Commutativity in Prime Γ-Near-Rings with Permuting Tri-derivations

K. K. Dey ${ }^{*}$ and A. C. Paul
Department of Mathematics, Rajshahi University, Rajshahi-6205, Bangladesh
Received 25 January 2013, accepted in final revised form 21 March 2013

Abstract

The object of this paper is to introduce a permuting tri-derivation in a Γ-near-ring. We obtain the conditions for a prime Γ-near-ring to be a commutative Γ-ring.

Keywords; Γ-near-ring; Prime Γ-near-ring; Commutative Γ-ring; Permuting tri-derivation. © 2013 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: http://dx.doi.org/10.3329/jsr.v5i2.13478 J. Sci. Res. 5 (2), 275-281 (2013)

1. Introduction

The derivations in near-rings have been introduced by Bell and Mason [1]. They investigated some basic properties of derivations in near-rings. Then Asci [2] obtained some commutativity conditions for a Γ-near-ring with derivations. Some characterizations of Γ-near-rings and some regularity conditions were obtained by Cho [3]. Kazaz and Alkan [4] introduced the notion of two-sided Γ - α-derivation of a Γ-near-ring and investigated the commutativity of prime and semiprime Γ-near-rings. Uckun et al. [5] worked on prime Γ-near-rings with derivations and they investigated the conditions for a Γ-near-ring to be commutative.

In this paper, the notion of a permuting tri-derivation in a Γ-near-ring is introduced. We investigate the conditions for a prime Γ-near-ring to be a commutative Γ-ring.

2. Preliminaries

A Γ-near-ring is a triple $(R,+, \Gamma)$ where
(i) $(R,+)$ is a group (not necessarily abelian),
(ii) Γ is a non-empty set of binary operations on R such that for each $\alpha \in \Gamma,(R,+, \alpha)$ is a left near-ring.
(iii) $x \alpha(y \beta z)=(x \alpha y) \beta z$, for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$.

[^0]Exactly speaking, it is a left Γ-near-ring because it satisfies the left distributive law. We will use the word Γ-near-ring to mean left Γ-near-ring. For a Γ-near-ring R, the set R_{0} $=\{x \in R: 0 \alpha x=0, \alpha \in \Gamma\}$ is called the zero-symmetric part of R. A Γ-near-ring R is said to be zero-symmetric if $R=R_{0}$. Throughout this note, R will be a zero-symmetric Γ-near-ring and R is called prime if $x \Gamma R \Gamma y=\{0\}$ implies $x=0$ or $y=0$. Recall that R is called n -torsion-free, where n is a positive integer, if $n x=0$ implies $x=0$ for all $x \in R$. The symbol $C(R)$ will represent the multiplicative center of R, that is, $C(x)=\{x \in R: x \alpha y=y \alpha x$ for all $y \in R, \alpha \in \Gamma\}$. For $x \in R$, the symbol $C(x)$ will denote the centralizer of x in R. As usual, for $x, y \in R, \alpha \in \Gamma,[x, y]_{\alpha}$ will denote the commutator $x \alpha y-y \alpha x$, while (x, y) will indicate the additive-group commutator $x+y-x-y$. An additive map $d: R \rightarrow R$ is called a derivation if the Leibniz rule $\mathrm{d}(x \alpha y)=\mathrm{d}(x) \alpha y+x \alpha \mathrm{~d}(y)$ holds for all $x, y \in R, \alpha \in \Gamma$. By a bi-derivation we mean a bi-additive map $D: R \times R \rightarrow R$ (i.e., D is additive in both arguments) which satisfies the relations $D(x \alpha y, z)=D(x, z) \alpha y+x \alpha D(y, z)$ and $D(x, y \alpha z)=D(x, y) \alpha z+y \alpha D(x$, z) for all $x, y, z \in R, \alpha \in \Gamma$. Let D be symmetric, that is, $D(x, y)=D(y, x)$ for all $x, y \in R$. The map $d: R \rightarrow R$ defined by $d(x)=D(x, x)$ for all $x \in R$ is called the trace of D. A map $F: R$ $\times R \times R \rightarrow R$ is said to be permuting if the equation $F\left(x_{1}, x_{2}, x_{3}\right)=F\left(x_{\pi(1),}, x_{\pi(2),} x_{\pi(3)}\right)$ holds for all $x_{1}, x_{2}, x_{3} \in R$ and for every permutation $\{\pi(1), \pi(2), \pi(3)\}$.

3. Permuting Tri-derivations and Commutativity

A map $f: R \rightarrow R$ defined by $f(x)=F(x, x, x)$ for all $x \in R$, where $F: R \times R \times R \rightarrow R$ is a permuting map, is called the trace of F. It is obvious that, in the case $F: R \times R \times R \rightarrow R$ is a permuting map which is also tri-additive (i.e., additive in each argument), the trace f of F satisfies the relation $f(x+y)=f(x)+2 F(x, x, y)+F(x, y, y)+F(x, x, y)+2 F(x, y, y)+$ $f(y)$ for all $x, y \in R$. Since we have $F(0, y, z)=F(0+0, y, z)=F(0, y, z)+F(0, y, z)$ for all $y, z \in R$, we obtain $F(0, y, z)=0$ for all $y, z \in R$. Hence we get $0=F(0, y, z)=F(x-x, y, z)=$ $F(x, y, z)+F(-x, y, z)$ and so we see that $F(-x, y, z)=-F(x, y, z)$ for all $x, y, z \in R$. This tells us that f is an odd function.

A tri-additive map D : $R \times R \times R \rightarrow R$ will be called a tri-derivation if the relations $D\left(x_{1} \alpha x_{2}, y, z\right)=D\left(x_{1}, y, z\right) \alpha x_{2}+x_{1} \alpha D\left(x_{2}, y, z\right), D\left(x, y_{1} \alpha y_{2}, z\right)=D\left(x, y_{1}, z\right) \alpha y_{2}+y_{1} \alpha D\left(x, y_{2}, z\right)$ and $D\left(x, y, z_{1} \alpha z_{2}\right)=D\left(x, y, z_{1}\right) \alpha z_{2}+z_{1} \alpha D\left(x, y, z_{2}\right)$ are fulfilled for all $x, y, z, x_{i}, y_{i}, z_{i} \in R, i=$ $1,2, \alpha \in \Gamma$.

We need the following lemmas to obtain our main results.
Lemma 3.1 [6, Lemma 2.3] Let R be a prime Γ - near-ring. If $C(R)-\{0\}$ contains an element z for which $z+z \in C(R)$, then $(R,+)$ is abelian.
Lemma 3.2 [7, Lemma 2.2] Let R be a 3!-torsion free Γ-near-ring. Suppose that there exists a permuting tri-additive map $F: R \times R \times R \rightarrow R$ such that $f(x)=0$ for all $x \in R$, where f is the trace of F. Then we have $F=0$.
Lemma 3.3. Let R be a 3 !-torsion free prime Γ-near-ring and let $x \in R$. Suppose that there exists a nonzero permuting tri-derivation $D: R \times R \times R \rightarrow R$ such that $x \alpha d(y)=0$ for all $y \in R, \alpha \in \Gamma$, where d is the trace of D. Then we have $x=0$.

Proof. Since we have $d(y+z)=d(y)+2 D(y, y, z)+D(y, z, z)+D(y, y, z)+2 D(y, z, z)+$ $d(z)$ for all $y, z \in R, \alpha \in \Gamma$, the hypothesis gives
$2 x \alpha D(y, y, z)+x \alpha D(y, z, z)+x \alpha D(y, y, z)+2 x \alpha D(y, z, z)=0$ for all $y, z \in R, \alpha \in \Gamma$.
Setting $y=-y$ in (1), it follows that
$2 x \alpha D(y, y, z)-x \alpha D(y, z, z)+x \alpha D(y, y, z)-2 x \alpha D(y, z, z)=0$ for all $y, z \in R, \alpha \in \Gamma$.
On the other hand, for any $y, z \in R, d(z+y)=d(z)+2 D(z, z, y)+D(z, y, y)+D(z, z, y)$ $+2 D(z, y, y)+d(y)$ and so, by the hypothesis, we have
$2 x \alpha D(y, z, z)+x \alpha D(y, y, z)+x \alpha D(y, z, z)+2 x \alpha D(y, y, z)=0$ for all $x, y, z \in R, \alpha \in \Gamma,(3)$
Since D is permuting. Comparing (1) with (2), we get $2 x \alpha D(y, z, z)+x \alpha D(y, y, z)+$ $x \alpha D(y, z, z)=x \alpha D(y, y, z)-3 x \alpha D(y, z, z)$ which means that $2 x \alpha D(y, z, z)+x \alpha D(y, y, z)+$ $x \alpha D(y, z, z)+2 x \alpha D(y, y, z)=x \alpha D(y, y, z)-3 x \alpha D(y, z, z)+2 x \alpha D(y, y, z)$ for all $x, y, z \in R$, $\alpha \in \Gamma$.

Now, from (3), we obtain
$x \alpha D(y, y, z)-3 x \alpha D(y, z, z)+2 x \alpha D(y, y, z)=0$ for all $x, y, z \in R, \alpha \in \Gamma$.
Taking $y=-y$ in (4) leads to
$x \alpha D(y, y, z)+3 x \alpha D(y, z, z)+2 x \alpha D(y, y, z)=0$ for all $x, y, z \in R, \alpha \in \Gamma$.
Combining (4) and (5), we obtain
$x \alpha D(y, z, z)=0$ for all $x, y \in R, \alpha \in \Gamma$,
since R is 6-torsion free.
Replacing $z=z+w$ to linearize (6) and using the conditions show that
$x \alpha D(w, y, z)=0$ for all $w, x, y, z \in R, \alpha \in \Gamma$.
Substituting $w \beta v$ for w in (7), we get $x \alpha w \beta D(v, y, z)=0$ for all $v, w, x, y, z \in R, \alpha, \beta \in \Gamma$. Since R is prime and $D \neq 0$, we arrive at $x=0$. This completes the proof of the theorem.

Lemma 3.4. Let R be a Γ-near-ring and let $D: R \times R \times R \rightarrow R$ be a permuting triderivation. Then we have $[D(x, z, w) \alpha y+x \alpha D(y, z, w)] \beta v=D(x, z, w) \alpha y \beta v+x \alpha D(y, z$, $w) \beta v$ for all $v, w, x, y, z \in R, \alpha, \beta \in \Gamma$.

Proof. Since we have $D(x \alpha y, z, w)=D(x, z, w) \alpha y+x \alpha D(y, z, w)$ for all $w, x, y, z \in R, \alpha \in \Gamma$, the associative law gives
$D((x \alpha y) \beta v, z, w)=D(x \alpha y, z, w) \beta v+x \alpha y \beta D(v, z, w)$
$=[D(x, z, w) \alpha y+x \alpha D(y, z, w)] \beta v+x \alpha y \beta D(v, z, w)$ for all $v, w, x, y, z \in R, \alpha, \beta \in \Gamma$
and
$D(x \alpha(y \beta v), z, w)=D(x, z, w) \alpha y \beta v+x \alpha D(y \beta v, z, w)$
$=D(x, z, w) \alpha y \beta v+x \alpha[D(y, z, w) \beta v+y \beta D(v, z, w)]$
$=D(x, z, w) \alpha y \beta v+x \alpha D(y, z, w) \beta v+x \alpha y \beta D(v, z, w)$ for all $v, w, x, y, z \in R, \alpha, \beta \in \Gamma$

Comparing (8) and (9), we see that $[D(x, z, w) \alpha y+x \alpha D(y, z, w)] \beta v=D(x, z, w) \alpha y \beta v+$ $x \alpha D(y, z, w) \beta v$ for all $v, w, x, y, z \in R, \alpha, \beta \in \Gamma$.

The proof of the lemma is complete.
Now we are ready to prove our main results in this section.
Theorem 3.5. Let R be a 3!-torsion free prime Γ-near-ring. Suppose that there exists a nonzero permuting tri-derivation $D: R \times R \times R \rightarrow R$ such that $D(x, y, z) \in C(R)$ for all x, y, $z \in R$. Then R is a commutative Γ-ring.

Proof. Assume that $D(x, y, z) \in C(R)$ for all $x, y, z \in R$. Since D is nonzero, there exist x_{0}, $y_{0}, z_{0} \in R$ such that $D\left(x_{0}, y_{0}, z_{0}\right) \in C(R)-\{0\}$ and $D\left(x_{0}, y_{0}, z_{0}\right)+D\left(x_{0}, y_{0}, z_{0}\right)=D\left(x_{0}, y_{0}, z_{0}+\right.$ $\left.z_{0}\right) \in C(R)$.

So $(R,+)$ is abelian by Lemma 3.1.
Since the hypothesis implies that
$w \beta D(x, y, z)=D(x, y, z) \beta w$ for all $w, x, y, z \in R, \beta \in \Gamma$,
we replace x by $x \alpha v$ in (10) to get $w \beta[D(x, y, z) \alpha v+x \alpha D(v, y, z)]=[D(x, y, z) \alpha v+x \alpha D(v$, $y, z)] \beta w$ and thus, from Lemma 3.4 and the hypothesis, it follows that $D(x, y, z) \beta w \alpha v+$ $D(v, y, z) \alpha w \beta x=D(x, y, z) \alpha \nu \beta w+D(v, y, z) \beta x \alpha w$ which means that
$D(x, y, z) \beta[w, v]_{\alpha}=D(v, y, z) \beta[x, w]_{\alpha}$ for all $v, w, x, y, z \in R, \alpha, \beta \in \Gamma$.
Setting $\mathrm{d}(u)$ in place of v in (11) and using $\mathrm{d}(x) \in C(R)$ for all $x \in R$, by the hypothesis, we obtain
$D(\mathrm{~d}(u), y, z) \beta[x, w]_{\alpha}=0$ for all $u, w, x, y, z \in R, \alpha, \beta \in \Gamma$.
The substitution $v \alpha x$ for x in (12) yields that $D(\mathrm{~d}(u), y, z) \beta v \alpha[x, w]_{\alpha}=0$ for all u, v, w, $x, y, z \in R, \alpha, \beta \in \Gamma$. Since R is prime, we obtain either $D(\mathrm{~d}(u), y, z)=0$ or $[x, w]_{\alpha}=0$ for all $u, w, x, y, z \in R, \alpha \in \Gamma$.

Assume that
$D(\mathrm{~d}(u), y, z)=0$ for all $u, y, z \in R$.
Let us take $u+x$ instead of u in (13). Then we obtain

$$
\begin{aligned}
0 & =D(\mathrm{~d}(u+x), y, z)=D(\mathrm{~d}(u)+\mathrm{d}(x)+3 D(u, u, x)+3 D(u, x, x), y, z) \\
& =3 D(D(u, u, x), y, z)+3 D(D(u, x, x), y, z),
\end{aligned}
$$

that is,
$D(D(u, u, x), y, z)+D(D(u, x, x), y, z)=0$ for all $v, w, x, y \in R$.
Setting $u=-u$ in (14) and then comparing the result with (14), we see that
$D(D(u, u, x), y, z)=0$ for all $u, x, y, z \in R$.
Substituting $u \lambda x$ for x in (15) and employing (13) give the relation $d(u) \lambda D(x, y, z)+$ $D(u, y, z) \lambda D(u, u, x)=0$ and so it follows from the hypothesis that
$d(u) \lambda D(x, y, z)+D(u, u, x) \lambda D(u, y, z)=0$ for all $u, x, y, z \in R, \lambda \in \Gamma$.
We put $u=y=x$ in (16) to obtain,
$d(x) \lambda D(x, x, w)=0$ for all $w, x \in R, \lambda \in \Gamma$.
Taking $w \lambda x$ in substitute for w in (17) yields $d(x) \lambda w \lambda d(x)=0$, for all $\lambda \in \Gamma$, and so the primeness of R implies that $\mathrm{d}(x)=0$ for all $x \in R$. Hence, by Lemma 3.2, we have $D=0$ which is a contradiction. So R is a commutative Γ-ring. This proves the theorem.
Theorem 3.6. Let R be a 3 !-torsion free prime Γ-near-ring. Suppose that there exists a nonzero permuting tri-derivation $D: R \times R \times R \rightarrow R$ such that $d(x), d(x)+d(x) \in C(D(u, v$, $w)$) for all $u, v, w, x \in R$, where d is the trace of D. Then R is a commutative Γ-ring.

Proof. Assume that
$d(x), d(x)+d(x) \in C(D(u, v, w))$ for all $u, v, w, x \in R$.
From (18), we get
$D(u+t, v, w) \alpha(d(x)+d(x))$
$=(d(x)+d(x)) \alpha D(u+t, v, w)$
$=(d(x)+d(x)) \alpha[D(u, v, w)+D(t, v, w)]$
$=(d(x)+d(x)) \alpha D(u, v, w)+(d(x)+d(x)) \alpha D(t, v, w)$
$=\mathrm{d}(x) \alpha D(u, v, w)+d(x) \alpha D(u, v, w)+d(x) \alpha D(t, v, w)+d(x) \alpha D(t, v, w)$
$=d(x) \alpha[D(u, v, w)+D(u, v, w)+D(t, v, w)+D(t, v, w)]$
$=[D(u, v, w)+D(u, v, w)+D(t, v, w)+D(t, v, w)] \alpha d(x)$ for all $t, u, v, w, x \in R, \alpha \in \Gamma$,
and
$D(u+t, v, w) \alpha(d(x)+d(x))$
$=D(u+t, v, w) \alpha \mathrm{d}(x)+D(u+t, v, w) \alpha d(x)$
$=[D(u, v, w)+D(t, v, w)] \alpha d(x)+[D(u, v, w)+D(t, v, w)] \alpha \mathrm{d}(x)$
$=[D(u, v, w)+D(t, v, w)+D(u, v, w)+D(t, v, w)] \alpha d(x)$ for all $t, u, v, w, x \in R, \alpha \in \Gamma$.

Comparing (19) and (20), we obtain $D((u, t), v, w) \alpha d(x)=0$ for all $t, u, v, w, x \in R$, $\alpha \in \Gamma$. Hence it follows from Lemma 3.3 that
$D((u, t), v, w)=0$ for all $t, u, v, w \in R$.
We substitute $u \beta z$ for u and $u \beta t$ for t in (21) to get
$0=D(u \beta(z, t), v, w)=D(u, v, w) \beta(z, t)+u \beta D((z, t), v, w)=D(u, v, w) \beta(z, t), \beta \in \Gamma$.
That is,
$D(u, v, w) \beta(z, t)=0$ for all $t, u, v, w, z \in R, \beta \in \Gamma$.
Letting $z=s \delta z$ in (22) and comparing the results (22) we obtain,
$D(u, v, w) \beta \mathrm{s} \delta(z, t)=0$ for all $s, t, u, v, w, z \in R, \beta, \delta \in \Gamma$.
Since $D \neq 0$, we conclude, from (23) and the primeness of R, that $(z, t)=0$ is fulfilled for all $t, z \in R$. Therefore $(R,+)$ is abelian.

By the hypothesis, we know that
$[d(x), D(u, v, w)]_{\alpha}=0$ for all $u, v, w, x \in R, \alpha \in \Gamma$.
Hence if we let $x=x+y$ in (24) and since $d(x+y)=d(x)+2 D(x, x, y)+D(x, y, y)+$ $D(x, x, y)+2 D(x, y, y)+d(y)$, then we deduce from (24) that $3[D(x, x, y), D(u, v, w)]_{\alpha}+$ $3[D(x, y, y), D(u, v, w)]_{\alpha}=0$ for all $u, v, w, x, y \in R, \alpha \in \Gamma$.

Since R is 3-torsion-free, we obtain,
$[D(x, x, y), D(u, v, w)]_{\alpha}+[D(x, y, y), D(u, v, w)]_{\alpha}=0$ for all $u, v, w, x, y \in R, \alpha \in \Gamma$.
Setting $y=-y$ in (25) and comparing the result with (25), we obtain
$[D(x, y, y), D(u, v, w)]_{\alpha}=0$ for all $u, v, w, x, y \in R, \alpha \in \Gamma$.
Replacing y by $y+z$ in (26) and using (26), we have $[D(x, y, z), D(u, v, w)]_{\alpha}=0, \alpha \in \Gamma$, since D is permuting, i.e.,
$D(x, y, z) \alpha D(u, v, w)=D(u, v, w) \alpha D(x, y, z)$ for all $u, v, w, x, y, z \in R, \alpha \in \Gamma$.
Taking $u \beta t$ instead of u in (27), we obtain,
$D(u, v, w) \beta t \alpha D(x, y, z)-D(x, y, z) \alpha D(u, v, w) \beta t+u \beta D(t, v, w) \alpha D(x, y, z)$
$-D(x, y, z) \beta u \alpha D(t, v, w)=0$ for all $t, u, v, w, x, y, z \in R, \alpha, \beta \in \Gamma$.
Substituting $d(u)$ for u in (28) and then utilizing the hypothesis and (27), we get
$D(\mathrm{~d}(u), v, w) \beta[t, D(x, y, z)]_{\alpha}=0$ for all $t, u, v, w, x, y, z \in R, \alpha, \beta \in \Gamma$.
Let us write in (29) $w \delta s$ instead of w. Then we have $D(d(u), v, w) \delta s \beta[t, D(x, y, z)]_{\alpha}=0$ for all $s, t, u, v, w, x, y, z \in R, \alpha, \beta, \delta \in \Gamma$. Since R is prime, we arrive at either $D(d(u), v, w)$ $=0$ or $[t, D(x, y, z)]_{\alpha}=0$ for all $t, u, v, w, x, y, z \in R, \alpha \in \Gamma$. As in the proof of Theorem 3.5, the case when $D(d(u), v, w)=0$ holds for all $u, v, w \in R$ leads to the contradiction. Consequently, we arrive at $[t, D(x, y, z)]_{\alpha}=0$ for all $t, x, y, z \in R, \alpha \in \Gamma$, i.e, $D(x, y, z) \in C(R)$ for all $x, y, z \in R$. Therefore, Theorem 3.5 yields that R is a commutative Γ-ring which completes the proof.

Acknowledgements

The authors would like to express their sincere thanks to the referee for encouraging remarks and suggestions.

References DOI Ref. 17

1. H. E. Bell and G. Mason (Noth-Holland, Amsterdam, 1987) pp. 31-35.
2. M. Asci, Int. Math. Forum 2, 397 (2007).
3. Y. U. Cho, J. Korea Soc. Math. Educ. Ser B Pure Appl. Math. 8 (2) 145 (2001).
4. M. Kazaz and A. Alkan, Commun. Korean Math. Soc. 23 (4) 469 (2008).
http://dx.doi.org/10.4134/CKMS.2008.23.4.469
5. M. A. Ozturk, M. Sapanci and Y. B. Jun, East Asian Math. J. 15 (1) 105 (1999).
6. R. Raina, V. K. Bhat, and N. Kumari, Acta Math. Acad. Paedagogicae Nyiregyhaziensis 25165 (2009).
7. K. H. Park and Y. S. Jung, Commun. Korean Math. Soc. 25 (1) 1 (2010). http://dx.doi.org/10.4134/CKMS.2010.25.1.001
8. H. E. Bell and M. N. Daif, Acta. Math. Hungar. 66, 337 (1995). http://dx.doi.org/10.1007/BF01876049
9. H. E. Bell and G. Mason, Math. J. Okayama Univ. 34, 135 (1992).
10. J. Bergen, Canad. Math. Bull. 26 (3) 267 (1983). http://dx.doi.org/10.4153/CMB-1983-042-2
11. Y. U. Cho: Pusan Kyongnam Math. J. 121267 (1996).
12. I. N. Herstein, Canad. Math. Bull. 213369 (1978).
13. J. D. P. Meldrum, Res. Notes Math. 134 (Pitman, Boston-London-Melbourne, 1985) MR 88a:16068
14. G. Pilz, Near-ring, North-Holland Math. Studies, 23 (North-Holland, Amsterdam, 1983).
15. E. C. Posner, Proc. Amer. Math. Soc. 8, 1093 (1957). http://dx.doi.org/10.1090/S0002-9939-1957-0095863-0
16. Y. B. Jun, K. H. Kim, and Y. U. Cho, Soochow J. Math. 29 (3), 275 (2003).
17. K. K. Dey and A. C. Paul, J. Sci. Res. 4 (1) 33 (2012). http://dx.doi.org/10.3329/jsr.v4i1.7911
18. K. K. Dey and A. C. Paul, J. Sci. Res. 3 (2) 331 (2011). http://dx.doi.org/10.3329/jsr.v3i2.7278
19. K. K. Dey and A. C. Paul, J. Sci. Res. 4 (2) 349 (2012). http://dx.doi.org/10.3329/jsr.v4i2.8691
20. K. Dey, A. C. Paul, and I. S. Rakhimov, JP J. Algebra, Number Theory and Applications 25 (1), 29 (2012).
21. K. K. Dey and A. C. Paul, J. Sci. Res. 5 (1), 55 (2013). http://dx.doi.org/10.3329/jsr.v5i1. 9549

[^0]: * Corresponding author: kkdmath@yahoo.com

