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Abstract 
 

The object of this paper is to introduce a permuting tri-derivation in a Γ-near-ring. We 
obtain the conditions for a prime Γ-near-ring to be a commutative Γ-ring. 
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1. Introduction 
 
The derivations in near-rings have been introduced by Bell and Mason [1]. They 
investigated some basic properties of derivations in near-rings. Then Asci [2] obtained 
some commutativity conditions for a Γ-near-ring with derivations. Some characterizations 
of Γ-near-rings and some regularity conditions were obtained by Cho [3]. Kazaz and 
Alkan [4] introduced the notion of two-sided Γ-α-derivation of a Γ-near-ring and 
investigated the commutativity of prime and semiprime Γ-near-rings. Uckun et al. [5] 
worked on prime Γ-near-rings with derivations and they investigated the conditions for a 
Γ-near-ring to be commutative. 

In this paper, the notion of a permuting tri-derivation in a Γ-near-ring is introduced. 
We investigate the conditions for a prime Γ-near-ring to be a commutative Γ-ring. 
 
2.  Preliminaries 
 
A Γ-near-ring is a triple (R, +, Γ)  where  
 

(i)   (R, +) is a group (not necessarily abelian),  
(ii)  Γ is a non-empty set of binary operations on R such that for each α∈Γ, (R, +, α) is 
a left near-ring. 
(iii) xα(yβz) = (xαy)βz, for all x, y, z∈R and α, β∈Γ. 
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Exactly speaking, it is a left Γ-near-ring because it satisfies the left distributive law. 
We will use the word Γ-near-ring to mean left Γ-near-ring. For a Γ-near-ring R, the set R0 
= {x∈R : 0αx = 0, α∈Γ}  is called the zero-symmetric part of R. A Γ-near-ring R is said to 
be zero-symmetric if R = R0. Throughout this note, R will be a zero-symmetric Γ-near-ring 
and R is called prime if xΓRΓy = {0}  implies x = 0 or y = 0. Recall that R is called n-
torsion-free, where n is a positive integer, if nx = 0 implies x = 0 for all x∈R. The symbol 
C(R) will represent the multiplicative center of R, that is, C(x) = {x∈R : xαy = yαx for all 
y∈R, α∈Γ}. For x∈R, the symbol C(x) will denote the centralizer of x in R. As usual, for 
x, y∈R, α∈Γ, [x, y]α will denote the commutator xαy −  yαx, while (x, y)  will indicate the 
additive-group commutator x + y − x − y. An additive map d : R → R is called a derivation 
if the Leibniz rule d(xαy) = d(x)αy + xαd(y) holds for all x, y∈R, α∈Γ. By a bi-derivation 
we mean a bi-additive map D : R× R → R (i.e., D is additive in both arguments) which 
satisfies the relations D(xαy, z) = D(x, z)αy + xαD(y, z) and D(x, yαz) = D(x, y)αz + yαD(x, 
z) for all x, y, z∈R, α∈Γ. Let D be symmetric, that is, D(x, y) = D(y, x) for all x, y∈R. The 
map d : R → R defined by d(x) = D(x, x) for all x∈R is called the trace of D. A map F : R 
× R × R → R is said to be permuting if the equation F(x1, x2, x3) = F(xπ(1), xπ(2), xπ(3)) holds 
for all x1, x2, x3∈R and for every permutation {π(1), π(2), π(3)}.  
 
3. Permuting Tri-derivations and Commutativity 
 
A map f : R → R defined by f(x) = F(x, x, x) for all x∈R, where F : R × R × R → R is a 
permuting map, is called the trace of F. It is obvious that, in the case F : R × R × R → R is 
a permuting map which is also tri-additive (i.e., additive in each argument), the trace f of 
F satisfies the relation f(x + y) = f(x) + 2F(x, x, y) + F(x, y, y) + F(x, x, y) + 2F(x, y, y) + 
f(y) for all x, y∈R. Since we have F(0, y, z) = F(0 + 0, y, z) = F(0, y, z) + F(0, y, z) for all 
y, z∈R, we obtain F(0, y, z) = 0 for all y, z∈R. Hence we get 0 = F(0, y, z) = F(x− x, y, z) = 
F(x, y, z) + F(−x, y, z) and so we see that F(−x, y, z) = −F(x, y, z) for all x, y, z∈R. This 
tells us that f is an odd function. 

A tri-additive map D : R × R × R → R will be called a tri-derivation if the relations 
D(x1αx2, y, z) = D(x1, y, z)αx2 + x1αD(x2, y, z), D(x, y1αy2, z) = D(x, y1, z)αy2 + y1αD(x, y2, z) 
and D(x, y, z1αz2) = D(x, y, z1)αz2 + z1αD(x, y, z2) are fulfilled for all x, y, z, xi, yi, zi∈R, i = 
1, 2, α∈Γ. 

We need the following lemmas to obtain our main results. 
 

Lemma 3.1 [6, Lemma 2.3] Let R be a prime Γ- near-ring. If C(R) − {0}  contains an 
element z for which z + z∈C(R), then (R, +) is abelian. 
Lemma 3.2 [7, Lemma 2.2] Let R be a 3!-torsion free Γ-near-ring. Suppose that there 
exists a permuting tri-additive map F : R × R × R → R such that f(x) = 0 for all x∈R, 
where f is the trace of F. Then we have F = 0. 
Lemma 3.3. Let R be a 3!-torsion free prime Γ-near-ring and let x∈R. Suppose that there 
exists a nonzero permuting tri-derivation D : R × R × R → R such that xαd(y) = 0 for all 
y∈R, α∈Γ, where d is the trace of D. Then we have x = 0. 
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Proof. Since we have d(y + z) = d(y) + 2D(y, y, z) + D(y, z, z) + D(y, y, z) + 2D(y, z, z) + 
d(z)  for all y, z∈R, α∈Γ, the hypothesis gives 

 

2xαD(y, y, z) + xαD(y, z, z) + xαD(y, y, z) + 2xαD(y, z, z) = 0 for all y, z∈R, α∈Γ.     (1) 
 

Setting y = −y in (1), it follows that 
 

2xαD(y, y, z) − xαD(y, z, z) + xαD(y, y, z) − 2xαD(y, z, z) = 0 for all y, z∈R, α∈Γ.     (2) 
 

On the other hand, for any y, z∈R, d(z + y) = d(z) + 2D(z, z, y) + D(z, y, y) + D(z, z, y) 
+ 2D(z, y, y) + d(y) and so, by the hypothesis, we have 

 

2xαD(y, z, z) + xαD(y, y, z) + xαD(y, z, z) + 2xαD(y, y, z) = 0 for all x, y, z∈R, α∈Γ, (3) 
 

Since D is permuting. Comparing (1) with (2), we get 2xαD(y, z, z) + xαD(y, y, z) + 
xαD(y, z, z) = xαD(y, y, z) − 3xαD(y, z, z) which means that 2xαD(y, z, z) + xαD(y, y, z) + 
xαD(y, z, z) + 2xαD(y, y, z)  = xαD(y, y, z) − 3xαD(y, z, z) + 2xαD(y, y, z) for all x, y, z∈R, 
α∈Γ.  

Now, from (3), we obtain 
 

xαD(y, y, z) − 3xαD(y, z, z) + 2xαD(y, y, z) = 0 for all x, y, z∈R, α∈Γ.                        (4) 
 

Taking y = −y in (4) leads to 
 

xαD(y, y, z) + 3xαD(y, z, z) + 2xαD(y, y, z) = 0 for all x, y, z∈R, α∈Γ.                        (5) 
 

Combining (4) and (5), we obtain 
 

xαD(y, z, z) = 0 for all x, y∈R, α∈Γ,                                                                             (6) 
 

since R is 6-torsion free.  
Replacing z = z + w to linearize (6) and using the conditions show that 
 

xαD(w, y, z) = 0 for all w, x, y, z∈R, α∈Γ.                                                                    (7) 
 

Substituting wβv for w in (7), we get xαwβD(v, y, z) = 0 for all v, w, x, y, z∈R, α, β∈Γ. 
Since R is prime and D ≠ 0, we arrive at x = 0. This completes the proof of the theorem.  
 

Lemma 3.4. Let R be a Γ-near-ring and let D : R × R × R→ R be a permuting tri-
derivation. Then we have [D(x, z, w)αy + xαD(y, z, w)]βv = D(x, z, w)αyβv + xαD(y, z, 
w)βv for all v, w, x, y, z∈R, α, β∈Γ. 
 

Proof. Since we have D(xαy, z, w) = D(x, z, w)αy + xαD(y, z, w) for all w, x, y, z∈R, α∈Γ, 
the associative law gives   

D((xαy)βv, z, w) = D(xαy, z, w)βv + xαyβD(v, z, w) 
= [D(x, z, w)αy + xαD(y, z, w)]βv + xαyβD(v, z, w) for all v, w, x, y, z∈R, α, β∈Γ      (8) 
 and 
D(xα(yβv), z, w) = D(x, z, w)αyβv + xαD(yβv, z, w) 
= D(x, z, w)αyβv + xα[D(y, z, w)βv + yβD(v, z, w)] 

      = D(x, z, w)αyβv + xαD(y, z,w)βv + xαyβD(v, z, w) for all v, w, x, y, z∈R, α, β∈Γ      (9) 
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Comparing (8) and (9), we see that  [D(x, z, w)αy + xαD(y, z, w)]βv = D(x, z, w)αyβv + 
xαD(y, z, w)βv for all v, w, x, y, z∈R, α, β∈Γ.  

The proof of the lemma is complete. 
Now we are ready to prove our main results in this section. 

 

Theorem 3.5. Let R be a 3!-torsion free prime Γ- near-ring. Suppose that there exists a 
nonzero permuting tri-derivation D : R × R × R→ R such that D(x, y, z)∈C(R) for all x, y, 
z∈R. Then R is a commutative Γ-ring. 
 
Proof. Assume that D(x, y, z)∈ C(R) for all x, y, z∈R. Since D is nonzero, there exist x0, 
y0, z0∈R such that D(x0, y0, z0)∈C(R) − {0}  and D(x0, y0, z0) + D(x0, y0, z0) = D(x0, y0, z0 + 
z0)∈C(R).   

So (R, +) is abelian by Lemma 3.1. 
Since the hypothesis implies that 
 

wβD(x, y, z) = D(x, y, z)βw for all w, x, y, z∈R,  β∈Γ,                                               (10) 
 

we replace x by xαv in (10) to get wβ[D(x, y, z)αv + xαD(v, y, z)] = [D(x, y, z)αv + xαD(v, 
y, z)]βw and thus, from Lemma 3.4 and the hypothesis, it follows that D(x, y, z)βwαv  + 
D(v, y, z)αwβx = D(x, y, z)αvβw + D(v, y, z)βxαw which means that 

 

D(x, y, z)β[w, v]α = D(v, y, z)β[x, w]α for all v, w, x, y, z ∈ R, α, β∈Γ.                      (11) 
 

Setting d(u) in place of v in (11) and using d(x)∈ C(R) for all x∈R, by the hypothesis, 
we obtain 

D(d(u), y, z)β[x, w]α = 0 for all u, w, x, y, z∈R, α, β∈Γ.                                             (12) 
 

The substitution vαx for x in (12) yields that D(d(u), y, z)βvα[x, w]α = 0 for all u, v, w, 
x, y, z∈R, α, β∈Γ. Since R is prime, we obtain either D(d(u), y, z) = 0 or [x, w]α = 0 for all 
u, w, x, y, z∈R, α∈Γ. 

Assume that 
D(d(u), y, z) = 0 for all u, y, z∈R.                                                                               (13) 
Let us take u + x instead of u in (13). Then we obtain 
0 = D(d(u + x), y, z) = D(d(u) + d(x) + 3D(u, u, x) + 3D(u, x, x), y, z) 

        = 3D(D(u, u, x), y, z) + 3D(D(u, x, x), y, z), 
that is, 

D(D(u, u, x), y, z) + D(D(u, x, x), y, z) = 0 for all v, w, x, y∈R.                                  (14) 
 

Setting u = −u in (14) and then comparing the result with (14), we see that 
 

D(D(u, u, x), y, z) = 0 for all u, x, y, z∈R.                                                                   (15) 
 

Substituting uλx for x in (15) and employing (13) give the relation d(u)λD(x, y, z) + 
D(u, y, z)λD(u, u, x) = 0 and so it follows from the hypothesis that 
 

d(u)λD(x, y, z) + D(u, u, x)λD(u, y, z) = 0 for all u, x, y, z∈ R, λ∈Γ.                        (16) 
 

We put u = y = x in (16) to obtain,  
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d(x)λD(x, x, w) = 0 for all w, x∈R, λ∈Γ.                                                                    (17) 
 

Taking wλx in substitute for w in (17) yields d(x)λwλd(x) = 0,  for all λ∈Γ, and so the 
primeness of R implies that d(x) = 0 for all x∈R. Hence, by Lemma 3.2, we have D = 0 
which is a contradiction. So R is a commutative Γ-ring. This proves the theorem.  

 

Theorem 3.6. Let R be a 3!-torsion free prime Γ-near-ring. Suppose that there exists a 
nonzero permuting tri-derivation D : R × R × R → R such that d(x), d(x) + d(x)∈C(D(u, v, 
w)) for all u, v, w, x∈R, where d is the trace of D. Then R is a commutative Γ-ring. 
 

Proof. Assume that 
 

d(x), d(x) + d(x)∈C(D(u, v, w)) for all u, v, w, x∈R.                                                  (18) 
 

From (18), we get  
 D(u + t, v, w)α(d(x) + d(x))  
= (d(x) + d(x))αD(u + t, v, w) 
= (d(x) + d(x))α[D(u, v, w) + D(t, v, w)] 
= (d(x) + d(x))αD(u, v, w) + (d(x) + d(x))αD(t, v, w) 
= d(x)αD(u, v, w) + d(x)αD(u, v, w) + d(x)αD(t, v, w) + d(x)αD(t, v, w) 
= d(x)α[D(u, v, w) + D(u, v, w) + D(t, v, w) + D(t, v, w)] 
= [D(u, v, w) + D(u, v, w) + D(t, v, w) + D(t, v, w)]αd(x) for all t, u, v, w, x∈R, α∈Γ,                                          
                                                                                                                                    (19) 
 and 
D(u + t, v, w)α(d(x) + d(x)) 
= D(u + t, v, w)αd(x) + D(u + t, v, w)αd(x) 
= [D(u, v, w) + D(t, v, w)]αd(x) + [D(u, v, w) + D(t, v, w)]αd(x) 
= [D(u, v, w) + D(t, v, w) + D(u, v, w) + D(t, v, w)]αd(x) for all t, u, v, w, x∈R, α∈Γ.  
                                                                                                                                    (20)  
Comparing (19) and (20), we obtain D((u, t), v, w)αd(x) = 0 for all t, u, v, w, x∈R, 

α∈Γ. Hence it follows from Lemma 3.3 that 
 

D((u, t), v, w) = 0 for all t, u, v, w∈R.                                                                        (21) 
 

We substitute uβz for u and uβt for t in (21) to get  
 

0 = D(uβ(z, t), v, w) = D(u, v, w)β(z, t) + uβD((z, t), v, w) = D(u, v, w)β(z, t), β∈Γ. 
 

That is, 
D(u, v, w)β(z, t) = 0 for all t, u, v, w, z∈R, β∈Γ.                                                        (22) 
 

Letting z = sδz  in (22) and comparing the results (22) we obtain, 
 

D(u, v, w)βsδ(z, t) = 0 for all s, t, u, v, w, z∈R, β, δ∈Γ.                                             (23) 
 

Since D ≠ 0, we conclude, from (23) and the primeness of R, that (z, t) = 0 is fulfilled 
for all t, z∈R. Therefore (R, +) is abelian. 

By the hypothesis, we know that 
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[d(x), D(u, v, w)]α = 0 for all u, v, w, x∈R, α∈Γ.                                                        (24) 
 
Hence if we let x = x + y in (24) and since  d(x + y) = d(x) + 2D(x, x, y) + D(x, y, y) + 

D(x, x, y) + 2D(x, y, y) + d(y), then we deduce from (24) that  3[D(x, x, y), D(u, v, w)]α + 
3[D(x, y, y), D(u, v, w)]α = 0 for all u, v, w, x, y∈R, α∈Γ. 

 

Since R is 3-torsion-free, we obtain,   
   
[D(x, x, y), D(u, v, w)]α + [D(x, y, y), D(u, v, w)]α = 0 for all u, v, w, x, y∈R, α∈Γ.   (25)  
 

Setting y = −y in (25) and comparing the result with (25), we obtain 
 

[D(x, y, y), D(u, v, w)]α = 0 for all u, v, w, x, y∈R , α∈Γ.                                           (26) 
 

Replacing y by y + z in (26) and using (26), we have [D(x, y, z), D(u, v, w)]α = 0, α∈Γ, 
since D is permuting, i.e., 

 

D(x, y, z)αD(u, v, w) = D(u, v, w)αD(x, y, z) for all u, v, w, x, y, z∈R, α∈Γ.              (27) 
   

Taking uβt instead of u in (27), we obtain, 
 

D(u, v ,w)βtαD(x, y, z) − D(x, y, z)αD(u, v, w)βt + uβD(t, v, w)αD(x, y, z)  
− D(x, y, z)βuαD(t, v, w) = 0 for all t, u, v, w, x, y, z∈R, α, β∈Γ.                          (28) 
 

Substituting d(u) for u in (28) and then utilizing the hypothesis and (27), we get 
 

D(d(u), v, w)β[t, D(x, y, z)]α = 0 for all t, u, v, w, x, y, z∈R, α, β∈Γ.                          (29) 
 

Let us write in (29) wδs instead of w. Then we have D(d(u), v, w)δsβ[t, D(x, y, z)]α = 0 
for all s, t, u, v, w, x, y, z∈R, α, β, δ∈Γ. Since R is prime, we arrive at either D(d(u), v, w) 
= 0 or [t, D(x, y, z)]α = 0 for all t, u, v, w, x, y, z∈R, α∈Γ. As in the proof of Theorem 3.5, 
the case when D(d(u), v, w) = 0 holds for all u, v, w∈R leads to the contradiction. 
Consequently, we arrive at [t, D(x, y, z)]α = 0 for all t, x, y, z∈R ,α∈Γ, i.e, D(x, y, z)∈C(R) 
for all x, y, z∈R. Therefore, Theorem 3.5 yields that R is a commutative Γ-ring which 
completes the proof.   
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