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Abstract

The object of this paper is to introduce a perngitin-derivation in al-near-ring. We
obtain the conditions for a prinienear-ring to be a commutativering.

Keywords; '-near-ring; Primé -near-ring; CommutativE-ring; Permuting tri-derivation.

© 2013 JSR Publications. ISSN: 2070-0237 (Prirty;®0245 (Online). All rights reserved.
doi: http://dx.doi.org/10.3329/jsr.v5i2.13478 J. Sci. Re5.(2), 275-281 (2013)

1. Introduction

The derivations in near-rings have been introdubgdBell and Mason [1]. They
investigated some basic properties of derivationsaar-rings. Then Asci [2] obtained
some commutativity conditions forfanear-ring with derivations. Some characterizations
of I'-near-rings and some regularity conditions wereaioled by Cho [3]. Kazaz and
Alkan [4] introduced the notion of two-sidel-o-derivation of al-near-ring and
investigated the commutativity of prime and semmyil -near-rings. Uckuret al. [5]
worked on primd -near-rings with derivations and they investigateel conditions for a
I"-near-ring to be commutative.

In this paper, the notion of a permuting tri-detiea in al -near-ring is introduced.
We investigate the conditions for a primaear-ring to be a commutativering.

2. Preliminaries

A I-near-ring is a tripleR, +,I") where
() (R, +)is agroup (not necessarily abelian),
(i) I is a non-empty set of binary operationsFosuch that for eactlln, (R, +, a) is

a left near-ring.
(i) xa(yp2) = (Xay)Bz for all x, y, ZOR and o, BOI .
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Exactly speaking, it is &ft -near-ring because it satisfies the left distributive law.

We will use the word -near-ring to mearleft '-near-ring. For al-near-ringR, the seR,
={xOR: Ouox = 0,00} is called thezero-symmetric part of R. A [-near-ringR is said to
be zero-symmetric if R = R,. Throughout this notdR will be a zero-symmetri€-near-ring
andR is calledprime if XFRI'y = {0} impliesx = 0 ory = 0. Recall thaR is calledn-
torsion-free, wheren is a positive integer, ifix = 0 impliesx = 0 for allx(OR. The symbol
C(R) will represent the multiplicative center Bf that is,C(x) = {xOR : xay = yax for all
yOR, adr}. For xOR, the symbolIC(x) will denote the centralizer ofin R. As usual, for
X, YOR, oI, [X, Y], will denote the commutatowy — yax, while , y) will indicate the
additive-group commutator+y —x —y. An additive mag : R - Ris called aderivation
if the Leibniz rule day) = d)ay + xad(y) holds for allx, yOR, «OI". By abi-derivation
we mean a bi-additive mdp : RxR - R (i.e., D is additive in both arguments) which
satisfies the relatiord(xay, 2) = D(X, 2ay + xaD(y, 2) andD(X, yoz) = D(X, y)az + yaD(X,
2) for all x, y, ZOR, adr". Let D be symmetric, that i)(x, y) = D(y, X) for all x, yOR. The
mapd : R - Rdefined byd(x) = D(x, x) for all xOR is called thdrace of D. A mapF : R
x Rx R - Ris said to bgermuting if the equatior(xi, Xz, X3) = F(Xx1), X¢2), Xx3)) holds
for all x;, x5, Xs[0R and for every permutatiorvfl), 7£2), 7£3)}.

3. Permuting Tri-derivations and Commutativity

A mapf: R - Rdefined byf(x) = F(x, x, X) for all xXOR, whereF : Rx Rx R - Ris a
permuting map, is called theace of F. It is obvious that, in the cage: Rx Rx R - Ris
a permuting map which is also tri-additive (i.edd#ive in each argument), the trafcef
F satisfies the relatiof(x +y) =f(X) + 2F(x, X, ¥) + F(X, ¥, ¥) + F(X, X, ¥) + 2F(X, v, ) +
f(y) for all x, yOR. Since we hav&(0,y, 2 =F(0 + 0,y, 2 = F(0,y, 2) + F(0, Y, 2) for all
y, ZOR, we obtainF(0,y, 2) = 0 for ally, ZOR. Hence we get 0 E(0,Y, 2 =F(X—X, Y, 2) =
F(x, ¥, 2 + F(=%, ¥, 2 and so we see th&(-X, Yy, 2 = —-F(x, Y, 2 for all x, y, Z[OR. This
tells us thaf is an odd function.

A tri-additive map D R x R x R - R will be called atri-derivation if the relations
D(X10%z, Y, 2) = D(Xq, Y, Daxz + X10D(Xz, Y, 2), D(X, Y102, 2) = D(X, Y1, 2)ayz + y10D(X, Y2, 2)
andD(x, y, z0z) = D(X, ¥, z1)az, + z70D(X, Y, 2) are fulfilled for allx, y, z, x;, yi, zOR, i =
1,2,a0r.

We need the following lemmas to obtain our maimulitss

Lemma 3.1 [6, Lemma 2.3]Let R be a prime I'- near-ring. If C(R) — {0} contains an
element z for which z+ zZOC(R), then (R, +) isabdlian.

Lemma 3.2 [7, Lemma 2.2]Let R be a 3!-torsion free /~near-ring. Suppose that there
exists a permuting tri-additive map F : R x R x R - R such that f(x) = 0 for all xOR,
wheref isthe trace of F. Then we have F = 0.

Lemma 3.3. Let R be a 3!-torsion free prime I'-near-ring and let XOOR. Suppose that there
exists a nonzero permuting tri-derivation D : R X R x R - R such that xad(y) = Ofor all
yOR, o, where d isthe trace of D. Then we have x = 0.
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Proof. Since we havel(y + 2) = d(y) + 2D(y, Y, 2) + D(y, z 2 + D(y, ¥, 2 + 2D(y, z, 2) +
d(2) for ally, ZOR, o', the hypothesis gives

2xaD(y, Y, 2) + xaD(y, z, 2) + xaD(y, Y, 2) + 2xaD(y, z, 2) = 0 for ally, ZOR, a00". (1)
Settingy = -y in (1), it follows that
2xaD(y, Y, 2) — xaD(y, z, 2) + xaD(y, Y, 2) — 2xaD(y, z, 2) = 0 for ally, zZOR, .  (2)

On the other hand, for ayyzZR, d(z+y) =d(2) + 2D(z, z,y) + D(z v, y) + D(z, z y)
+ 2D(z y,y) +d(y) and so, by the hypothesis, we have

2xaD(y, z, 2) + xaD(y, Y, 2) + xaD(y, z, 2) + 2xaD(y, y, 2 = 0 for allx, y, ZOR, adr", (3)

SinceD is permuting. Comparing (1) with (2), we gewD(y, z, 2) + xaD(y, y, 2) +
xaD(y, z, 2) = xaD(y, ¥, 2 — 3xaD(y, z, 2) which means thatxaD(y, z, 2) + xaD(y, v, 2) +
xaD(y, z, 2) + 2xaD(y, Yy, 2 =xaD(y,Y, 2 — 3xaD(y, z, 2) + 2xaD(y, y, 2) for all x, y, ZOR,
all.

Now, from (3), we obtain

xaD(y, Y, 2 — 3xaD(y, z, 2) + 2XaD(y, y, 2) = 0 for allx, y, zZOR, or". 4)
Takingy = -yin (4) leads to

xaD(y, Y, 2) + 3xaD(y, z, 2 + 2aD(y, Y, 2 = 0 for allx, y, ZOR, ar". (5)
Combining (4) and (5), we obtain

xaD(y, z, 2) = 0 for allx, yOR, oI, (6)

sinceRis 6-torsion free.
Replacingz =z + wto linearize (6) and using the conditions show that

xaD(w, y, 2) = 0 for allw, X, y, zOR, oOr". (7

Substitutingwpv for win (7), we getxawpD(v, y, 2) = O for allv, w, x, y, zOR, a, BOI".
SinceRis prime and # 0, we arrive ak = 0. This completes the proof of the theorem.

Lemma 3.4. Let R be a N-near-ring and let D : R x R x R— R be a permuting tri-
derivation. Then we have [D(x, z, W)ay + XaD(y, z, W)]Bv = D(X, z, W)aypv + xaD(y, z,
w)Bv for all v, w, X, y, ZOR, a, BOT".

Proof. Since we hav®(xay, z, w) = D(X, z, W)ay + xaD(y, z, w) for all w, x, y, ZOR, o0,
the associative law gives

D((xay)Bv, z, w) = D(xay, z, w)Bv + XaypD(v, z, w)

= [D(X, z, w)ay + XaD(y, z, W)]Bv + xaypD(v, z, w) for allv, w, x,y, ZOR, o, OC  (8)

and

D(xa(ypv), z, W) = D(X, Z, W)aypv + xaD(YBV, z, W)

= D(X, z, w)aypv + xa[D(y, z, W)Bv + yBD(v, z, W)]

=D(X, z, W)aypVv + xaD(y, zw)Bv + xayBD(v, z, w) for allv, w, X, y, ZOR, o, pOC  (9)
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Comparing (8) and (9), we see th&(X, z, w)ay + xaD(y, z, W)]Bv = D(X, z, W)aypv +
xaD(y, z, w)Bv for all v, w, X, y, ZOR, a, BOT.

The proof of the lemma is complete.

Now we are ready to prove our main results in skigtion.

Theorem 3.5. Let R be a 3!-torsion free prime I'- near-ring. Suppose that there exists a
nonzero permuting tri-derivation D : R x R x R— R such that D(x, y, 20C(R) for all x, y,
ZOR. Then Risa commutative I'-ring.

Proof. Assume thaD(x, y, 200 C(R) for all x, y, ZOR. SinceD is nonzero, there exis,
Yo, 2R such thaD(xo, Yo, 20)JC(R) —{0} andD(Xo, Yo, 20) + D(Xo, Yo, Z0) = D(Xo, Yo, 0 +
7)UC(R).

So R, +) is abelian by Lemma 3.1.

Since the hypothesis implies that

wBD(X, Y, 2 =D(x, y, 2pw for all w, x, y, ZOR, pOr, {10

we replacex by xav in (10) to getwg[D(X, y, 2av + XaD(v, y, 2] = [D(X, ¥, Z)av + xaD(v,
Yy, 2]pw and thus, from Lemma 3.4 and the hypothesis, ibfied thatD(x, y, 2pwav +
D(v, y, 2awpx = D(X, ¥, 2avpw + D(v, y, 2)Bxaw which means that

D(x, Y, 2B[w, V], =D(v, y, 2)B[x, W], for all v, w, X, y, zZO R, a, BOI". (12)

Setting d()) in place ofvin (11) and using dj] C(R) for all xR, by the hypothesis,
we obtain
D(d(u), y, 2B[x, W], = 0 for allu, w, X, y, ZOR, o, pOI. (12)

The substitutiorvax for x in (12) yields thaD(d(u), y, 2)pva[x, w], = 0 for allu, v, w,
XY, ZOR, o, BOr. SinceR is prime, we obtain eithéd(d(u), y, 2 = 0 or [, w], = 0 for all
u,w, Xy, ZOR, alrl.

Assume that

D(d(u), y, 2 = 0 for allu, y, Z0OR. (13)

Let us takeu + x instead ofu in (13). Then we obtain

0=D(d(u +X),Y, 2 =D(d(u) + dx) + 3D(u, u, X) + 3D(u, X, X), Y, 2

=3P(D(uy, u, X),y, 2 + 3D(D(U, X, X), Y, 2,
that is,
D(D(u, u, X), Y, 2 + D(D(u, X, X), ¥, 2) = 0 for allv, w, x, yOOR. (14)

Settingu = —u in (14) and then comparing the result with (14),s8e that
D(D(u, u, X), y, 2 = 0 for allu, x, y, zZOOR. (15)

SubstitutinguAx for x in (15) and employing (13) give the relatidu)AD(x, v, 2) +
D(u, y, 2AD(u, u, X) = 0 and so it follows from the hypothesis that

d(u)AD(X, Y, 2 + D(u, u, )AD(u, y, 2) = 0 for allu, x, y, Z0O R, AOII". (16)
We putu =y =xin (16) to obtain,
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d(X)AD(x, x, w) = 0 for allw, xOR, ALCI. a7

TakingwAx in substitute fomw in (17) yieldsd(x)AwAd(x) = 0, for allAdIl", and so the
primeness oRimplies that d{) = O for allIx(OR. Hence, by Lemma 3.2, we hale= 0
which is a contradiction. SR is a commutativé -ring. This proves the theorem.

Theorem 3.6. Let R be a 3!-torsion free primE-near-ring. Suppose that there exists a
nonzero permuting tri-derivatiod : R x R x R — R such thatl(x), d(x) + d(x)00C(D(u, v,
w)) for all u, v, w, X(OR, where d is the trace @. Then R is a commutative-ring.

Proof. Assume that
d(x), d(x) + d(x)C(D(u, v, w)) for all u, v, w, X(OR. (18)

From (18), we get
D(u +t, v, wa(d(x) + d(x))
= (d(x) +d(x))aD(u +t, v, w)
= (d(x) +d(x))a[D(u, v, w) + D(t, v, w)]
= (d(x) +d(x))aD(u, v, w) + (d(x) + d(x))aD(t, v, w)
= d(X)aD(u, v, w) + d(x)aD(u, v, w) +d(xX)aD(t, v, w) + d(X)aD(t, v, w)
=d(X)a[D(u, v, w) + D(u, v, w) + D(t, v, w) + D(t, v, W)]
=[D(u, v, w) + D(u, v, w) + D(t, v, w) + D(t, v, W)]ad(x) for all t, u, v, w, x(OR, oI,
19)
and
D(u +t, v, wa(d(x) + d(x))
=D(u+t, v, wad(x) + D(u +t, v, wyad(x)
=[D(u, v, w) + D(t, v, W)]ad(x) + [D(u, v, w) + D(t, v, W)]ad(X)
=[D(u, v, w) + D(t, v, w) + D(u, v, w) + D(t, v, w)]ad(x) for all t, u, v, w, x(OR, oI".
(20)
Comparing (19) and (20), we obtad{((u, t), v, w)ad(x) = O for allt, u, v, w, XOR,
arl. Hence it follows from Lemma 3.3 that

D((u, t), v, w) = 0 for allt, u, v, wOOR. (21)
We substitutelpz for u andupt for tin (21) to get
0 =D(up(z t), v, w) =D(u, v, w)B(z, t) + upD((z, t), v, w) = D(u, v, w)B(z, t), BOI.

That is,
D(u, v, w)B(z t) = 0 for allt, u, v, w, ZOR, pOI. (22)

Lettingz=sdz in (22) and comparing the results (22) we obtain,
D(u, v, W)psd(z, t) = 0 for alls, t, u, v, w, ZOR, B, 8. (23)

SinceD # 0, we conclude, from (23) and the primenesR,ahat ¢, t) = 0 is fulfilled
for all't, ZOR. Therefore R, +) is abelian.
By the hypothesis, we know that
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[d(X), D(u, v, W], = O for allu, v, w, xOR, oI". (24)

Hence if we lex = x + y in (24) and sinced(x + y) =d(xX) + 2D(x, X, y) + D(X, ¥, y) +
D(x, x, y) + 2D(x, v, y) + d(y), then we deduce from (24) that Dgk, x, y), D(u, v, w)], +
3[D(X, ¥, ), D(u, v, W], = 0 for allu, v, w, x, yOR, a[I'".

SinceR is 3-torsion-free, we obtain,

[D(x, X, ), D(u, v, W)], + [D(X, ¥, ), D(u, v, W], = O for allu, v, w, x, yOR, a0F. (25)
Settingy = -y in (25) and comparing the result with (25), we abta

[D(X, Y, y), D(u, v, w)], = 0 for allu, v, w, x, yOR, oI". (26)

Replacingy by y + zin (26) and using (26), we havB(, v, ), D(u, v, W], = 0, a0,
sinceD is permuting, i.e.,

D(X, ¥, 2aD(u, v, w) = D(u, v, WyaD(X, Y, 2) for all u, v, w, X, y, ZOR, a[I". 27)
Takingupt instead olu in (27), we obtain,

D(u, v ,w)ptaD(X, y, 2) — D(X, ¥, Z)aD(u, v, w)pt + upD(t, v, w)aD(X, Y, 2)
- D(X, Yy, 2puaD(t, v, w) = 0 for allt, u, v, w, X, y, ZOR, o, OI. (28)

Substitutingd(u) for u in (28) and then utilizing the hypothesis and (2v§,get
D(d(u), v, w)B[t, D(X, Y, 2], = 0 for allt, u, v, w, X, y, ZUR, o, BOI". (29)

Let us write in (29wdsinstead ofv. Then we hav®(d(u), v, w)dsB[t, D(X, y, 2)], = 0
foralls t,u, v, w, X, y, ZOR, a, B, 80r. SinceRis prime, we arrive at eith&(d(u), v, w)
=0orf DXV, 2], =0 forallt,u,v,w, X, y, ZOR, adr. As in the proof of Theorem 3.5,
the case whem(d(u), v, w) = 0 holds for allu, v, wCIR leads to the contradiction.
Consequently, we arrive &t P(x, y, 2], = 0 for allt, x, y, ZOR ,a0r, i.e,D(x, y, 20C(R)
for all x, y, ZOR. Therefore, Theorem 3.5 yields tHatis a commutativd -ring which
completes the proof.
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