Dynamics of Boundary Graphs

G. Marimuthu and M. Saraswathy

Department of Mathematics, The Madura College, Madurai-625 011, India

Department of Mathematics, Thiagarajar College of Engineering, Madurai-625 015, India

Received 20 May 2013, accepted in revised form 14 August 2013

Abstract

In a graph G, the distance \(d(u,v) \) between a pair of vertices \(u \) and \(v \) is the length of a shortest path joining them. A vertex \(v \) is a boundary vertex of a vertex \(u \) if \(d(u,w) \leq d(u,v) \) for all \(w \in N(v) \). The boundary graph \(B(G) \) based on a connected graph \(G \) is a simple graph which has the vertex set as in \(G \). Two vertices \(u \) and \(v \) are adjacent in \(B(G) \) if either \(u \) is a boundary of \(v \) or \(v \) is a boundary of \(u \). If \(G \) is disconnected, then each vertex in a component is adjacent to all other vertices in the other components and is adjacent to all of its boundary vertices within the component. Given a positive integer \(m \), the \(m \)th iterated boundary graph of \(G \) is defined as \(B^m(G) = B(B^{m-1}(G)) \). A graph \(G \) is periodic if \(B^m(G) \cong G \) for some \(m \). A graph \(G \) is said to be an eventually periodic graph if there exist positive integers \(m \) and \(k > 0 \) such that \(B^{mk+i}(G) \cong B^i(G) \), \(\forall i \geq k \). We give the necessary and sufficient condition for a graph to be eventually periodic.

Keywords: Boundary graph; Periodic graph.

1. Introduction and Definitions

The graphs considered here are nontrivial and simple. For other graph theoretic notation and terminology, we follow [1]. In a graph \(G \), the distance \(d(u,v) \) between a pair of vertices \(u \) and \(v \) is the length of a shortest path joining them. The eccentricity \(e(u) \) of a vertex \(u \) is the distance to a vertex farthest from \(u \). The radius \(r(G) \) of \(G \) is defined as \(r(G) = \min\{e(u) : u \in V(G)\} \) and the diameter \(d(G) \) of \(G \) is defined as \(d(G) = \max\{e(u) : u \in V(G)\} \). A graph \(G \) for which \(r(G) = d(G) \) is called a self-centered graph of radius \(r(G) \). A vertex \(v \) is called an eccentric vertex of a vertex \(u \) if \(d(u,v) = e(u) \).

* Corresponding author: yellowmuthu@yahoo.com
A vertex \(v \) of \(G \) is called an eccentric vertex of \(G \) if it is an eccentric vertex of some vertex of \(G \). The eccentric graph based on \(G \) is denoted by \(G_e \), whose vertex set is \(V(G) \) and two vertices \(u \) and \(v \) are adjacent in \(G_e \) if and only if \(d(u,v) = \min\{e(u),e(v)\} \).

Gimbert et al. [3] studied the iterations of eccentric digraphs. The eccentric digraph of a digraph \(G \), denoted by \(ED(G) \), is the digraph on the same vertex set as \(G \) but with an arc from a vertex \(u \) to a vertex \(v \) in \(ED(G) \) if and only if \(v \) is an eccentric vertex of \(u \) in \(G \).

Given a positive integer \(k \), the \(k^{th} \) iterated eccentric digraph of \(G \) is written as \(ED^k(G) = ED(ED^{k-1}(G)) \), where \(ED^0(G) = G \). For every digraph \(G \), there exists smallest integer \(p \geq 0 \) and \(t \geq 0 \) such that \(ED^p(G) \cong ED^{p+t}(G) \), where \(\cong \) denotes graph isomorphism. We call \(p \), the iso-period of \(G \) and \(t \), the iso-tail of \(G \); these quantities are denoted by \(p(G) \) and \(t(G) \), respectively.

Kathiuren et al. [4] introduced a new type of graph called radial graph. Two vertices of a graph \(G \) are said to be radial to each other if the distance between them is equal to the radius of the graph. Two vertices of graph \(G \) are said to be radial to each other if the distance between them is equal to the radius of the graph. The radial graph of a graph \(G \) denoted by \(R(G) \) has the vertex set as \(G \) and two vertices are adjacent in \(R(G) \) if and only if they are radial in \(G \). If \(G \) is disconnected, then two vertices are adjacent in \(R(G) \) if they belong to different components of \(G \). A graph \(G \) is called a radial graph if \(R(H) \cong G \) for some graph \(H \). In [5] Kathiresan et al. studied the properties of iteration of radial graphs. Given a positive integer \(m \), the \(m^{th} \) iterated radial graph of \(G \) is defined as \(R^m(G) = R(R^{m-1}(G)) \).

Note that \(R^0(G) \cong G \). A graph \(G \) is periodic if \(R^m(G) \cong G \) for some \(m \). If \(p \) is the least positive integer with this property, then \(G \) is called a periodic graph with iso-period \(p \). When \(p=1 \), \(G \) is called as a fixed graph. A graph \(G \) is said to be eventually periodic if there exist positive integers \(m \) and \(k \), such that \(R^{m+i}(G) \cong R^k(G), \forall i \geq k \). If \(p \) and \(k \) are the least positive integers with this property, then \(G \) is eventually periodic with iso-period \(p \) and iso-tail \(k \).

Based on the concept of radial graphs, Marimuthu and Sivanandha Saraswathy [6] introduced the concept of boundary graphs. A vertex \(v \) is a boundary vertex of a vertex \(u \) if \(d(u,w) \leq d(u,v) \) for all \(w \in N(v) \). The boundary graph \(B(G) \) based on a connected graph \(G \) is the graph which has the vertex set as \(G \). Two vertices \(u \) and \(v \) are adjacent in \(B(G) \) if either \(u \) is a boundary of \(v \) or \(v \) is a boundary of \(u \). If \(G \) is disconnected, then each vertex in a component is adjacent to all the vertices in the other components and is adjacent to all of its boundary vertices within the component. A graph \(G \) is called a boundary graph if there exists a graph \(H \) such that \(B(H) = G \). We defined the neighborhood \(N_B(u) = \{w \in N(v) / d(u,w) = k\} \).

Motivated by the work of J. Gimbert et al., [2,3] and KM. Kathiresan et al., [5], we study here an iterated version of a distance dependent mapping. Given a positive integer \(m \), the \(m^{th} \) iterated boundary graph of \(G \) is defined as \(B^m(G) = B(B^{m-1}(G)) \). Note that \(B^0(G) \cong G \).
Definition 1.1: A graph G is periodic if $B^m(G) \cong G$ for some m. If p is the least positive integer with this property, then G is called a periodic graph with iso-period p. When $p = 1$, G is called as a fixed graph.

Definition 1.2: A graph G is said to be eventually periodic if there exist positive integers m and $k > 0$, such that $B^{n+k}(G) \cong B^i(G), \forall i \geq k$. If p and k are the least positive integers with this property, then G is called an eventually periodic graph with iso-period p and iso-tail k.

Figs. 1, 2 and 3 illustrate these definitions showing boundary graph of G and its iterated boundary graphs.

![Fig. 1. The graph G.](image1)

![Fig. 2. The graph $B(G)$.](image2)

![Fig. 3. The graph $B^2(G)$.](image3)

In the above example $B^2(G) \cong B(G)$. Here $k(G) = 1$ and $p(G) = 2$ where k denotes the iso-tail and p denotes the iso-period of G.

Let $F_{11}, F_{12}, F_{22}, F_{23}, F_{24}$ and F_3 denote the set of all graphs G such that $r(G) = 1$ and $d(G) = 1$; $r(G) = 1$ and $d(G) = 2$; $r(G) = 2$ and $d(G) = 2$; $r(G) = 2$ and $d(G) = 3$; $r(G) = 2$
and \(d(G) = 4 \) and \(r(G) \geq 3 \) respectively and \(\mathcal{F}_4 \) denote the set of all disconnected graphs. It is well known that \(d(G) \geq 4 \) implies that \(d(\overline{G}) \leq 2 \).

2. Previous results

The following theorems are appeared in [6].

Theorem 2.1 [6]: \(\mathcal{B}(G) = G \) if and only if \(G \) is complete.

Theorem 2.2 [6]: For a graph \(G \in \mathcal{F}_4, \mathcal{B}(G) = K_n \) if and only if either
\[N(u) - \{v\} \subseteq N(v) - \{u\} \] or
\[N(v) - \{u\} \subseteq N(u) - \{v\} \] for any two adjacent vertices \(u \) and \(v \) of \(G \).

Theorem 2.3 [6]: Let \(G \) be a graph. Then \(\mathcal{B}(G) = \overline{G} \) if and only if the following conditions hold.

(i) \(G \) has no complete vertex.

(ii) neither \(N(u) - \{v\} \subseteq N(v) - \{u\} \) nor \(N(v) - \{u\} \subseteq N(u) - \{v\} \) for any two adjacent vertices \(u \) and \(v \) of \(G \).

(iii) either \(N_k(v) = \emptyset \) or \(N_k(u) = \emptyset \) for any two non-adjacent vertices \(u \) and \(v \) of \(G \), where \(k = d(u, v) + 1 \).

Theorem 2.4 [6]: If \(G \) has at least one isolated vertex, then \(G \) is not a boundary graph.

Theorem 2.5 [6]: Let \(G \in \mathcal{F}_4 \) without isolated vertices. If \(\overline{G} \) without complete vertices has the following properties

(i) neither \(N(u) - \{v\} \subseteq N(v) - \{u\} \) nor \(N(v) - \{u\} \subseteq N(u) - \{v\} \) for any two adjacent vertices \(u \) and \(v \) of \(G \).

(ii) either \(N_k(u) = \emptyset \) or \(N_k(v) = \emptyset \) for any two non-adjacent vertices \(u \) and \(v \) of \(G \), where \(k = d(u, v) + 1 \) then, \(G \) is a boundary graph.

3. Main Results

Proposition 3.1: Every graph is either periodic or eventually periodic.

Proof. Consider the set \(A = \{B^m(G) : m=0,1,2,...\} \) where \(B^0(G) = G \). If \(G \) has \(n \) vertices, then \(B^m(G) \) also has \(n \) vertices. Moreover, the possible number of graphs in \(A \) is at most \(\frac{n(n-1)}{2} \). Thus, there exist non-negative integer \(k \) and positive integer \(m \) such that \(B^{m+k}(G) \cong B^k(G) \) and hence \(B^{m+i}(G) \cong B^k(G), \forall i \geq k \). If \(k = 0 \), then \(G \) is periodic. If \(k > 0 \), then \(G \) is eventually periodic.
Proposition 3.2: Let \(C_n \) be any cycle. Then \(C_n \) is periodic with iso-period 1 if it is odd and eventually periodic with iso-period 1 if it is even.

Proof. Case (i) If \(n \) is odd, \(B(C_n) \cong C_n \). Hence \(C_n \) is periodic with iso-period 1.

Case(ii) If \(n \) is even, \(B(C_n) = \frac{n}{2} K_2 \). a disconnected graph with each component \(K_2 \). By the definition of \(B(G) \), \(B^2(C_n) \) is a complete graph. Hence by Theorem 2.1, \(C_n \) is eventually periodic with iso-period 1.

Let us find some graphs of order \(n \) which is either periodic or eventually periodic.

Observation 3.3: \(C_n+C_n \) is a periodic graph for odd values of \(n \), \(\forall n \geq 3 \) whose \(k(G)=0 \) and \(p(G)=2 \) where + denotes the usual addition of graphs.

Observation 3.4: We also observed that \(p(C_m+C_n) = p(C_m) + p(C_n) \) where \(m = 2n+1 \), \(\forall n \geq 2 \).

Observation 3.5: \(C_{2m+1} \times C_{2m+1} \) is a fixed graph whose \(k(G)=0 \) and \(p(G)=1 \), \(\forall m \geq 1 \) where \(\times \) denotes the Cartesian product of graphs.

Observation 3.6: \(C_{2m} \times C_{2m} \) is eventually periodic with \(k(G)=2 \), \(p(G)=1 \).

Let us say that a class is periodic if every graph in the class is periodic. As we observed earlier \(C_n+C_n \), complete graph \(C_{2m+1} \times C_{2m+1} \) are periodic graphs.

Observation 3.7: Every complete n-partite graph with \(|V| \geq 2 \) for each \(i^{th} \) partition is eventually periodic with iso-period 1.

Proof. Let \(G \) be a complete n-partite graph with \(|V| \geq 2 \) for each \(i^{th} \) partition. Any two vertices \(v_i \) and \(v_j \) in \(G \) are adjacent in \(B(G) \) if and only if they are in the same partition. Therefore \(B(G) \) is a disconnected graph with each component complete. By the definition of boundary graph, \(B^2(G) \) is complete. By Theorem 2.1, \(G \) is eventually periodic with iso-period 1.

Proposition 3.8: Every path \(P_n \), \(n \geq 3 \) is eventually periodic with iso-period 1.

Proof. Let \(v_1, v_2 \ldots v_n \) be a path on \(n \) vertices. Since the end vertices are complete, \(B(P_n) \in F_{12} \). Further \(v_2, v_3 \ldots v_{n-1} \) are non-adjacent vertices of eccentricity 2 in \(B(P_n) \) and \(B^2(P_n) = K_n \). Hence by Theorem2.1, \(P_n \) is eventually periodic with iso-period 1.

Lemma 3.9: A graph \(G \in F_{12} \) is eventually periodic with iso-period 1 if and only if either \(N(u) - \{v\} \subseteq N(v) - \{u\} \) or \(N(v) - \{u\} \subseteq N(u) - \{v\} \) for any two adjacent vertices \(u \) and \(v \) of \(G \).
Let \(G \in F_{12} \). Assume for any two adjacent vertices \(u \) and \(v \) of \(G \), either
\[N(u) - \{v\} \subseteq N(v) - \{u\} \]
or
\[N(v) - \{u\} \subseteq N(u) - \{v\} \]
. Then by Theorem 2.2,
\[B(G) = K_n \]
. Therefore \(B^2(G) = B(B(G)) = B(K_n) \cong K_n \) implies \(G \) is eventually periodic with iso-period 1.

Conversely, assume \(G \in F_{12} \) is eventually periodic. Suppose for any two adjacent vertices neither \(N(u) - \{v\} \subseteq N(v) - \{u\} \) nor \(N(v) - \{u\} \subseteq N(u) - \{v\} \). This implies \(uv \notin B(G) \). Therefore non-adjacent vertices in \(G \) are adjacent in \(B(G) \) together with the full degree vertices in \(G \) continue to have the same degree in \(B(G) \). Hence \(B(G) \in F_{12} \).

With the assumption of the condition mentioned for adjacent vertices, \(B^2(G) \equiv G \), implies \(G \) is periodic which is a contradiction.

Lemma 3.10: If \(G \) is not a boundary graph, then \(G \) is eventually periodic.

Proof. Since \(G \) is not a boundary graph, there is no graph \(H \) such that \(B(H) \cong G \). Therefore for any \(m \), \(B^n(H) \neq G, m \geq 1 \) and thus \(G \) is not a periodic graph. Hence by proposition 3.1, \(G \) is eventually periodic.

Lemma 3.11: Let \(G \) be a disconnected graph. If \(G \) has at least one isolated vertex, then \(G \) is eventually periodic.

Proof. Suppose that \(G \) has at least one isolated vertex, then by Theorem 2.4, \(G \) is not a boundary graph. Hence by Lemma 3.10, \(G \) is eventually periodic.

Lemma 3.12: Let \(G \in F_4 \) without isolated vertices. If \(\overline{G} \) without complete vertices has the following properties

(i) neither \(N(u) - \{v\} \subseteq N(v) - \{u\} \) nor \(N(v) - \{u\} \subseteq N(u) - \{v\} \) for any two adjacent vertices \(u \) and \(v \) of \(G \).

(ii) either \(N_k(u) = \phi \) or \(N_k(v) = \phi \) for any two non-adjacent vertices \(u \) and \(v \) of \(G \), where \(k = d(u,v)+1 \), then \(G \) is periodic.

Proof. With the above assumption by Theorem 2.5, \(G \) is a boundary graph. Then there exists a graph \(H \) such that \(B(H) \cong G \). Since \(G \) has \(n \) vertices, we can find a graph in the set of all graphs with \(n \) vertices such that \(B^m(G) \cong G \) for some least positive integer \(m \). Therefore \(G \) is periodic.

Lemma 3.13: Let \(G \) be a disconnected graph with at least one complete component. If for any two adjacent vertices \(u \) and \(v \) in \(B(G) \), either \(N(u) - \{v\} \subseteq N(v) - \{u\} \) or \(N(v) - \{u\} \subseteq N(u) - \{v\} \) then, \(G \) is eventually periodic with iso-period 1.

Proof. Let \(G \) be a disconnected graph with at least one complete component. Then \(B(G) \in F_{12} \). Since for any two adjacent vertices \(u \) and \(v \) in \(B(G) \), either
\[N(u) - \{v\} \subseteq N(v) - \{u\} \text{ or } N(v) - \{u\} \subseteq N(u) - \{v\}. \]

Now, consider \(B^2(G) = B(B^2(G)) = K_n \cong B^3(G). \) Hence \(G \) is eventually periodic with iso-period 1.

Open Problem 3.14: Characterize all disconnected periodic graphs in which each component is non-complete.

Theorem 3.15: Let \(G \) be a connected graph. If the following conditions hold in two successive iterations in \(B^k(G), K \geq 1 \)

(i) No complete vertex

(ii) neither \(N(u) - \{v\} \subseteq N(v) - \{u\} \) nor \(N(v) - \{u\} \subseteq N(u) - \{v\} \) for any two adjacent vertices \(u \) and \(v \).

(iii) either \(N_k(u) = \emptyset \) or \(N_k(v) = \emptyset \) for any two non-adjacent vertices \(u \) and \(v \)

where \(k = d(u,v) + 1 \), then \(G \) is eventually periodic with iso-period 2.

Proof. Suppose two successive iterations in \(B^k(G), K \geq 1 \) satisfies (i), (ii) and (iii), then by Theorem 2.3, \(B^k(G) \cong (B^{k+1}(G)) \) and \(B^{k+1}(G) \cong (B^k(G)). \) Consider, \(B^{k+1}(G) \cong (B^k(G)) \cong (B^{k-1}(G)) = B^{k-1}(G). \) This proves that \(G \) is eventually periodic with iso-period 2.

From the above theorem it is clear that, If \(G \) and \(B(G) \) holds the conditions in Theorem 3.15 then \(G \) is periodic with iso-period 2.

Remark 3.16: There are some graphs in \(F_{22} \) which does not satisfies the condition mentioned in Theorem 3.15, but they are eventually periodic with iso-period 2.

The following example illustrates the above remark.

![Graph G](image)

Fig. 4. The graph \(G. \)

The graph mentioned in Fig. 4 does not satisfy the condition in Theorem 3.15 but it is eventually periodic with iso-period 2.

Conjecture 3.17: We have observed, but not proven that a self centered graph of radius two is eventually periodic with iso-period 2.

Lemma 3.18: Let \(G \) be a connected graph. If \(\overline{G} \) has the following properties
(i) \overline{G} has no complete vertex.
(ii) neither $N(u) - \{v\} \subseteq N(v) - \{u\}$ nor $N(v) - \{u\} \subseteq N(u) - \{v\}$ for any two adjacent vertices u and v of \overline{G}.
(iii) either $N_k(u) = \phi$ or $N_k(v) = \phi$ for any two non-adjacent vertices u and v of \overline{G}, where $k = d(u,v)+1$, with $B(G) \cong \overline{G}$, then G is periodic with iso-period 2.

Proof. Since \overline{G} has the properties (i), (ii) and (iii) by Theorem 2.3, $B(\overline{G}) \cong G$. $B^2(G) = B(B(G)) \cong B(\overline{G}) \cong G$ implies that G is periodic with iso-period 2.

Lemma 3.19: If G is a periodic graph with iso-period $m>1$ and if \overline{G} has the following properties

(i) \overline{G} has no complete vertex.
(ii) neither $N(u) - \{v\} \subseteq N(v) - \{u\}$ nor $N(v) - \{u\} \subseteq N(u) - \{v\}$ for any two adjacent vertices u and v of \overline{G}.
(iii) either $N_k(u) = \phi$ or $N_k(v) = \phi$ for any two non-adjacent vertices u and v of \overline{G}, where $k = d(u,v)+1$, then \overline{G} is eventually periodic with iso-period m.

Proof. By hypothesis $B^m(G) \cong G$. Then there exists a graph $H = B^{m-1}(G)$ such that $B(H) \cong B(B^{m-1}(G)) \cong B^m(G) \cong G$. This implies G is a boundary graph. By Theorem 2.3 $B(\overline{G}) \cong G$. Consider $B^m(G) \cong G$ implies $B^m(B(\overline{G})) \cong B(\overline{G})$. Therefore $B^{m+1}(\overline{G}) \cong B(\overline{G})$. Hence \overline{G} is eventually periodic with iso-period m.

Theorem 3.20: A graph G is eventually periodic if and only if one of the following holds

(i) G is a complete n-partite graph with $|V_i| \geq 2$ for each i^{th} partition.
(ii) $G \in F_{12}$ and for any two adjacent vertices u and v in G either

$N(u) - \{v\} \subseteq N(v) - \{u\}$ or $N(v) - \{u\} \subseteq N(u) - \{v\}$.

(iii) Any two successive iterations in $B^k(G), k \geq 1$ holds the following conditions

(a) No complete vertex

(b) neither $N(u) - \{v\} \subseteq N(v) - \{u\}$ nor $N(v) - \{u\} \subseteq N(u) - \{v\}$ for any two adjacent vertices u and v.

(c) either $N_k(u) = \phi$ or $N_k(v) = \phi$ for any two non-adjacent vertices u and v where $k = d(u,v)+1$.

(iv) G be a disconnected graph with at least one isolated vertex.

(v) Let G be a disconnected graph with at least one component complete. If for any two adjacent vertices u and v in $B(G)$, either $N(u) - \{v\} \subseteq N(v) - \{u\}$ or $N(v) - \{u\} \subseteq N(u) - \{v\}$.

Proof. If (i) holds, then by Observation 3.7, G is eventually periodic. If (ii) holds, then by Lemma 3.9, G is eventually periodic. If (iii) holds true, by Theorem 3.15 G is eventually
periodic. If (iv) holds, by Lemma 3.11 G is eventually periodic. If (v) holds, then by Lemma 3.13 G is eventually periodic.

Conversely, Suppose G is eventually periodic. Assume that (i), (iii), (iv) and (v) do not hold. Now we have to prove that (ii) definitely holds. Suppose this is not. Let $G \in F_{12}$ and for any two adjacent vertices u and v in G neither $N(u) - \{v\} \subseteq N(v) - \{u\}$ nor $N(v) - \{u\} \subseteq N(u) - \{v\}$. This implies $uv \notin B(G)$. Therefore non-adjacent vertices in G are adjacent in $B(G)$ together with the full degree vertices in G continue to have the same degree in $B(G)$. Hence $B(G) \in F_{12}$. With the assumption of the condition mentioned for adjacent vertices, $B^2(G) \cong G$. implies G is periodic which is a contradiction.

Acknowledgments

The authors are thankful to the referee for useful suggestions.

References

1. F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley Reading, 1990).
 http://web.udl.es/usuaris/p4088280/research/abs/GLMR08.html