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Abstract 

 

Let M be a -ring. If M satisfies the condition (*) x y z = x y z for all x, y, z M, , , 

then we investigate commutativity of prime -rings satisfying certain identities involving 

left centralizer.  
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1. Introduction  

 

Let M and  be additive abelian groups. If there exists a mapping of M    M  M 

which satisfies the conditions:  

(i)  (x + y) z = x z + y z,  x( + )y = x y + x y,   

   x (y + z) = x y + x z, 

(ii) (x y) z = x (y z) for all x, y, z M and , , then M is called a -ring in the 

sense of Barnes [1]. 

Throughout this paper M denotes a -ring with center Z(M). For any x, y M, , the 

symbol [x, y]  (resp. x, y  will denote the commutator x y - y x (resp. the anti-

commutator x y + y x). The symbol [ , β]x is defined by xβ – βxα for all x M, , . 

A -ring M is called commutative if [x, y]  = 0 for all x, y M, . We know that  

[x y, z]  = [x, z] y + x [y, z]  + x[ , ]zy and 

[x, y z]  = y [x, z]  + [x, y] z + y[ , ]xz. 

We take an assumption (*) x z y = x z y for all x, y, z M, , . Using the 

assumption the basic commutator identities reduce to  
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[x y, z]  = [x, z] y + x [y, z]  and 

 [x, y z]  = y [x, z]  + [x, y] z. 

We shall make extensive use of the following basic commutator identities throughout 

the discussion without any specific mention:  

x, y z  = x, y z - y [x, z]  = y x, z  + [x, y] z, 
 

x y, z  = x y, z  - [x, z] y = x, z y + x [y, z] . 

 

Recall that M is prime if x M y = {0} implies that x = 0 or y = 0. An additive 

mapping T: M  M is called a left (resp. right) centralizer if T(x y) = T(x) y (resp. 

T(x y) = x T(y)), holds for all x, y M, . A multiplier is an additive mapping which is 

both right as well as left centralizer. An additive mapping d : M  M is called a derivation 

if d(x y) = d(x) y + x d(y), holds for all x, y M, . An additive mapping d : M  M 

is said to be a left derivation if d(x y) = x d(y) + y d(x) holds for all x, y M, . An 

additive mapping D: M  M is said to be a generalized derivation on M if there exists a 

derivation d : M  M such that D(x y) = D(x) y + x d(y) holds for all x, y M, . 

Obviously, generalized derivation with d = 0, covers the concept of left centralizers.  

Many authors have investigated the relationship between the commutativity of the 

classical rings and certain types of derivations. In this direction, the first result was 

established by Posner [2]. Here he proved that if a prime ring R admits a nonzero 

derivation d such that [d(x), x] Z(R) for all x R, then R is commutative. Afterwards, 

many algebraists refined and extended the Posner’s result. In [3], Bresar and Vukman 

proved that a prime ring R admits a nonzero left derivation, then R is commutative. 

Recently, many authors have obtained commutativity results for prime and semiprime 

rings with derivation, left derivation and generalized derivation.  

In ref. [4], Asci and Ceran investigated commutativity of prime -rings with left and 

right derivations. Afterwards, Soyturk [5] obtained the commutativity in prime -rings 

with derivations. In [6], Hoque and Paul worked on centralizers of semiprime -rings and 

proved that under certain condition, every Jordan left centralizer is a left centralizer. They 

also proved that every Jordan centralizer is a centralizer. Dey and Paul [7] proved that a 

mapping T: M  M is a centralizer if and only if it is centralizing left centralizer. They 

also showed that if T and S are left centralizers of M in which T(x) x + x S(x) Z(M) for 

all x M, and , then both T and S are centralizers.  
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      In this paper, we obtain commutativity of -rings satisfying certain identities 

involving left centralizer on -rings. Here we motivated from the works of Ashraf and Ali 

[8], the results of classical rings are extended to -rings under the condition (*). 

Throughout the paper, we consider the -ring M satisfying (*) x z y = x z y for all x, y, 

z M, , . For existence of such a -ring, we give the following example. 

 

Example: Let R be an associative ring with the unity element 1.Let M = M1, 2(R)  and   

 = integeranis:
0

1.
n

n
. Then M is a -ring. A simple verification shows that M 

satisfies the condition (*). 

 

2. Commutativity of Prime Gamma Rings  

 

In this section, we have obtained commutativity of M.  

Theorem 2.1. Let M be a prime -ring and I be a nonzero ideal of M. Suppose that M 

admits a nonzero left centralizer T such that T(x)  x, for all x I. Further, if T([x, y] ) - [x, 

y]  = 0, for all x, y I, , then M is commutative.  

Proof. Given that T is a left centralizer of M such that  

T([x, y] ) - [x, y]  = 0, for all x, y I, .                                          (1) 

This can be rewritten as  

(T(x) - x) y - (T(y) - y) x = 0, for all x, y I, .                                         (2) 

Replacing x by x r in (2), we obtain,  

(T(x) - x) r y - (T(y) - y) x r = 0, for all x, y I, r M, , .             (3) 

Using condition (*) we get, 

(T(x) - x) r y - (T(y) - y) x r = 0, for all x, y I, r M, , . 

Using (2) in (3) to simplify, we obtain  

(T(x) - x) [r, y]  = 0, for all x, y I, r M, , .                                          (4) 

Again, replacing r by r s in (4) and using condition (*) we get from (4),   

(T(x) - x) r [s, y]  = 0, for all x, y I, r, s M, , , , i.e., (T(x) - x) M [s, y]  = {0}, 

for all x, y I, s M, . By the primeness of M, we obtain either [s, y]  = 0 or T(x) - x = 

0, for all x, y I, s M, . Since T(x)  x, we get [s, y]  = 0, for all y I, s M, , and 

therefore, I  Z(M). Hence, M is commutative. 
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Corollary 2.2. In Theorem 2.1, if a left centralizer is zero, then M is commutative.  

Proof. Suppose that T([x, y] ) - [x, y]  = 0, for any x, y I, . If T = 0, then [x, y]  = 0, 

for all x, y I, . Therefore, I is commutative. Hence, M is commutative.  

Using similar arguments as used in proof of Theorem 2.1, we can prove the following:  

Theorem 2.3. Let M be a prime -ring and I be a nonzero ideal of M. Suppose that M 

admits a nonzero left centralizer T such that T(x)  -x, for all x I. Further, if T([x, y] ) + 

[x, y]  = 0, for all x, y I, , then M is commutative.  

       If we replace the product [x, y]  by x, y  in Theorems 2.1 and 2.3, we obtain the 

following results:  

Theorem 2.4. Let M be a prime -ring and I be a nonzero ideal of M. Suppose that M 

admits a nonzero left centralizer T such that T(x)  x, for all x I. Further if T( x, y ) = x, 

y , for all x, y I, , then M is commutative  

Proof. Given that  

T( x, y ) - x, y  = 0, for all x, y I, .                                                                   (5) 

This implies that  

(T(x) - x) y + (T(y) - y) x = 0, for all x, y I, .                                                     (6) 

Replacing x by x r in (6), we obtain  

(T(x) - x) r y + (T(y) - y) x r = 0, for all x, y I, r M, , .                               (7) 

Using (6) and condition (*), we obtain,  

(T(x) - x) r y - (T(x) - x) y r = 0, for all x, y I, r M, , .                                 (8) 

That is,  

(T(x) - x) [r, y]  = 0, for all x, y I, r M, , .                                                       (9) 

Thus, Eq. (9) is same as Eq. (4) and henceforth the proof is follows by the proof of 

Theorem 2.1.  

Proceeding on similarly with necessary variations, we can prove the following:  

Theorem 2.5. Let M be a prime -ring and I be a nonzero ideal of M. Suppose that M 

admits a nonzero left centralizer T such that T(x)  -x, for all x I. Further, if T( x, y ) + 

x, y  = 0, for all x, y I, , then M is commutative.  

Corollary 2.6. In Theorems 2.4 and 2.5, if a left centralizer T is zero, then M is 

commutative.  
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Proof. For any x, y I, , we have T( x, y ) = x, y . If T = 0, then x, y  = 0, for all x, 

y I, . Replacing x by x z and using the fact that y x = -x y, we obtain x [z, y]  = 0, 

for all x, y, z I, , , i.e., I M [z, y] = {0}, for all y, z M, . Since M is prime and 

I  {0}, so that [z, y]  = 0, for all y, z M, . Thus, I is commutative and hence M is 

commutative.  

Corollary 2.7. Let M be a prime -ring and I be a nonzero ideal of M. Suppose that M 

admits a nonzero left centralizer T such that T(x)   x for all x I. Further, if T(x y) ± x y 

= 0, for all x, y I, , then M is commutative.  

Proof For any x, y I, , we have T(x y) = x y. This implies that T([x, y] ) - [x, y]  = 

0, for all x, y I, , and hence by Theorem 2.1, M is commutative.  

On the other hand if M satisfy the condition T(x y) + x y = 0, for all x, y I, . 

Then for any x, y I, , we have T(x y + y x) = - (x y + y x). This implies that T( x, 

y ) + x, y  = 0, for all x, y I, . Thus, by Theorem 2.5, M is commutative.  

Similarly, we can prove the following:  

Corollary 2.8. Let M be a prime -ring and I be a nonzero ideal of M. Suppose that M 

admits a nonzero left centralizer T such that T(x)  ±x, for all x I. Further, if T(x y) ± y x 

= 0, for all x, y I, , then M is commutative.  

Theorem 2.9. Let M be a prime -ring and I be a nonzero ideal of M. If M admits a 

nonzero left centralizer T such that T(x)  x for all x I, then the following conditions are 

equivalent:  

(i) T([x, y] ) - [x, y]  = 0, for all x, y I, .  

(ii) T([x, y] ) + [x, y]  = 0, for all x, y I, . 

(iii) For all x, y I, , either T([x, y] ) - [x, y]  = 0 or T([x, y] ) + [x, y]  = 0.  

(iv) M is commutative.  

Proof. (iv)  (i), (iv)  (ii) and (iv)  (iii) are obvious. Now, we will prove that (i)  

(iv). For any x, y I, , we have T([x, y] ) - [x, y]  = 0, then by Theorem 2.1, M is 

commutative. Similarly, we can prove that (ii)  (iv).  

(iii)  (iv). For each fixed y I, , we set I1 = {x I | T([x, y] ) - [x, y]  = 0} and  

I2 = {x I | T([x, y] ) + [x, y]  = 0}. Then, I1 and I2 are additive subgroups of I such that I = 

I1 I2. But a group can not be the set-theoretic union of two proper subgroups, hence we 
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obtain either I1 = I or I2 = I.. Further, using similar arguments, we obtain I = {y I | I1 = I} 

or I = {y I | I2 = I}. Thus, we obtain that either T([x, y] ) - [x, y]  = 0, for all x, y I,  

or T([x, y] ) + [x, y]  = 0 for all x, y I, . Hence, M is commutative in both the cases 

by Theorem 2.1. (resp. Theorem 2.3.). The proof of the theorem is complete. 

Theorem 2.10. Let M be a prime -ring and I be a nonzero ideal of M. If M admits a 

generalized derivation D associated with a derivation d such that D([x, y] ) - [x, y]  = 0 

(resp. D([x, y] ) + [x, y]  = 0), for all x, y I, . Moreover, if D(x)  x, for all x I, then 

M is commutative.  

Proof. When the associated derivation d = 0, then using Theorem 2.1, we get the required 

result. On the other hand if d  0, then the proof follows from Theorem 2.1. 

Similarly, in view of Theorem 2.4 and 2.5 above, we obtain the following result:  

Theorem 2.11. Let M be a prime -ring and I be a nonzero ideal of M. If M admits a 

generalized derivation D associated with a derivation d such that D(( x, y ) ± x, y  = 0, 

for all x, y I, . Moreover, if D(x)  x, for all x I, then M is commutative.  

Theorem 2.12. Let M be a prime -ring and I be a nonzero ideal of M. Suppose that M 

admits a nonzero left centralizer T such that T(x)  x, for all x I. Further, if T(x y) - 

x y Z(M), for all x, y I, , then M is commutative.  

Proof. For any x, y I, , we have T(x y) - x y Z(M). This can be rewritten as  

T(x) y - x y Z(M), for all x, y I, .                                                                    (10) 

That is,  

[(T(x) - x) y, r]  = 0, for all x, y I, r M, , .                                                     (11) 

This implies that,  

(T(x) - x) [y, r]  + [T(x) - x, r] y = 0, for all x, y I, r M, , .                         (12) 

Replacing x by x z in (12), we obtain  

(T(x) - x) z [y, r]  + [(T(x) - x) z, r] y = 0, for all x, y, z I, r M, , , .       (13) 

Combining (11) and (13), we find that (T(x) - x) z [y, r]  = 0, for all x, y, z I, r M, 

, , . This yields that (T(x) - x) M I [y, r]  = {0}, for all x, y I, r M, . The 

primeness of M implies that either I [x, r]  = {0} or T(y) - y = 0, for all x, y I, r M, . 

Since I  {0} and T(x)  x, for all x I, we find that I is central and hence M is 

commutative.  

Similar arguments as above yield the following:  
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Theorem 2.13 Let M be a prime -ring and I be a nonzero ideal of M. Suppose that M 

admits a nonzero left centralizer T such that T(x)  - x, for all x I. Further, if T(x y) + 

x y Z(M), for all x, y I, , then M is commutative.  

Proof. Suppose T is a nonzero left centralizer satisfying the property T(x y) + x y Z(M), 

for all x, y I, , then the nonzero left centralizer (-T) also satisfies the condition (-

T)(x y) - x y Z(M), for all x, y I, . Hence by Theorem 3.1, M is commutative.  

Remark 2.14 In Theorem 2.12, if the left centralizer is zero, then M is commutative.  

Theorem 2.15 Let M be a prime -ring and I be a nonzero ideal of M. Suppose that M 

admits a nonzero left centralizer T such that T(x)  x, for all x I. Further, if T(x y) - 

y x Z(M), for all x, y I, , then M is commutative.  

Proof. We are given that T is a left centralizer of M such that T(x y) - y x Z(M) for all x, 

y I, . This implies that [T(x) y - y x, r]  = 0, for all x, y I, r M, , . Replacing 

y by x y in the last relation and using it, we find that (T(x) y - y x) [y, r]  = 0, for all x, 

y I, r M, , , . Again, replace r by r s in the above expression, to get (T(x) y - 

y x) r [y, s]  + (T(x) y - y x) [y, r] s = 0, for all x, y I, r, s M, , , , . This 

yields that (T(x) y - y x) r [y, s]  = 0 i.e.,(T(x) y - y x) M [y, s]  = {0}, for all x, y I, 

s M, , . The primeness of M implies that either [y, s]  = 0 or T(x) y - y x = 0, for 

all x, y I, s M, , . Now, we put I1 = {x I | [y, s]  = 0 for all s M, } and I2 = 

{x I | T(x) y - y x = 0, for all y I, }. Then, clearly I1 and I2 are additive subgroups 

of I. Moreover, by the discussion given, I is the set-theoretic union of I1 and I2. But a 

group can not be the set-theoretic union of two proper subgroups, hence I1 = I or I2 = I. If 

I1 = I, then [y, s]  = 0, for all y I, s M,  and hence M is commutative. On the other 

hand if I2 = I, then T(x) y = y x, for all x, y I, . That is T(x y) - y x = 0, for all x, 

y I, . This implies that T([x, y] ) - [x, y]  = 0, for all x, y I, . Hence, the 

application of Theorem 2.1 yields the required result.  

Using similar arguments as used in the proof of above theorem, we get the following:  

Theorem 2.16 Let M be a prime -ring and I be a nonzero ideal of M. Suppose that M 

admits a nonzero left centralizer T such that T(x)  - x, for all x I. Further, if T(x y) + 

y x Z(M), for all x, y I, , then M is commutative.  
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Theorem 2.17 Let M be a prime -ring and I be a nonzero ideal of M. If M admits a 

nonzero left centralizer T: M  M such that T(x)  x, for all x I. Then the following 

conditions are equivalent:  

(i) For all x, y I, , either T(x y) - x y Z(M) or T(x y) + x y Z(M).  

(ii) For all x, y I, , either T(x y) - y x Z(M) or T(x y) + y x Z(M) for all x, 

y I, .  

(iii) M is commutative.  

Proof. Obviously, (iii)  (i) & (ii). Using similar techniques, as used to prove (iii)  (iv) 

in case of Theorem 2.9, it can be easily shown that (i)  (iii) and (ii)  (iii).  

Theorem 2.18 Let M be a prime -ring and I be a nonzero ideal of M. Suppose that M 

admits a generalized derivation D associated with a derivation d and a nonzero left 

centralizer T such that T(x)  x, for all x I. Further, if D(x y) - x y Z(M), for all x, y I, 

, then M is commutative.  

Proof. Combining the proof of Theorem 2.12 above and Theorem 2.1 of [7], we get the 

required result.  

Theorem2.19 Let M be a prime -ring and I be a nonzero ideal of M. Suppose that M 

admits a generalized derivation D associated with a derivation d and a nonzero left 

centralizer T such that T(x)  x, for all x I. Further, if D(x y) -y x Z(M), for all x, y I, 

, then M is commutative.  

Remark 2.20 It can be easily seen that the above results which are obtained for left 

centralizers are also true in the case of right centralizers.  
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