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Abstract

We derive some shrinkage test-estimators and the Bayes estimators for the shape parameter
of a Pareto distribution under the general entropy loss (GEL) function. The properties have
been studied in terms of relative efficiency. The choices of shrinkage factor are also
suggested.
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1. Introduction

The Pareto distribution and its close relatives provide very flexible family of fat-tailed
distributions which may be used as a model for income distribution of higher income
group. Davis and Feldstein [1] have viewed the Pareto distribution as a potential model for
the life testing problems. This distribution has established its important role in variety of
other problems such as size of cities and firms [2], business mortality [3], service time in
queuing system [4].

The Pareto distribution has played a major role in the investigations of previous
phenomena providing a satisfactory model at the extremities. It plays an important role in
socio-economic studies. It is often used as a model for analysis area including city
population distribution, stock price fluctuations and oil field locations. Also, it has
application in military areas and suitable for approximating the right tails of distribution
with positive skewness. The Pareto law applied to study the distributions of nuclear
particles [5]. Harris [6] used this distribution in determining times of maintenance service
while Dyer [7] found that the two-parameter Pareto distribution transformation is
equivalent to the two-parameter exponential distribution. The probability density function
of the classical Pareto distribution is given as

f(x;0,0) =00 % 071) . x> 0>0. )
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Here, 0 be the shape parameter and ¢ is a scale parameter. Let x,x,,....x, be a
random sample of size n drawn from the distribution (Eq. 1). The maximum likelihood
estimators (MLE) and the unbiased estimators for the parameters ¢ and ¢ are given as

-1
n u X ; A .
0= iZlog i o =x gy =min (X}, Xp,...X,)
n,7 X(l)
6,=""24 6, =[1-—— |6
n (n-16

Here, suffix u stands for unbiased estimator. Also, 26,(n—2)8,"is distributed as a

chi-square distribution with 2(n-1) degrees of freedom

It is recognized that a shrinkage estimator performs better if a guess value of the
parameter is in the vicinity of the true value and the sample size is small. Following
Thompson [8], a shrinkage estimator of 6 is

T=k6,+(1-k)6,, 2)

where 60 is a guess value of the parameter 6. The shrinkage factor & lies between 0 and
1 and is specified by the experimenter according to his belief in the guess value§, . The
shrinkage procedure has been applied in a number of problems such as mean survival time
in epidemiological studies [9], forecasting of the money supply [10], estimating mortality
rates [11] and improved estimation in sample surveys [12]. The performances of the
shrinkage estimators utilizing a point guess value has been studied in Refs. [13-18] and
others in different contexts.

We know that in many real life situations, the overestimation or underestimation are
not of equal consequences. For such situations a useful asymmetric loss function was
introduced by Varian [19], called as the LINEX loss function. This function rises
approximately exponentially on one side of zero and approximately linearly on the other
side. A suitable alternative to the LINEX loss is the general entropy loss (GEL) proposed
by Calabria and Pulcini [20] and is given for the parameter 6 as

L(A):Ap—plog(A)—l;p;ﬁO,A:%‘. 3)

The shape parameter p allows different shapes of this loss function. For p >0, a
positive error éu > 6 causes more serious consequences than a negative one and vice
versa. Also, the minimum occurs at éu =0.

In this paper, we propose some shrinkage estimators for the shape parameter § when
initial estimate of @ is available in the form of the guess value @ , with different choices
of the shrinkage factor and study their properties in terms of relative efficiency under GEL
function. The Bayes estimators of the parameter € are also derived when the scale
parameter ¢ is known and unknown.
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2. A Proposed Class of Estimators for the Shape Parameter

The proposed class of estimators for the shape parameter is given as

Y=Cé,; CeR*. 4)
The risk of the estimator Y under GEL (Eq. 3) is obtained as

A \P ~
co co

R(Y)=E{|—2| —pl Y

@) [9] pog[a]

:G(O,W,A'); A’:(f,)p_plog(.f')_l’ (5)

n—2

V4

where f'=C ,G(xl,xz,W):Ixz (W) "2 dz/J': e 7z"2d; and w may be
X

the function of z.
The value of ¢, that minimizes R (Y) is obtained as

1/p
c =1 [ T (n-1) J _ ©
n=2\I'(n-p-1)
Hence, the improved estimator among the class (Eq. 4) is
Y,=C,6,
with the risk
R(Y))=G(0,0,A,), (7)
rm-n )""1
where Ao=(fo)”—p10g(f0)—1andfo—(—(”‘ ) ] 2.
'n-p-1) z

3. The Proposed Shrinkage Estimator and its Properties
The risk of the estimator 7' given in Eq. (2) under the GEL is given as
R(T)=G (0,00, A"), (8)

where A"=(f")" = plog (f")-1, = k["*%sjﬂs and 5=

z

The relative efficiency of the shrinkage estimator 77 with respect to improved
estimator Y, is defined as

RE(T.,Y,)=R(Y))/ R(T).

The relative efficiency RE (7,Y;) is the function of n, §, p and k. For the selected
values of n=06, 08, 10,15; §=0.25(0.25) .75, p=+100, 200 and k=0.25, 0.50, 0.75;
the relative efficiencies have been calculated but not presented here. The proposed
estimator 7' is more efficient than improved estimator Y, in the interval 0.75<6 <125
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for all parametric values and the effective interval decreases asn increases. Further, the
efficiency reaches maximum at the point §=1.00 and decreases as n increases (except
6 =1.00). Also, the efficiency first increases for 5§ <1.00 and then decreases in the interval
5>1.00 as p increases. It is also seen that for the moderate values of k£ the gain in
efficiency is larger in the vicinity of the true value of the parameter, i.e. (0.75< 6 <1.25).

The value of the shrinkage factork =k, (say), which minimizes R(7) is obtained
numerically by solving the given equality

G[O, oo,( ";2—5J(f”)”1J=G[0, oo,[ ”;2—5J(f")‘]. )

Based on £, the improve shrinkage estimator for 6 is given as

Ty =k 0, +(1-k,)0, (10)

with the risk under the GEL is
R(T)=G(0,0,A ), (11)

where A, = (f)” ~ plog(f})~1 andf1=k1[n_2—5]+6~
z
The relative efficiency of T'; with respect to Y, is given as
RE(TlaYI):R(Yl)/R(TI) .

The relative efficiency RE (T,,Y,) is the function of n, 4 and p . For the similar set
of values as considered earlier, the relative efficiencies have been calculated but not
presented here. The improved shrinkage estimator 7';is more efficient than Y, in the
interval 0.75<8<1.50 for all parametric space and the effective interval decreases as n
increases. Other properties are similar to the shrinkage estimator 7.

4. The Proposed Shrinkage Test-Estimator and its Properties

From the above conclusion, we conclude that the shrinkage estimator performs well when
guess value is approximately near to the parameter and for the moderate values of sample
size as well as the shrinkage factor. This suggests that one may employ a test under the
hypothesis H,:0=6, againstH,:0=6,. A test statistic 26,(n-2)0," ~ ;522(,,_1) is
available for testing the hypothesis H, against H,. Therefore, the proposed shrinkage
test-estimator is

. k(éu—éo)+90 if t,<60,<t,
euSH = ~
c,0, else ,
2 -2 2 -2 . .
where ¢, = 00 (n ), ty= 0o (n ),w1th r, and r, being the values of the lower
) i

and upper 100 &/ 2 % points of the chi-square distribution with 2(n —1) degrees of freedom.
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The relative bias of the shrinkage test-estimator éu sy 1s obtained as

RB(éuSH)zﬂé;ji)—l=G(zl,zz,K0) +C =15 Ag=(1"=fo) (12)

The risk under the GEL for the proposed shrinkage test-estimator é” sy 1s obtained as

R(éuSH):G(ZhZZ’A”) +G(0,00,40)-G(z),2,,4), (13)
where z, =r—1§ and zzzzr—zg.

The relative efficiency of the shrinkage test-estimator éu sy Withrespectto Y is

RE (éuSH’Yl):R (Yl)/R (éuSH) .

The relative bias and the relative efficiency are functions of n, 6, p, k and o (level of
significance). ~ For  selected wvalues of n=06, 08,610,155 §=025(025)175;
p=1%1.00,2.00; £=0.25, 050, 0.75 and o =0.01,0.05; the relative biases and the relative
efficiencies have been calculated but not presented here.

The relative bias lies between —0.178 and 0.097 and has a tendency of being positive
for § > 1.00 and negative otherwise. The relative biases decrease as n increases for the all
considered values of ¢ . Similar trend has been seen in the interval 0.75< 6 <1.75 when
a increases. Further, the relative bias decreases when p increases for 6 > 1.00 .

The shrinkage test-estimator @, g, has smaller risk than the minimum risk
estimator Y, provided n is small, k£ is small and in the interval 0.50 <& <1.50 and the
effective interval decreases with & as well as n increases. The relative efficiency is
higher at the point § =1.00 and it decreases forn as well asa increases when & <1.25.
In addition, the efficiency first increases for §<1.00 and then decreases in the
interval 6 >1.00 as p increases. It is also noted that for the moderate values of k the gain
in efficiency is larger in the vicinity of the true value and guess value.

5. Choices of the Shrinkage Factor

The shrinkage test-estimator based on the shrinkage factor 4, (Eq. 9) that minimizes
R(T), is given as

R kl(éu—éo)wo i 1,<0,<t,
uSH1 =

10, else

Again, the value of the shrinkage factor & =k, (say), which minimizes the risk of the
shrinkage estimator éu su given in Eq. (13), is obtained numerically by solving the given
equality
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G220 (7)) =62y 20 (7)) (14)

Based on k, the proposed shrinkage test-estimator is

euSHZZ

- kz(éu—éo)‘Feo if tlﬁéuﬁtz
c,0

" else

The relative bias for the shrinkage test-estimator 0, ;, ; i = 1,2 is obtained as

RB(6,gui)= G2y, 20.8,) +C -1, (15)

where A, =(f; = fo). f, = k,("_275)+5 and i=1,2.
z
The risk for the proposed shrinkage test-estimator éu si s i = 1,2 under the GEL is
given as

R(éusm): G(ZI>ZZ’A1') + G(O’ OOaAo) - G(zl,zz,AO), (16)

where A, =(f;)" —p log (f,)-1 .

The relative efficiency for the shrinkage test—estimator 6, ¢, ; i = 1,2 with respect to
Y, is

RE (éuSHi »Yl):R ( Yl)/R (éuSHi) ;=12

The expressions of RB (éu SHi) and RE (éuSHl-, Yl); i = 1, 2 are the function of #,
o, p and a . For the similar set of selected values as considered earlier the relative biases
(not presented here) and the relative efficiencies have been calculated (Tables 1 and 2).

The values of the relative biases are smaller and have a tendency of being positive
for 6>1.00 and negative otherwise. The relative biases decrease asn increases for the all
considered values of 0 . Similar trend has been seen in the interval 0.75<5<1.75 when
a increases. Further, the relative bias decreases when p increases for § >1.00. The
relative biases lie between

(1) -0.238 and 0.125 for the test—estimator éu SH1

(2) -0.202 and 0.082 for the test—estimator éu SH 2

From Table 1, we conclude that the shrinkage test—estimator éu g1 18 more efficient
than Y, in the interval 0.50<6<1.75 and the efficiency is maximum at the point
6 =1.00. The relative efficiency decreases in § <1.25 when sample size n as well as level
of significance @ increases. Further, the efficiency first increases in the interval §<0.75
and then decreases for § >1.25 when p increases.
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The test-estimator 6,y , is more efficient than Y, for the all considered values of
parametric space and attains maximum efficiency at point §=1.00 (Table 2). The
efficiency decreases in 6 <1.25 whena increases. Similar trend has been seen when p
increases in the interval 6>1.25.

Table 1. Relative efficiency between shrinkage test-estimator HAu g1 and Y.

1)

n a p 0.25 0.50 0.75 1.00 1.25 1.50 1.75

-1.00 02459 19168 43238 7.8084 3.6982 1.8775 1.3782
0.01 1.00 0.5184 24774 58585 9.7923 34937 1.7502  1.1669

2.00 0.7075  2.8312  6.5902 10.786  3.3005 1.7418  1.0976

° -1.00 0.2455 1.8806  3.0648 42562  2.8659 2.0683 1.7011
0.05 1.00 0.4971 23505 3.6909 4.1449 25461 1.7355 13701

2.00 0.6611  2.5945 3.8385 4.0858 24672 1.6263  1.2382

-1.00 0.1762  1.6501  3.0553 5.6100 2.6474 1.6183  1.2787

0.01 1.00 0.3535 2.0093 3.9689 6.3451 2.5695 1.4105 1.0340

2.00 0.4732  2.2360 4.5107 6.9067 2.5366 13415 1.0031

’ -1.00 0.1751 1.6339 23438  3.6902 2.6332 1.9699  1.6693
0.05 1.00 03463  1.9608 27837 3.3988  2.2500 1.6483  1.3887

2.00 0.4555  2.1485 3.0103 3.3602 2.1298 15116  1.2429

-1.00 0.1379  1.5035 23623 45180 2.5484  1.5465  1.2960

0.01 1.00 0.2678  1.7646 29736 4.7424  2.2742 13123  1.0477

2.00 0.3545  1.9258 3.3383 49857 2.1957 1.2184  1.0023

. -1.00 0.1362  1.4950 19276  3.4317 23234 19347 1.6586
0.05 1.00 0.2654 1.7406 22343  3.0317 2.1365 1.6806 1.4708

2.00 0.3467  1.8847 24111 29327 2.0263 15442 1.3440

-1.00 0.0962  1.3219  1.5260 3.4449 24545 1.6042 1.4354

0.01 1.00 0.1687  1.4754 1.8305 3.2390 2.1900 1.4057  1.2760

s 2.00 02175  1.5668  2.0062 32072  2.1751 12995  1.1727

-1.00 0.0878  1.3203  1.4181 3.2406 23169 1.7853  1.5575
0.05 1.00 0.1678  1.4692  1.5754 2.7851 2.0952  1.7447  1.5485

2.00 02173  1.5564 1.6649 2.6090 2.0121 1.6947  1.5239
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Table 2. Relative efficiency between shrinkage test-estimator 6 usgo2 and Y.

1)

n a p 0.25 0.50 0.75 1.00 1.25 1.50 1.75

-1.00 1.0944  1.2635 1.7020 4.7150 2.6626  1.9626  1.9796
0.01 1.00 1.5524  2.1211  6.4073 83159  2.6537 1.8558  1.4505

2.00 1.1846  1.6529  4.0796  9.0526  2.4357 12327 1.2222

° -1.00 1.0823  1.1943  1.6273  3.3398 23865 2.0596 1.9754
0.05 1.00 1.4274  2.0689  1.4303 39871 2.1844 17678  1.4225

2.00 1.1509  1.5952  3.7983 3.8496 2.1108 1.6514  1.2850

-1.00 1.0886  1.9325  3.5734  5.1377 3.3584 19404 1.8371

0.01 1.00 1.4149  2.0266 2.6147 4.6479 25613 15072  1.1231

2.00 1.5576  1.7689 43863  6.2233  1.5344  1.4363  1.0200

’ -1.00 1.0827  1.2994 27123 35141 2.2024 1.8867 1.6966
0.05 1.00 1.2456  1.8653 23273 32490 2.1908 1.6526 1.4130

2.00 1.5233  1.6801  1.9040 2.0697 1.5182  1.5127 1.2648

-1.00 1.0273  1.7375  2.8714 42383 22207 1.8223  1.7273

0.01 1.00 1.2628  1.7876 ~ 3.6031  4.4373  2.1873 13808 1.1162

2.00 1.5594 1.8432 23664 4.6511 21113 12839  1.0985

10 -1.00 1.0224  1.7196 23208 3.2945 2.2147 1.7529  1.6603
0.05 1.00 1.0693  1.6040  2.6512 29231 2.0955 1.6593 1.4710

2.00 1.4938  1.8304 2.2487 23258 1.9509  1.5217 1.3431

-1.00 1.1482 14834 19528 33120 2.3257 1.6218  1.4945

0.01 1.00 1.3947 14991 24596  3.1202 1.8708  1.4227  1.3000

s 2.00 1.4725 1.8038 24433  2.6834 1.7652 13156 1.1978

-1.00 1.1477 14799 1.8223  3.1335 2.2516 1.7463  1.5433
0.05 1.00 1.3872 14636  2.0391 2.7170  1.7787  1.6940  1.5265

2.00 1.4233 14224 23319 25904 1.6678 1.6381  1.4967

6. The Bayes Estimator and its Properties
Case 1: When o is known

The conjugate prior for the parameter & can be taken as two parameters Gamma
distribution, having probability density function
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bll

g = @

0 e 050,a,b>0 (17)

and the posterior density will be

(b+b)n+a n+a-1—-(b+U)0 c (Jﬂ
0) =——— 0 e ;U= E log | —+|. 1
g1 () I(n+a) g (18)

The posterior density is again a two parameter Gamma density with parameters
(b + U) and (n+a). Here U is a sufficient statistic for the parameter € and 2 U ~
% 3 - The Bayes estimator for the parameter & under the GEL is obtained as

enlelr - - (G2 o

b +U I'n+a-p)

In particular for p =—1, the Bayes estimator under GEL is equal to the posterior mean
and is given by

A n+a

BS = b+U

The risk of these estimators under the GEL is given by

Estimator Risk

P
Ons R(éBS) = 1(0,0,A50); Ago—[ nrd ] - plog( nta J_l

bo+y bo+y
P
o A b b
Ope R(QBE) = 1(0,0,Ap,); ABlz[b0+y] - plog [b0+yJ_l

where 7( 0,0, W) = J’w W)y dy/joo e y"~'qy andW may be the function of y .
0 0

The relative efficiency for the Bayes estimator 6, with respect to 6 is

RE(éBE, éBS)zR (éBS)/R (éBE).

The relative efficiency RE (éBE , éBS) involved n, a,b, p and@. For n=06,08, 10,15;
a =1.00,2.00,4.00,8.00,10,15; 5=0.50,1.00,2.00; p=1.00,2.00 and & =0.25,0.50 (0.50)

3.00 the relative efficiencies have been calculated and presented in Table 3 for »=0.50
and p=2.00 only.
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Table 3. Relative efficiency between shrinkage estimator 6 sp and 6 Bs -

p=2.00 b=0.50 a
n 0 1.00 2.00 4.00 8.00 10.00 15.00
0.25 1.8680 1.8967 1.6389 1.3508 1.2828 1.1896

0.50 1.8213 1.9113 1.6604 1.3583 1.2877 1.1918

1.00 1.6831 1.9199 1.7035 1.3737 1.2976 1.1960

06 1.50 1.4971 1.8933 1.7471 1.3897 1.3078 1.2003
2.00 1.2876 1.8228 1.7902 1.4065 1.3184 1.2046

2.50 1.1082 1.7045 1.8313 1.4243 1.3296 1.2092

3.00 1.0016 1.5436 1.8676 1.4431 1.3413 1.2138

0.25 1.6359 1.7253 1.5831 1.3406 1.2768 1.1873

0.50 1.5977 1.7255 1.5975 1.3470 1.2811 1.1893

1.00 1.4998 1.7126 1.6259 1.3603 1.2900 1.1933

08 1.50 1.3781 1.6781 1.6534 1.3742 1.2993 1.1974
2.00 1.2419 1.6187 1.6790 1.3887 1.3089 1.2016

2.50 1.1029 1.5335 1.7012 1.4040 1.3190 1.2059

3.00 1.0011 1.4250 1.7180 1.4201 1.3296 1.2104

0.25 1.5029 1.6107 1.5378 1.3322 1.2722 1.1904

0.50 1.4708 1.6052 1.5477 1.3378 1.2761 1.1924

1.00 1.3941 1.5845 1.5669 1.3495 1.2842 1.1963

10 1.50 1.3033 1.5490 1.5845 1.3617 1.2927 1.2003
2.00 1.2033 1.4975 1.5996 1.3744 1.3015 1.2045

2.50 1.1002 1.4297 1.6109 1.3877 1.3107 1.2088

3.00 1.0006 1.3474 1.6171 1.4016 1.3203 1.2132

0.25 1.3310 1.4390 1.4511 1.3147 1.2705 1.3344

0.50 1.3083 1.4296 1.4551 1.3191 1.2738 1.3377

1.00 1.2580 1.4056 1.4619 1.3280 1.2808 1.3446

15 1.50 1.2021 1.3742 1.4666 1.3371 1.2880 1.3518
2.00 1.1422 1.3355 1.4687 1.3466 1.2954 1.3591

2.50 1.0805 1.2897 1.4674 1.3563 1.3031 1.3668

3.00 1.0003 1.2377 1.4621 1.3663 1.3111 1.3747

The Bayes estimator 6,; performs uniformly well with respect to 0, for the all
considered values of the parametric space and the efficiency increases as p increases.
Opposite trend is seen when'a' increases (for larger values of a >4.00). The efficiency
also decreases when sample size #n increases for a <10.00.
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Case 2: When o is unknown

When both parameters are unknown, the joint sufficient statistic for# and o are

V= z log x; and x ;) =min (X1 X x,) -
i=1
The joint prior for 8 and o as the product of their respective prior and defined as

) b
,0) =lect oyt 09 10 .0 a b e>0,0<0 20
.0 = o)[m) 0 (20)

and the joint posterior density will be
F100,0) « g"trelgrrasle 00 G50 6 amin (p, x,)). Q1)

Now, the marginal posterior density of & is

F20) =— L (B+s,y) 70 e 0 650, 22)
J(s1,8,,53)

where  J (s, 5,,53) =J.SS‘71(S +5,) e 15 ds, sy=n+a, s,=e/n and
0
§3= b+V —n log (mln (p,X(l)))

Hence the Bayes estimator of & under GEL is obtained as

J( N
~ N —p,Sz,S3
Pl = |22 A2 73) 23
B [ J(S13529S3) ] ( )

and for particular p = -1 the Bayes estimator under GEL is the posterior mean and is given
by
A J(s1+ L s, 53)
Opp1= ————————.
J(51,8,,53)

7. Conclusion

The shrinkage test-estimator 6,4, performs well with respect to the minimum risk
estimator Y, for small » andk, in the interval 0.50 <6 <1.50 . Similarly, the shrinkage
test-estimator 0, g, is more efficient than Y| in the interval 0.50 <& <1.75, whereas the
test-estimator 6,,, performs uniformly well for all considered values of parametric
space. Therefore the shrinkage test-estimator 6, g, , is preferable over others.
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