

Available Online

JOURNAL OF SCIENTIFIC RESEARCH

J. Sci. Res. 5 (3), 447-455 (2013)

www.banglajol.info/index.php/JSR

Dynamics of Boundary Graphs

G. Marimuthu^{1*} and M. S. Saraswathy²

¹Department of Mathematics, The Madura College, Madurai-625 011, India

²Department of Mathematics, Thiagarajar College of Engineering, Madurai-625 015, India

Received 20 May 2013, accepted in revised form 14 August 2013

Abstract

In a graph G, the distance d(u, v) between a pair of vertices u and v is the length of a shortest path joining them. A vertex v is a boundary vertex of a vertex u if $d(u, w) \le d(u, v)$ for all $w \in N(v)$. The boundary graph B(G) based on a connected graph G is a simple graph which has the vertex set as in G. Two vertices u and v are adjacent in B(G) if either u is a boundary of v or v is a boundary of u. If G is disconnected, then each vertex in a component is adjacent to all other vertices in the other components and is adjacent to all of its boundary vertices within the component. Given a positive integer m, the m^{th} iterated boundary graph of G is defined as $B^m(G) = B(B^{m-1}(G))$. A graph G is periodic if $B^m(G) \cong G$ for some m. A graph G is said to be an eventually periodic graph if there exist positive integers m and k > 0 such that $B^{m+i}(G) \cong B^i(G), \forall i \ge k$. We give the necessary and sufficient condition for a graph to be eventually periodic.

Keywords: Boundary graph; Periodic graph.

© 2013 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: <u>http://dx.doi.org/10.3329/jsr.v5i3.14866</u> J. Sci. Res. **5** (3), 447-455 (2013)

1. Introduction and Definitions

The graphs considered here are nontrivial and simple. For other graph theoretic notation and terminology, we follow [1]. In a graph *G*, the distance d(u,v) between a pair of vertices *u* and *v* is the length of a shortest path joining them. The eccentricity e(u) of a vertex *u* is the distance to a vertex farthest from *u*. The radius r(G) of *G* is defined as $r(G) = \min\{e(u) : u \in V(G)\}$ and the diameter d(G) of *G* is defined as $d(G) = \max\{e(u) : u \in V(G)\}$. A graph *G* for which r(G) = d(G) is called a self-centered graph of radius r(G). A vertex *v* is called an eccentric vertex of a vertex *u* if d(u,v) = e(u).

^{*} Corresponding author: yellowmuthu@yahoo.com

A vertex *v* of *G* is called an eccentric vertex of *G* if it is an eccentric vertex of some vertex of *G*. The eccentric graph based on *G* is denoted by G_e , whose vertex set is V(G) and two vertices *u* and *v* are adjacent in G_e if and only if $d(u,v) = \min\{e(u), e(v)\}$.

Gimbert *et al.* [3] studied the iterations of eccentric digraphs. The eccentric digraph of a digraph *G*, denoted by ED(G), is the digraph on the same vertex set as in *G* but with an arc from a vertex u to a vertex v in ED(G) if and only if v is an eccentric vertex of *u* in *G*. Given a positive integer k, the k^{th} iterated eccentric digraph of *G* is written as $ED^{k}(G) = ED(ED^{k-1}(G))$ where $ED^{0}(G) = G$. For every digraph *G*, there exists smallest integer p > 0 and $t \ge 0$ such that $ED^{t}(G) \cong ED^{p'+t'}(G)$, where \cong denotes graph isomorphism. We call p' the iso-period of *G* and *t*, the iso-tail of *G*; these quantities are denoted by p'(G) and t'(G), respectively.

Kathiresan and Marimuthu [4] introduced a new type of graph called radial graph. Two vertices of a graph *G* are said to be radial to each other if the distance between them is equal to the radius of the graph. Two vertices of graph *G* are said to be radial to each other if the distance between them is equal to the radius of the graph. The radial graph of a graph *G* denoted by R(G) has the vertex as in *G* and two vertices are adjacent in R(G) if and only if they are radial in *G*. If *G* is disconnected, then two vertices are adjacent in R(G) if they belong to different components of *G*. A graph *G* is called a radial graph if $R(H) \cong G$ for some graph *H*. In [5] Kathiresan et al. studied the properties of iteration of radial graphs. Given a positive integer *m*, the m^{th} iterated radial graph of *G* is defined as $R^m(G) = R(R^{m-1}(G))$. Note that $R^0(G) \cong G$. A graph *G* is periodic if $R^m(G) \cong G$ for some *m*. If *p* is the least positive integer with this property, then *G* is called a periodic graph with iso-period *p*. When p=1, *G* is called as a fixed graph. A graph *G* is said to be eventually periodic if there exist positive integers *m* and k>0, such that $R^{m+i}(G) \cong R^i(G), \forall i \ge k$. If *p* and *k* are the least positive integers with this property, then *G* is eventually periodic with iso-period *p* and iso-tail *k*.

Based on the concept of radial graphs, Marimuthu and Sivanandha Saraswathy [6] introduced the concept of boundary graphs. A vertex v is a boundary vertex of a vertex u if $d(u,v) \le d(u,v)$ for all $w \in N(v)$. The boundary graph B(G) based on a connected graph G is a simple graph which has the vertex set as in G. Two vertices u and v are adjacent in B(G) if either u is a boundary of v or v is a boundary of u. If G is disconnected, then each vertex in a component is adjacent to all the vertices in the other components and is adjacent to all of its boundary vertices within the component. A graph G is called a boundary graph if there exists a graph H such that B(H) = G. we defined the neighborhood $N_k(u) = \{w \in N(v)/d(u, w) = k\}$.

Motivated by the work of J. Gimbert et al., [2,3] and KM. Kathiresan et al., [5], We study here an iterated version of a distance dependent mapping. Given a positive integer *m*, the m^{th} iterated boundary graph of *G* is defined as $B^m(G) = B(B^{m-1}(G))$. Note that $B^0(G) \cong G$.

Definition 1.1: A graph *G* is periodic if $B^m(G) \cong G$ for some *m*. If *p* is the least positive integer with this property, then *G* is called a periodic graph with iso-period *p*. When *p* = 1, *G* is called as a fixed graph.

Definition 1.2: A graph *G* is said to be eventually periodic if there exist positive integers *m* and k>0, such that $B^{m+i}(G) \cong B^i(G), \forall i \ge k$. If *p* and *k* are the least positive integers with this property, then *G* is called an eventually periodic graph with iso-period *p* and iso-tail *k*.

Figs. 1, 2 and 3 illustrate these definitions showing boundary graph of G and its iterated boundary graphs.

Fig. 1. The graph G.

Fig. 2. The graph B(G).

Fig. 3. The graph $B^2(G)$.

In the above example $B^3(G) \cong B(G)$. Here k(G) = 1 and p(G) = 2 where k denotes the iso-tail and p denotes the iso-period of G.

Let F_{11} , F_{12} , F_{22} , F_{23} , F_{24} and F_3 denote the set of all graphs G such that r(G) = 1 and d(G) = 1; r(G) = 1 and d(G) = 2; r(G) = 2 and d(G) = 2; r(G) = 2 and d(G) = 3; r(G) = 2

and d(G) = 4 and $r(G) \ge 3$ respectively and \overline{F}_4 denote the set of all disconnected graphs. It is well known that $d(G) \ge 4$ implies that $d(\overline{G}) \le 2$.

2. Previous results

The following theorems are appeared in [6].

Theorem 2.1 [6]: B(G) = G if and only if G is complete.

Theorem 2.2 [6]: For a graph $G \in F_{12}$, $B(G) = K_n$ if and only if either

 $N(u) - \{v\} \subseteq N(v) - \{u\}$ or $N(v) - \{u\} \subseteq N(u) - \{v\}$ for any two adjacent vertices uand v of G.

Theorem 2.3 [6]: Let G be a graph. Then $B(G) = \overline{G}$ if and only if the following conditions hold.

- (i) G has no complete vertex.
- (ii) neither $N(u) \{v\} \subseteq N(v) \{u\}$ nor $N(v) \{u\} \subseteq N(u) \{v\}$ for any two

adjacent vertices u and v of G.

(iii) either $N_k(u) = \phi$ or $N_k(v) = \phi$ for any two non-adjacent vertices u and v of G, where k = d(u,v)+1.

Theorem 2.4 [6]: If G has at least one isolated vertex, then G is not a boundary graph.

Theorem 2.5 [6]: Let $G \in F_4$ without isolated vertices. If \overline{G} without complete vertices has

the following properties

- (i) neither $N(u) \{v\} \subseteq N(v) \{u\}$ nor $N(v) \{u\} \subseteq N(u) \{v\}$ for any two adjacent vertices u and v of G.
- (ii) either $N_k(u) = \phi$ or $N_k(v) = \phi$ for any two non-adjacent vertices u and v of G, where k = d(u, v) + 1 then, G is a boundary graph.

3. Main Results

Proposition 3.1: Every graph is either periodic or eventually periodic.

Proof. Consider the set $A = \{B^m(G) : m=0,1,2...\}$ where $B^0(G) = G$. If G has n vertices, then $B^m(G)$ also has n vertices. Moreover, the possible number of graphs in A is atmost $\underline{n(n-1)}$

 2^{-2} . Thus, there exist non-negative integer k and positive integer m such that $B^{m+k}(G) \cong B^k(G)$ and hence $B^{m+i}(G) \cong B^i(G), \forall i \ge k$. If k = 0, then G is periodic. If k > 0, then G is eventually periodic.

Proposition 3.2: Let C_n be any cycle. Then C_n is periodic with iso-period 1 if it is odd and eventually periodic with iso-period 1 if it is even.

Proof. Case (i) If n is odd, $B(C_n) \cong C_n$. Hence C_n is periodic with iso-period 1.

Case(ii) If *n* is even, $B(C_n) \cong \frac{n}{2}K_2$, a disconnected graph with each component K_2 . By the definition of B(G), $B^2(C_n)$ is a complete graph. Hence by Theorem 2.1, C_n is eventually periodic with iso-period 1.

Let us find some graphs of order n which is either periodic or eventually periodic.

Observation 3.3: $C_n + C_n$ is a periodic graph for odd values of n, $\forall n \ge 3$ whose k(G)=0 and p(G)=2 where + denotes the usual addition of graphs.

Observation 3.4: We also observed that $p(C_m + C_m) = p(C_m) + p(C_m)$ where m = 2n+1, $\forall n \ge 2$.

Observation 3.5: $C_{2m+1} \times C_{2m+1}$ is a fixed graph whose k(G)=0 and p(G)=1, $\forall m \ge 1$ where \times denotes the Cartesian product of graphs.

Observation 3.6: $C_{2m} \times C_{2m}$ is eventually periodic with k(G)=2, p(G)=1.

Let us say that a class is periodic if every graph in the class is periodic. As we observed earlier C_n+C_n , complete graph, $C_{2m+1} \times C_{2m+1}$ are periodic graphs.

Observation 3.7: Every complete n-partite graph with $|V_i| \ge 2$ for each i^{th} partition is eventually periodic with iso-period 1.

Proof. Let *G* be a complete n-partite graph with $|V_i| \ge 2$ for each i^{th} partition. Any two vertices v_i and v_j in *G* are adjacent in B(G) if and only if they are in the same partition. Therefore B(G) is a disconnected graph with each component complete. By the definition of boundary graph, $B^2(G)$ is complete. By Theorem 2.1, *G* is eventually periodic with isoperiod 1.

Proposition 3.8: Every path P_n , $n \ge 3$ is eventually periodic with iso-period 1.

Proof. Let $v_1, v_2...v_n$ be a path on *n* vertices. Since the end vertices are complete, $B(P_n) \in F_{12}$. Further $v_2, v_3...v_{n-1}$ are non-adjacent vertices of eccentricity 2 in $B(P_n)$ and $B^2(P_n) = K_n$. Hence by Theorem2.1, P_n is eventually periodic with iso-period 1.

Lemma 3.9: A graph $G \in F_{12}$ is eventually periodic with iso-period 1 if and only if either $N(u) - \{v\} \subseteq N(v) - \{u\}$ or $N(v) - \{u\} \subseteq N(u) - \{v\}$ for any two adjacent vertices u and v of G.

Proof. Let $G \in F_{12}$. Assume for any two adjacent vertices u and v of G, either $N(u) - \{v\} \subseteq N(v) - \{u\}$ or $N(v) - \{u\} \subseteq N(u) - \{v\}$. Then by Theorem 2.2, $B(G) = K_n$. Therefore $B^2(G) = B(B(G)) = B(K_n) \cong K_n$ implies G is eventually periodic with iso-period 1.

Conversely, assume $G \in F_{12}$ is eventually periodic. Suppose for any two adjacent vertices neither $N(u) - \{v\} \subseteq N(v) - \{u\}$ nor $N(v) - \{u\} \subseteq N(u) - \{v\}$. This implies $uv \notin B(G)$. Therefore non-adjacent vertices in *G* are adjacent in B(G) together with the full degree vertices in *G* continue to have the same degree in B(G). Hence $B(G) \in F_{12}$. With the assumption of the condition mentioned for adjacent vertices, $B^2(G) \cong G$, implies *G* is periodic which is a contradiction.

Lemma 3.10: If G is not a boundary graph, then G is eventually periodic.

Proof. Since G is not a boundary graph, there is no graph H such that $B(H) \cong G$. Therefore for any m, $B^m(H) \neq G$, $m \ge 1$ and thus G is not a periodic graph. Hence by proposition 3.1, G is eventually periodic.

Lemma 3.11: Let G be a disconnected graph. If G has at least one isolated vertex, then G is eventually periodic.

Proof. Suppose that G has at least one isolated vertex, then by Theorem 2.4, G is not a boundary graph. Hence by Lemma 3.10, G is eventually periodic. \Box

Lemma 3.12: Let $G \in F_4$ without isolated vertices. If \overline{G} without complete vertices has the following properties

- (i) neither $N(u) \{v\} \subseteq N(v) \{u\}$ nor $N(v) \{u\} \subseteq N(u) \{v\}$ for any two adjacent vertices u and v of G.
- (ii) either $N_k(u) = \phi$ or $N_k(v) = \phi$ for any two non-adjacent vertices u and v of G, where k = d(u, v) + 1, then G is periodic.

Proof. With the above assumption by Theorem 2.5, *G* is a boundary graph. Then there exists a graph *H* such that $B(H) \cong G$. Since *G* has *n* vertices, we can find a graph in the set of all graphs with n vertices such that $B^m(G) \cong G$ for some least positive integer *m*. Therefore *G* is periodic.

Lemma 3.13: Let *G* be a disconnected graph with at least one complete component. If for any two adjacent vertices *u* and *v* in *B*(*G*), either $N(u) - \{v\} \subseteq N(v) - \{u\}$ or $N(v) - \{u\} \subseteq N(u) - \{v\}$ then, *G* is eventually periodic with iso-period 1.

Proof. Let G be a disconnected graph with at least one complete component. Then $B(G) \in F_{12}$. Since for any two adjacent vertices u and v in B(G), either

 $N(u) - \{v\} \subseteq N(v) - \{u\}$ or $N(v) - \{u\} \subseteq N(u) - \{v\}$, $B^2(G)$ is complete. Now, consider $B^{3}(G) = B(B^{2}(G)) = K_{n} \cong B^{2}(G)$. Hence G is eventually periodic with iso-period 1.

Open Problem 3.14: Characterize all disconnected periodic graphs in which each component is non-complete.

Theorem 3.15: Let G be a connected graph. If the following conditions hold in two successive iterations in $B^k(G)$, $K \ge 1$

- (i) No complete vertex
- (ii) neither $N(u) \{v\} \subseteq N(v) \{u\}$ nor $N(v) \{u\} \subseteq N(u) \{v\}$ for any two adjacent vertices *u* and *v*.

(iii) either $N_k(u) = \phi$ or $N_k(v) = \phi$ for any two non-adjacent vertices u and v

where k = d(u, v) + 1, then G is eventually periodic with iso-period 2.

Proof. Suppose two successive iterations in $B^k(G)$, $K \ge l$ satisfies (i), (ii) and (iii), then by Theorem 2.3, $B^k(G) \cong (\overline{B^{k-1}(G)})$ and $B^{k+1}(G) \cong (\overline{B^k(G)})$. Consider,

 $B^{k+1}(G) \cong (\overline{B^k(G)}) \cong \overline{(B^{k-1}(G))} = B^{k-1}(G)$. This proves that G is eventually periodic with iso-period 2.

From the above theorem it is clear that, If G and B(G) holds the conditions in Theorem 3.15 then G is periodic with iso-period 2.

Remark 3.16: There are some graphs in F_{22} which does not satisfies the condition mentioned in Theorem 3.15, but they are eventually periodic with iso-period 2. The following example illustrates the above remark.

Fig. 4. The graph G.

The graph mentioned in Fig. 4 does not satisfy the condition in Theorem 3.15 but it is eventually periodic with iso-period 2.

Conjecture 3.17: We have observed, but not proven that a self centered graph of radius two is eventually periodic with iso-period 2.

Lemma 3.18: Let G be a connected graph .If \overline{G} has the following properties

 \square

(i) G has no complete vertex.

- (ii) neither $N(u) \{v\} \subseteq N(v) \{u\}$ nor $N(v) \{u\} \subseteq N(u) \{v\}$ for any two adjacent vertices u and v of \overline{G} .
- (iii) either $N_k(u) = \phi$ or $N_k(v) = \phi$ for any two non-adjacent vertices u and v of \overline{G} , where k = d(u, v) + 1, with $B(G) \cong \overline{G}$, then G is periodic with iso-period 2.

Proof. Since \overline{G} has the properties (i), (ii) and (iii) by Theorem 2.3, $B(\overline{G}) \cong G$.

 $B^2(G) = B(B(G)) \cong B(\overline{G}) \cong G$ implies that G is periodic with iso-period 2.

Lemma 3.19: If G is a periodic graph with iso-period m>1 and if \overline{G} has the following properties

- (i) \overline{G} has no complete vertex.
- (ii) neither $N(u) \{v\} \subseteq N(v) \{u\}$ nor $N(v) \{u\} \subseteq N(u) \{v\}$ for any two adjacent vertices u and v of \overline{G} .
- (iii) either $N_k(u) = \phi$ or $N_k(v) = \phi$ for any two non-adjacent vertices u and v of \overline{G} , where k = d(u, v) + 1, then \overline{G} is eventually periodic with iso-period m.

Proof. By hypothesis $B^m(G) \cong G$. Then there exists a graph $H = B^{m-1}(G)$ such that $B(H) \cong B(B^{m-1}(G)) \cong B^m(G) \cong G$. This implies G is a boundary graph. By Theorem 2.3 $B(\overline{G}) \cong G$. Consider $B^m(G) \cong G$ implies $B^m(B(\overline{G})) \cong B(\overline{G})$. Therefore $B^{m+1}(\overline{G}) \cong B(\overline{G})$. Hence \overline{G} is eventually periodic with iso-period m.

Theorem 3.20: A graph G is eventually periodic if and only if one of the following holds

- (i) *G* is a complete n-partite graph with $|V_i| \ge 2$ for each i^{th} partition.
- (ii) $G \in F_{12}$ and for any two adjacent vertices u and v in G either $N(u) \{v\} \subseteq N(v) \{u\}$ or $N(v) \{u\} \subseteq N(u) \{v\}$.
- (iii) Any two successive iterations in B^k(G), k≥1 holds the following conditions
 (a) No complete vertex
 - (b) neither $N(u) \{v\} \subseteq N(v) \{u\}$ nor $N(v) \{u\} \subseteq N(u) \{v\}$ for any two adjacent vertices u and v.
 - (c) either $N_k(u) = \phi$ or $N(v) = \phi$ for any two non-adjacent vertices u and v where k = d(u, v) + 1.
- (iv) *G* be a disconnected graph with at least one isolated vertex.
- (v) Let G be a disconnected graph with at least one component complete. If for any two adjacent vertices u and v in B(G), either N(u) {v} ⊆ N(v) {u} or N(v) {u} ⊆ N(u) {v}.

Proof. If (i) holds, then by Observation 3.7, G is eventually periodic. If (ii) holds, then by Lemma 3.9, G is eventually periodic. If (iii) holds true, by Theorem 3.15 G is eventually

П

periodic .If (iv) holds, by Lemma 3.11 G is eventually periodic. If (v) holds, then by Lemma 3.13 G is eventually periodic.

Conversely, Suppose *G* is eventually periodic. Assume that (i), (iii), (iv) and (v) do not hold. Now we have to prove that (ii) definitely holds. Suppose this is not. Let $G \in F_{12}$ and for any two adjacent vertices *u* and *v* in *G* neither $N(u) - \{v\} \subseteq N(v) - \{u\}$ nor $N(v) - \{u\} \subseteq N(u) - \{v\}$. This implies $uv \notin B(G)$. Therefore non-adjacent vertices in *G* are adjacent in B(G) together with the full degree vertices in G continue to have the same degree in B(G). Hence $B(G) \in F_{12}$. With the assumption of the condition mentioned for adjacent vertices, $B^2(G) \cong G$. implies *G* is periodic which is a contradiction.

Acknowledgments

The authors are thankful to the referee for useful suggestions.

References

- 1. F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley Reading, 1990).
- J. Gimbert and N. Lopez, Bull. Inst. Comb. Appl. 56, 19 (2009). http://web.udl.es/usuaris/p4088280/research/abs_GLMR08.html
- 3. J. Gimbert, M. Miller, F. Ruskey, and J. Ryan, Bull. Inst. Comb. Appl. **45**, 41 (2005). <u>http://www.cs.uvic.ca/~ruskey/Publications/Eccentric/Eccentric.pdf</u>.
- 4. K. M. Kathiresan. G. Marimuthu, Ars Combin. 96, 353 (2010).
- 5. K. M. Kathiresan. G. Marimuthu, S.Arockiaraj, Bull. Inst. Comb. Appl. 57, 21 (2009).
- 6. G. Marimuthu and M.S. Saraswathy, submitted to Util. Math (2013).