dimensional Broer-Kaup (BK) equations and 

the dispersive long wave (DLW) equations. The efficiency of the method for finding exact 

solutions has been demonstrated.  It has been shown that the method is direct, effective and 

can be used for many other nonlinear evolution equations (NLEEs) in mathematical 

physics. Moreover, this procedure reduces the large volume of calculations. 
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1. Introduction 

 

Nowadays NLEEs have been the subject of all-embracing studies in various branches of 

nonlinear sciences. A special class of analytical solutions named traveling wave solutions 

for NLEEs has a lot of importance, because most of the phenomena that arise in 

mathematical physics and engineering fields can be described by NLEEs. NLEEs are 

frequently used to describe many problems of protein chemistry, chemically reactive 

materials, in ecology most population models, in physics the heat flow and the wave 

propagation phenomena, quantum mechanics,  fluid mechanics, plasma physics, propagation 

of shallow water waves, optical fibers, biology, solid state physics, chemical kinematics, 

geochemistry, meteorology, electricity etc. Therefore investigating traveling wave 

solutions is becoming more and more attractive in nonlinear sciences day by day. 

However, not all equations posed of these models are solvable. As a result, many new 

techniques have been successfully developed by diverse groups of mathematicians and 

physicists, such as  the Hirota’s bilinear transformation method [1, 2], the tanh-function 

method [3, 4], the extended tanh-method [5, 6], the Exp-function method [7-11], the 

Adomian decomposition method [12], the F-expansion method [13], the auxiliary equation 

method [14], the Jacobi elliptic function method [15], the modified exp-function method 
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[16],  the (G'/G)-expansion method [17-26], the Weierstrass elliptic function method [27], 

the homotopy perturbation method [28-30], the homogeneous balance method [31, 32], the 

modified simple equation method [33-36],  the enhanced (G'/G)-expansion method [37],  

the exp(-Φ(ξ))-expansion method [38], the ansatz method [39], the functional variable 

method [40] and so on. 

The objective of this article is to implement the infliction of the MSE method to 

construct the exact traveling wave solutions for NLEEs in mathematical physics via the 

BK equation and the DLW equations. 

The article is prepared as follows: In section 2, the MSE method has been discussed. 

In section 3, we apply this method to the nonlinear evolution equations pointed out above; 

in section 4, physical explanation and in section 5 conclusions are given. 

 

2. The MSE method 

In this section we describe the MSE method for finding traveling wave solutions of 

nonlinear evolution equations. Suppose that a nonlinear equation in two independent 

variables x and t is given by 

0),,,,,,( txxxttxt uuuuuu ,                                            (1) 

where ),( txu  is an unknown function,  is a polynomial of ),( txu  and its partial 

derivatives in which the highest order derivatives and nonlinear terms are involved. In the 

following, we give the main steps of this method [33-36]: 

 

Step 1. Combining the independent variables x and t  into a compound variable  

 

tx , we suppose that 

),()( txuu ,  tx .                       (2)  

     

The traveling wave transformation Eq. (2) permits us to reduce Eq. (1) into the 

following ordinary differential equation (ODE): 

0),,,,( uuuu ,                               (3) 

where  is a polynomial in )(u  and its derivatives, while 
d

ud
u )( , 

2

2

)(
d

ud
u , 

and so on. 

 

Step 2. We suppose that the solution of Eq. (3) can be presented in the following form 
n

k

kCCu
1

0
)(

)(
)( ,          (4) 

where 
kC  ( ,3,2,1k ) are arbitrary constants to be determined, such that 0nC , and 

)(  is an unknown function to be determined later. 
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Step 3. We determine the positive integer n come out in Eq. (4) by considering the 

homogeneous balance between the highest order derivatives and the nonlinear terms in 

Eq. (3). 

Step 4. We substitute Eq. (4) into (3) and then we account the function )( . As a result 

of this substitution, we get a polynomial of )(/)(  and its derivatives. In this 

polynomial, we equate the coefficients of same power of )(i  to zero, where 0i . 

This procedure yields a system of equations which can be solved to find 
kC , )(  and 

)( . Then the substitution of the values of 
kC , )(  and )(  into Eq. (4) completes 

the determination of exact solutions of Eq. (1). 

 

3. Applications 

 

3.1.   The coupled (1+1)-dimensional Broer–Kaup (BK) equation  

The BK equation describes the bi-directional propagation of long wave in shallow water. 

Now we will bring to bear the MSE method to find the exact solutions and then the 

solitary wave solutions to the BK equation in the form, 

.
2

1
)(

2

1

xxxt

xxxxt

vvuv

uvuuu

                                           (5) 

Suppose that the traveling wave transformation equation be 

 

),()(),,()( txvvtxuu ,        tx  .                   (6) 

The wave transformation (6) reduces Eqs. in (5) into the following ODEs  

0
2

1
uvuuu .                                 (7) 

0
2

1
)( vvuv .                                           (8) 

Integrating Eqs. (7) and (8) with respect to ξ , and neglecting the constant of integration, 

we obtain 

0
2

1

2

1 2 uvuu .                                      (9) 

0
2

1
)( vvuv .                                    (10) 

Eq. (9) yields 

uuuv
2

1

2

1 2 .                            (11) 

Substituting Eq. (11) into Eq. (10), we obtain 
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0
4

1

2

1

2

3 322 uuuu .                           (12) 

Balancing the highest order derivative u'' and nonlinear term u
3
 from Eq. (12), we 

obtain 23 nn , which gives 1n . 

Therefore, Eq. (4) can be written as 

)(

)(
)( 10 CCu .                                         (13)                       

where 
0C  and 1C  are constants to be determined such that 01C , while )(  is an 

unknown function to be determined. It is trouble-free to find that  
2

1Cu .                        (14) 

3

1211 23 CCCu .                                 (15) 

2

2
110

2
0

2 2 CCCCu .                                   (16) 

3

2
1

2

2
101

2
0

3
0

3 33 CCCCCCu .                                (17)  

Now substituting the values of u , 
2u , 

3u , u  into Eq. (12) and then equating the 

coefficients of  
0

, 
1

, 
2

, 
3

 to zero, we respectively obtain 

 

0
2

3

2

1
0

22
0

3
0 CCC .                            (18) 

03
2

3

4

1
101

2
011

2 CCCCCC .                          (19) 

0
4

1
)(

2

3
)(

2

3

2

1
1

22
10

22
11 CCCCC .                                (20) 

0)(
2

1
)(

2

1 3
1

33
1 CC .                            (21) 

Solving Eq. (18), we obtain 2,,00C . 

Solving Eq. (21), we obtain 11C  since 01C . 

Solving Eqs. (19) and (20), we obtain 

 

)exp()( MLAM .                            (22) 

Integrating, Eq. (22) with respect to ξ, we obtain 
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))exp((
1

)( BLMLA
L

.                           (23) 

where 0
2
0

2 1264 CCL , 
)(2

1

001 CC
M  and A, B are constants of 

integration.  

Substituting the values of  and  into Eq. (13), we obtain the following exact 

solution 
 

BLtxMLA

txMLAML
CCtxu

))(exp(

))(exp(
),( 10 .                          (24) 

Case-I: When 2,00C  and 11C ,  also when 0C  and 11C , Eq. (24) 

yields  trivial solutions. So this case is discarded. 

Case-II: When 00C  and 11C , putting the values of MLCC ,,, 10
 into Eq. (24) and 

then simplifying, we obtain 

 

))(sinh(4))(cosh(4

))(sinh())(cosh(
2),(

22 txBAtxBA

txtx
Atxu (2.5)   

We can freely choose the constants A  and B. Therefore, substituting the value of L, M 

and then setting 24A  and 1B , Eq. (25) reduces to 

1))(tanh(),(1 txtxu .                           (26) 

Substituting Eq. (26) into Eq. (11), we obtain 

))((sec),( 22
1 txhtxv .                           (27) 

Again, if we set 
24A  and 1B , Eq. (25) reduces to 

1))(coth(),(2 txtxu .                                                      (28) 

Substituting Eq. (28) into Eq. (11), we obtain 

))((csc),( 22
2 txhtxv .                           (29) 

Case III: When 20C  and 11C , we obtain same results included in Eq.(26)-(29). 

 

3.2. The coupled (1+1)-dimensional dispersive long wave (DLW) equation  

 

In this section, we will apply the modified simple equation method to find the exact 

solutions and then the solitary wave solutions of DLW equation, 
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.0
3

1
)(

,0

xxxxt

xxt

uvuv

vuuu

                               (30) 

The traveling wave transformation is 
 

),()(),,()( txvvtxuu ,        tx .                                 (31) 

Using traveling wave Eq. (31), Eq. (30) reduces into the following ODEs: 

.0vuuu                              (32) 

0
3

1
)( uvuv .                            (33) 

Integrating Eq. (32) and Eq. (33) with respect to ξ, choosing constant of integration as 

zero, we obtain the following ODEs: 

.0
2

1 2 vuu                              (34) 

0
3

1
)( uvuv .                            (35) 

From Eq. (34), we obtain 

2

2

1
uuv .                             (36) 

Substituting Eq. (36) into Eq. (35), yields 

0
3

1

2

1

2

3 322 uuuu .                           (37) 

Now balancing the highest order derivative u  and nonlinear term 
3u , we obtain 

1n . 

Now for 1n , solution 

kn

k

kCCu
)(

)(
)(

1

0
becomes 

)(

)(
)( 10 CCu .                             (38) 

where 
0C  and 

1C  are constants to be determined such that 01C , while )(  is an 

unknown function to be determined. 

Now substituting (38) into Eq. (37) and then equating the coefficients of  
0

, 
1

, 

2
, 

3
 to zero, we respectively obtain 

.0
2

3

2

1
0

22
0

3
0 CCC                                    (39) 

03
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2
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3
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11 CCCCC .                        (41) 
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0)(
2

3
)(

2

1 3
1

33
1 CC .                            (42) 

Solving Eq. (39) yields .2,,00C  And Eq. (42) yields 
3

2
1C  since 01C . 

From Eq. (40) and Eq. (41), we obtain 
 

)exp()( MLEM .                            (43) 

Integrating Eq. (43), we obtain 
 

L

FLMLE )exp(
)( .                                         (44) 

where )3
2

3
(3 0

2
0

2 CCL , 
10 )(3

2

CC
M  and E, F are constants of 

integration. 

Substituting ξ, )(  and )(  from Eq. (43) and Eq. (44) into Eq. (38), we obtain 
 

FLtxMLE

txMLEML
CCtxu

))(exp(

))(exp(
),( 10 .                 (45) 

 

Case I: When 0C  Eq. (45) yields trivial solution. Therefore, this case is rejected. 

Case II: When 00C  and 
3

2
1C , executing the parallel course of action described 

in Case-II of subsection 3.1, putting the values of L and M Eq.(45) yields 

))(
2

3
tanh(1),(2,1 txtxu ,                          (46) 

and 

))(
2

3
coth(1),(4,3 txtxu .                          (47) 

Substituting Eq. (46) and Eq. (47) into Eq. (36), we obtain 

 

))(
2

3
(sec

2
),( 2

2

1 txhtxv ,                           (48) 

and   

))(
2

3
(csc

2
),( 2

2

2 txhtxv ,                          (49) 

respectively. 

 

Case II:  When 20C  and 
3

2
1C , we obtain same results like Eq.( 36) -Eq.( 49). 
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4.  Physical Explanation 

 

In this section, we will put forth the physical explanation of determined exact solutions 

and solitary wave solutions of nonlinear evolution equations named (1+1)-dimensional 

Broer-Kaup equation and the (1+1)-dimensional dispersive long wave equation. 

The Eq. (26) is the kink solution of BK equation. Kink soliton rise or descent from one 

asymptotical state at  to another asymptotical state at . This soliton 

referred to as topological solitons. The Fig.1 shows the shape of the solitary kink-type 

solution of the BK equation (only shows the shape of Eq. (26) with wave speed 1 

and 3,3 tx ).  

Eq. (27) is the bell-shaped soliton solution of BK equation. It has infinite wings or 

infinite tails. This soliton referred to as non-topological solitons. This solution does not 

depend on the amplitude and high frequency soliton. Fig. 2 shows the shape of the exact 

bell-shaped soliton solution i.e., non-topological soliton solution of the BK equation. 

(only shows the shape of Eq. (27) with wave speed 1 within the interval 

3,3 tx ). 

Eq. (28) and Eq. (29) are singular soliton solutions of BK equation. Fig. 3 and Fig. 4 

show the shape of singular solitons of Eq. (28) and Eq. (29) respectively for wave speed 

1 within the interval 3,3 tx . 

 

   

          
 

    

Fig. 1. Shape of Eq.(26) for 1  in the            Fig. 2. Shape of Eq.(27) for  1  in the   

   interval 3,3 tx .                           interval 3,3 tx . 
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 Fig.  3.  Shape of Eq.(28) for  1  in the           Fig. 4. Shape of Eq.(29) for  1  in the  

 interval 3,3 tx .                                                      interval 3,3 tx . 

 

 

Eq. (46) is the kink solution of DLW equation. This soliton referred to as topological 

solitons. Fig.5 shows the shape of the solitary kink-type solution of the DLW equation 

(only shows the shape of Eq. (46) with wave speed 2  and 3,3 tx ).  

Eq. (47) is the singular soliton solutions of DLW equation. Fig. 6 shows the shape of 

singular solitons of Eq. (47) for wave speed 2  within the interval 3,3 tx . 

Eq. (48) is the bell-shaped i.e., non-topological soliton solution of DLW equation.  

Fig. 7 shows the shape of the exact bell-shaped soliton solution of the DLW equation. 

(only shows the shape of Eq. (48) with wave speed 2  within the interval 

3,3 tx ).   

Eq. (49) is the singular soliton solutions of DLW equation. Fig. 8 shows the shape of 

singular solitons of Eq. (49) for wave speed 2  within the interval 3,3 tx . 

   

           
 

 Fig. 5. Shape of Eq.(46) with 2  in the                   Fig. 6. Shape of Eq.(47) with 2  in the 

 interval 3,3 tx .                                                    interval 3,3 tx . 
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 Fig. 7. Shape of  Eq.(48) with 2  in the                  Fig. 8. Shape of Eq.(49) with 2  in the  

 interval 3,3 tx .                                                   interval 3,3 tx . 

 

 

From the obtained solutions we observe that )(),( txutxu  and 

)(),( txvtxv  means that for positive value of wave speed, the disturbance moving 

in the positive x-direction. If we take 0  the propagation will be in the negative x-

direction. 

 
5.  Conclusions 

 

The MSE method is powerful and effective mathematical tool in solving nonlinear 

evolution equation in mathematical physics, applied mathematics and engineering. In this 

article, the MSE method has been employed for analytic treatment of two nonlinear 

coupled partial differential equations. The MSE method requires wave transformation 

formulae. Via MSE method traveling wave solutions, kinks solutions, bell-shaped 

solutions of BK equations and DLW equations have been derived. Comparing the 

currently applied method with other methods, such as, the (G'/G)-expansion method, the 

Exp-function method and the projective Riccati equation method, we might conclude that 

the exact solutions to BK equations and DLW equations can be investigated by using 

these methods with the help of the symbolic computation software’s, such as, 

Mathematica, Maple etc. to facilitate the complicated algebraic computations. But, by 

means of the MSE method the exact solutions to these equations have been gained in this 

article without using the symbolic computation software’s since the computations are very 

simple. Moreover, to explore the exact solutions of the above studied NLEEs through the 

methods like the (G'/G)-expansion method, the F-expansion method, the Jacobi elliptic 

function method etc. an auxiliary equation is necessary.  This study shows that the MSE 

method is quite efficient and practically well suited to be used in finding exact solutions 

of NLEEs. Also, we observe that the MSE method is straightforward and can be applied 

to many other nonlinear evolution equations. 
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