
 Available Online 

Publications 

 

J. Sci. Res. 5 (3), 447-455 (2013) 

JOURNAL OF  

SCIENTIFIC RESEARCH 

www.banglajol.info/index.php/JSR 
 

 

 
Dynamics of Boundary Graphs 

 
G. Marimuthu1* and  M. S. Saraswathy2 

 

1Department of Mathematics, The Madura College, Madurai-625 011, India 
 

2Department of Mathematics, Thiagarajar College of Engineering, Madurai-625 015, India 

 
Received 20 May 2013, accepted in revised form 14 August 2013 

 

Abstract 
 

In a graph G, the distance d(u,v) between a pair of vertices u and v is the length of a shortest 

path joining them. A vertex v is a boundary vertex of a vertex u if ),(),( vudwud   for all 

).(vNw  The boundary graph B(G) based on a connected graph G is a simple graph 

which has the vertex set as in G. Two vertices u and v are adjacent in B(G) if either u is a 

boundary of v or v is a boundary of u. If G is disconnected, then each vertex in a component 

is adjacent to all other vertices in the other components and is adjacent to all of its boundary 

vertices within the component. Given a positive integer m, the mth iterated boundary graph 

of G is defined as )).(()( 1 GBBGB mm   A graph G is periodic if GGBm )(
 
for some 

m. A graph G is said to be an eventually periodic graph if there exist positive integers m and 

k >0 such that .),()( kiGBGB iim 

 
We give the necessary and sufficient condition 

for a graph to be eventually periodic. 
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1.  Introduction and Definitions 

 

 The graphs considered here are nontrivial and simple. For other graph theoretic notation 

and terminology, we follow [1]. In a graph G, the distance d(u,v) between a pair of 

vertices u and v is the length of a shortest path joining them. The eccentricity e(u) of a 

vertex u is the distance to a vertex farthest from u. The radius r(G) of G is defined as 

)}(:)(min{)( GVuueGr  and the diameter d(G) of G is defined as 

)}(:)(max{)( GVuueGd  . A graph G for which r(G) = d(G) is called a self-centered 

graph of radius r(G). A vertex v is called an eccentric vertex of a vertex u if d(u,v) = e(u). 
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A vertex v of G is called an eccentric vertex of G if it is an eccentric vertex of some vertex 

of G. The eccentric graph based on G is denoted by Ge, whose vertex set is V(G) and two 

vertices u and v are adjacent in Ge  if and only if d(u,v)= min{e(u),e(v)}. 

Gimbert et al. [3] studied the iterations of eccentric digraphs. The eccentric digraph of 

a digraph G, denoted by ED(G), is the digraph on the same vertex set as  in G but with an 

arc from a vertex u to  a vertex v in ED(G) if and only if v is an eccentric vertex of u in G. 

Given a positive integer k, the k
th

 iterated eccentric digraph of G is written as 

))(()( 1 GEDEDGED kk  where ED
0
(G) = G. For every digraph G, there exists smallest 

integer p
’
>0 and 0' t  such that ),()(

'''

GEDGED tpt  where   denotes graph 

isomorphism. We call p
’
, the iso-period of G and t

’
,  the iso-tail of G; these quantities are 

denoted by p
’
(G) and t

’
(G), respectively.  

 Kathiresan and Marimuthu [4] introduced a new type of graph called radial graph. 

Two vertices of a graph G are said to be radial to each other if the distance between them 

is equal to the radius of the graph. Two vertices of graph G are said to be radial to each 

other if the distance between them is equal to the radius of the graph. The radial graph of a 

graph G denoted by R(G) has the vertex as in G and two vertices are adjacent in R(G) if 

and only if they are radial in G. If G is disconnected, then two vertices are adjacent in 

R(G) if they belong to different components of G. A graph G is called a radial graph if 

GHR )(  for some graph H. In [5] Kathiresan et al. studied the properties of iteration of 

radial graphs. Given a positive integer m, the m
th

 iterated radial graph of G is defined as 

R
m
(G) = R(R

m-1
(G)). Note that .)(0 GGR   A graph G is periodic if GG )(R m  for some 

m. If p is the least positive integer with this property, then G is called a periodic graph 

with iso-period p. When p=1, G is called as a fixed graph. A graph G is said to be 

eventually periodic if there exist positive integers m and k>0, such that 

.),()( kiGRGR iim    If p and k are the least positive integers with this property, then 

G is eventually periodic with iso-period p and iso-tail k. 

       Based on the concept of radial graphs, Marimuthu and Sivanandha Saraswathy [6] 

introduced the concept of boundary graphs. A vertex v is a boundary vertex of a vertex u 

if d(u,w) d(u,v) for all ).(vNw The boundary graph B(G) based on a connected 

graph G is a simple graph which has the vertex set as in G. Two vertices u and v are 

adjacent in B(G) if either u is a boundary of v or v is a boundary of u. If G is disconnected, 

then each vertex in a component is adjacent to all the vertices in the other components and 

is adjacent to all of its boundary vertices within the component. A graph G is called a 

boundary graph if there exists a graph H such that B(H) = G. we defined the 

neighborhood Nk (u)= }),(/)( kwudvNw  .  

      Motivated by the work of J. Gimbert et al., [2,3] and KM. Kathiresan et al., [5],We 

study here an iterated version of a distance dependent mapping. Given a positive integer 

m, the m
th

 iterated boundary graph of G is defined as ))(()( 1 GBBGB mm  .  Note that 

.)(0 GGB   
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Definition 1.1:   A graph G is periodic if GGBm )( for some m. If p is the least positive 

integer with this property, then G is called a periodic graph with iso-period p. When p = 1, 

G is called as a fixed graph.  

Definition 1.2:   A graph G is said to be eventually periodic if there exist positive integers 

m and k>0, such that .),()( kiGBGB iim  If p and k are the least positive integers 

with this property, then G is called  an eventually periodic graph with iso-period p and 

iso-tail k .  

Figs. 1, 2 and 3 illustrate these definitions showing boundary graph of G and its 

iterated boundary graphs. 

 
 

                               
                      

                   Fig. 1. The  graph  G.                                             Fig. 2.  The  graph  B(G). 

 

 

        
     

  Fig.  3.  The graph B2(G). 

 

 

In the above example B(G)(G)B3  . Here k(G) = 1 and p(G) = 2 where k denotes the 

iso-tail and p denotes the iso-period of G. 

Let F11, F12, F22, F23, F24 and F3 denote the set of all graphs G such that r(G) = 1 and 

d(G) = 1; r(G) = 1 and d(G) = 2; r(G) = 2 and d(G) = 2; r(G) = 2 and d(G) = 3; r(G) = 2 
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and d(G) = 4 and r(G)  ≥   3 respectively and 
4F denote the set of all disconnected graphs. 

It is well known that d(G)   4 implies that 2.)Gd(   

 

2. Previous results 

 

The following theorems are appeared in [6]. 

 

Theorem 2.1 [6]:   B(G) = G if and only if G is complete. 

Theorem 2.2  [6]:  For a graph 
nKGBFG  )(,12
if and only if either      

}{)(}{)(or   }{)(}{)( vuNuvNuvNvuN  for any two adjacent vertices u 

and v of G. 

 

Theorem 2.3 [6]:  Let G be a graph. Then B(G) = G  if and only if the following 

conditions hold.     

  (i) G has no complete vertex . 

 (ii) neither }{)(}{)( uvNvuN   nor }{)(}{)( vuNuvN   for any two       

 adjacent  vertices u and v of G.    

 (iii) either )(uN k
 or )(vNk

 for any two non-adjacent vertices u and v of G ,    

        where k= d (u,v)+1.  

Theorem 2.4 [6]: If G has at least one isolated vertex, then G is not a boundary graph. 

Theorem 2.5 [6]:  Let 
4FG without isolated vertices. If G without complete vertices has 

the following properties 

  (i) neither }{)(}{)( uvNvuN   nor }{)(}{)( vuNuvN   for any two adjacent       

       vertices u and v of G.    

(ii) either )(uN k  or )(vN k
 for any two non-adjacent vertices u and v of G ,   

      where k= d (u,v)+1 then, G is a boundary graph. 

 

3. Main Results 

 

Proposition 3.1:  Every graph is either periodic or eventually periodic. 

 

 Proof.   Consider the set A = {B
m
(G) : m=0,1,2…}  where B

0
(G) = G. If G has n vertices, 

then B
m
(G) also has n vertices. Moreover, the possible number of graphs in A is atmost 

2

)1(

2

nn

. Thus, there exist non-negative integer k and positive integer m such that 

)()( GBGB kkm   and hence .),()( kiGBGB iim 

 
If  k = 0,then G is periodic. If k > 

0, then G is eventually periodic. 
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Proposition 3.2:  Let Cn be any cycle. Then Cn is periodic with iso-period 1 if it is odd 

and eventually periodic with iso-period 1 if it is even. 

 

Proof.  Case (i) If n is odd , B(Cn)   Cn. Hence Cn is periodic with iso-period 1. 

Case(ii) If n is even, 
2

2
)( K

n
CB n  , a  disconnected graph with each component K2. By 

the definition of B(G), )(2

nCB is a complete graph. Hence by Theorem 2.1, Cn is 

eventually periodic with iso-period 1.      

Let us find some graphs of order n which is either periodic or eventually periodic. 

Observation 3.3:  Cn+Cn is a periodic graph for odd values of n, 3n  whose k(G)=0 

and p(G)=2  where + denotes the usual addition of graphs. 

 

Observation 3.4:   We also observed that p(Cm+Cm) = p(Cm) + p(Cm)  where m = 2n+1, 

.2n  

Observation 3.5: C2m+1   C2m+1 is a fixed graph whose k(G)=0 and p(G)=1 , 1m  

where   denotes the Cartesian product of graphs. 

 

Observation 3.6:  C2m    C2m is eventually periodic with k(G)=2, p(G)=1. 

Let us say that a class is periodic if every graph in the class is periodic. As we 

observed earlier Cn+Cn , complete graph , C2m+1   C2m+1 are periodic graphs. 

 

Observation 3.7:  Every complete n-partite graph with |Vi|  2 for each i
th

 partition is 

eventually periodic with iso-period 1.  

 

Proof. Let G be a complete n-partite graph with |Vi|  2 for each i
th 

partition. Any two 

vertices vi and vj in G are adjacent in B(G) if and only if they are in the same partition. 

Therefore B(G) is a disconnected graph with each component complete. By the definition 

of boundary graph, B
2
(G) is complete. By Theorem 2.1, G is eventually periodic with iso-

period 1. 

 

Proposition 3.8:  Every path Pn , 3n  is eventually periodic with iso-period 1. 

 

Proof. Let nvvv ..., 21 be a path on n vertices. Since the end vertices are 

complete, .)( 12FPB n   Further 132 ..., nvvv   are non-adjacent vertices of eccentricity 2 in 

)( nPB  and .)(2

nn KPB   Hence by Theorem2.1, Pn  is eventually periodic with iso-period 1.   

 

 

Lemma 3.9:  A graph 
12FG  is eventually periodic with iso-period 1 if and only if either 

}{)(}{)(or   }{)(}{)( vuNuvNuvNvuN  for any two adjacent vertices u and v 

of G. 
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Proof.  Let .12FG Assume for any two adjacent vertices u and v of G, either 

}{)(}{)(or   }{)(}{)( vuNuvNuvNvuN   . Then by Theorem 2.2, 

nKGB )( . Therefore B
2
(G) = B(B(G)) = B(Kn) ≅Kn implies G is eventually periodic with 

iso-period 1. 

Conversely, assume 
12FG  is eventually periodic. Suppose for any two adjacent 

vertices neither }{)(}{)(nor   }{)(}{)( vuNuvNuvNvuN  . This implies 

).(GBuv  
 Therefore non-adjacent vertices in G are adjacent in B(G) together with the 

full degree vertices in G continue to have the same degree in B(G). Hence B(G) .12F  

With the assumption of the condition mentioned for adjacent vertices, ,)(2 GGB  implies 

G is periodic which is a contradiction. 

 

Lemma 3.10:  If G is not a boundary graph, then G is eventually periodic. 

Proof. Since G is not a boundary graph, there is no graph H such that 

.)( GHB  Therefore for any m, 1,)(  mGHBm  and thus G is not a periodic graph. 

Hence by proposition 3.1, G is eventually periodic. 

 

Lemma 3.11: Let G  be a disconnected graph. If G has at least one isolated vertex, then G 

is eventually periodic. 

 

Proof. Suppose that G has at least one isolated vertex, then by Theorem 2.4, G is not a 

boundary graph. Hence by Lemma 3.10, G is eventually periodic. 

 

Lemma 3.12: Let
4FG without isolated vertices. If  G  without complete vertices has 

the following properties 

 (i)  neither }{)(}{)( uvNvuN   nor }{)(}{)( vuNuvN   for any two 

adjacent vertices u and v of G.    

(ii)  either )(uN k
 or )(vN k

 for any two non-adjacent vertices u and v of G , 

      where k= d (u,v)+1, then G is periodic. 

 

Proof. With the above assumption by Theorem 2.5, G is a boundary graph. Then there 

exists a graph H such that GHB )( . Since G has n vertices, we can find a graph in the 

set of all graphs with n vertices such that GGBm )(  for some least positive integer m. 

Therefore G is periodic. 

 
 

Lemma 3.13: Let G be a disconnected graph with at least one complete component. If for 

any two adjacent vertices u and v in B(G), either }{)(}{)( uvNvuN  or 

}{)(}{)( vuNuvN    then, G is eventually periodic with iso-period 1. 

 

Proof. Let G be a disconnected graph with at least one complete component. Then 

.)( 12FGB   Since for any two adjacent vertices u and v in B(G),either 
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}{)(}{)( uvNvuN  or }{)(}{)( vuNuvN  ,  B
2
(G) is complete. Now, consider 

B
3
(G) =B(B

2
(G)) = Kn  B

2
(G) . Hence G is eventually periodic with iso-period 1. 

 

 

Open Problem 3.14:  Characterize all disconnected periodic graphs in which each 

component is non-complete.  

Theorem 3.15: Let G be a connected graph. If the following conditions hold in two 

successive iterations in B
k
(G), K≥1  

  (i) No complete vertex  

 (ii) neither }{)(}{)( uvNvuN   nor }{)(}{)( vuNuvN   for any two adjacent           

      vertices u and v. 

(iii) either )(uN k
 or )(vN k

 for any two non-adjacent vertices u and v  

       where k= d (u,v)+1 , then G is eventually periodic with iso-period 2. 

 

Proof.  Suppose two successive iterations in B
k
(G) , K≥1 satisfies (i), (ii) and (iii), then by 

Theorem 2.3, ))(()( 1 GBGB kk  and ))(()(1 GBGB kk  .Consider, 

))(()(1 GBGB kk 
))(( 1 GBk )(1 GB k . This proves that G is eventually periodic with 

iso-period 2.        

                 

From the above theorem it is clear that, If G and B(G) holds the conditions in Theorem 

3.15 then G is periodic  with iso-period 2. 

 

Remark 3.16: There are some graphs in F22 which does not satisfies the condition 

mentioned in Theorem 3.15, but they are eventually periodic with iso-period 2.  

The following example illustrates the above remark.           
 

 
 

 Fig. 4. The graph G. 

 

The graph mentioned in Fig. 4 does not satisfy the condition in Theorem 3.15 but it is 

eventually periodic with iso-period 2. 

Conjecture 3.17:  We have observed, but not proven that a self centered graph of radius 

two is eventually periodic with iso-period 2.  

 

Lemma 3.18: Let G be a connected graph .If G   has the following properties  
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     (i) G  has no complete vertex . 

  (ii) neither }{)(}{)( uvNvuN   nor }{)(}{)( vuNuvN   for any two adjacent           

        vertices u and v of G .    

 (iii) either )(uN k
 or )(vN k

 for any two non-adjacent vertices u and v of G ,    

        where k= d (u,v)+1, with ,)( GGB   then G is periodic with iso-period 2. 
 

Proof.  Since G  has the properties (i), (ii) and (iii) by Theorem 2.3, .)( GGB   

GGBGBBGB  )())(()(2   implies that G is periodic with iso-period 2. 

 

Lemma 3.19: If G is a periodic graph with iso-period m>1 and if G has the following 

properties 

(i) G  has no complete vertex . 

  (ii) neither }{)(}{)( uvNvuN   nor }{)(}{)( vuNuvN   for any two  

adjacent vertices u and v of G .    

 (iii) either )(uN k  or )(vN k
 for any two non-adjacent vertices u and v of ,G       

        where k= d (u,v)+1, then G  is eventually periodic with iso-period m.  

 

Proof. By hypothesis .)( GGBm   
Then there exists a graph )(1 GBH m such that 

.)())(()( 1 GGBGBBHB mm    This implies G is a boundary graph. By Theorem 2.3 

.)( GGB   
Consider GGBm )(  implies )())(( GBGBBm  .Therefore ).()(1 GBGBm   

Hence G is eventually periodic with iso-period m. 

 

Theorem 3.20:  A graph G is eventually periodic if and only if one of the following holds 

   (i)  G is a complete n-partite graph with |Vi|  2 for each i
th

 partition. 

  (ii) 
12FG  and for any two adjacent vertices u and v in G either   

         }{)(}{)( uvNvuN   
or   }{)(}{)( vuNuvN  .     

(iii) Any two successive iterations in 1),( kGB k
  holds the following conditions 

(a)  No complete vertex  

(b)  neither }{)(}{)( uvNvuN   nor }{)(}{)( vuNuvN  for any two 

adjacent vertices u and v. 

(c)  either )(uN k
 or N (v) for any two non-adjacent vertices u and v  

where k = d (u,v)+1. 

(iv)  G be a disconnected graph with at least one isolated vertex. 

 (v)   Let G be a disconnected graph with at least one component complete. If for any 

two adjacent vertices u and v in B(G), either }{)(}{)( uvNvuN   or      

        }{)(}{)( vuNuvN  . 
  

Proof.  If (i) holds, then by Observation 3.7, G is eventually periodic. If (ii) holds, then by 

Lemma 3.9, G is eventually periodic. If (iii) holds true, by Theorem 3.15 G is eventually 
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periodic .If (iv) holds, by Lemma 3.11 G is eventually periodic. If (v) holds, then by 

Lemma 3.13 G is eventually periodic.  

Conversely, Suppose G is eventually periodic. Assume that (i), (iii), (iv) and (v) do not 

hold. Now we have to prove that (ii) definitely holds. Suppose this is not. Let 
12FG and 

for any two adjacent vertices u and v in G neither }{)(}{)( uvNvuN   

nor }.{)(}{)( vuNuvN   This implies ).(GBuv  
  Therefore non-adjacent vertices in G 

are adjacent in B(G) together with the full degree vertices in G continue to have the same 

degree in B(G). Hence B(G) .12F  With the assumption of the condition mentioned for 

adjacent vertices, .)(2 GGB    implies G is periodic which is a contradiction. 
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