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Abstract 
 

Axisymmetric turbulent viscous flow around sphere is computed using finite volume 
method based on Reynolds-averaged Navier-Stokes (RANS) equations.  Two-dimensional 
axisymmetric flow solver has been used to analyze flow at Reynolds number of 5×106. 
Spalart-Allmaras (S-A) and shear stress transport (SST) k-ω turbulence models are used to 
capture turbulent viscous flow. The numerical results in terms of the skin friction 
coefficient, pressure coefficient and drag coefficient at that Reynolds number have been 
shown either graphically or in the tabular form and velocity vectors have been displayed 
graphically. The computed results show good agreement with published experimental 
measurements.  
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1. Introduction 

Applications of computational fluid dynamics (CFD) to the maritime industry continue to 
grow as this advanced technology takes advantage of the increasing speed of computers. 
In the last two decades, different areas of incompressible flow modeling including grid 
generation techniques, solution algorithms and turbulence modeling, and computer 
hardware capabilities have witnessed tremendous development.  In view of these 
developments, computational fluid dynamics (CFD) can offer a cost-effective solution to 
many problems in underwater bodies. However, effective utilization of CFD for marine 
hydrodynamics depends on proper selection of turbulence model, grid generation and 
boundary resolution.   

Turbulence modeling is still a necessity as even with the emergence of high 
performance computing since analysis of complex flows by direct numerical simulations 
(DNS) is untenable.  The peer approach, the large-Eddy simulation (LES), still remains 
expensive.  Hence, simulation of underwater hydrodynamics continues to be based on the 
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solution of the Reynolds-averaged Navier-Stokes (RANS) equations. Various researchers 
used turbulence modeling to simulate flow around axisymmetric bodies since late 
seventies.  Patel and Chen [1] made an extensive review of the simulation of flow past 
axisymmeric bodies. Choi and Chen [2] gave calculation method for the solution of 
RANS equation, together with k-ε turbulence model.  Sarkar et al. [3] used a low-Re k-ε 
model of Lam and Bremhorst [4] for simulation of flow past underwater axisymmetric 
bodies.  

A considerable amount of research work has been published on flow around the 
axisymmetric sphere. The basic structure of the flow past a sphere has been 
experimentally investigated using a variety of approaches, including flow visualization by 
Achenbach [5], Taneda [6], Bakic [7] etc. Recent time-accurate computations of laminar 
and turbulent flow around spheres using different methods are reported by many 
researchers, among them the work of Gregory [8], Kalro [9] and Sun and Chwang [10] are 
remarkable. In this present study, Spalart-Allmaras (S-A) and shear stress transport (SST) 
k-ω turbulence models are used to simulate fully turbulent flow past underwater 
axisymmetric sphere.  
 
2. Theoretical formulation 
 
For the incompressible flow past an axisymmetric underwater body, the continuity 
equation in cylindrical co-ordinate is given by: 
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where x is the axial coordinate, r is the radial coordinate, u  is the axial velocity and v is 
the radial velocity. The source term Sm is the mass added to the continuous phase from the 
dispersed second phase and any user-defined sources. Sm is taken as zero here since single 
phase is considered. 

Also, the axial and radial momentum equations are given by: 
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where, p = static pressure, μ = molecular viscosity, ρ = density, Fx and Fr are external 

body forces and 
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considered in this study. 
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2.1. The Spalart-Allmaras (S-A) 
 
The Spalart-Allmaras turbulence model used in this study is a simple one-equation model 
[11] that solves a modeled transport equation for the turbulent viscosity. This model is 
designed for wall-bounded flows and gives good results for boundary layers subjected to 
adverse pressure gradients, much like the flow fields encountered in this study. Although 
the original Spalart-Allmaras model requires that the viscous-affected region of the 
boundary layer be properly resolved through the use of a fine mesh inside the boundary 
layer, the model has been modified for its implementation so that wall functions are used 
when the mesh resolution is not sufficiently fine near object surfaces. The fact that the S-
A model is a one-equation model with relatively lax grid density requirements further 
enhances its suitability for this particular study since, for the computer platform used, 
maximum computational efficiency is critical. The transported variable in the Spalart-
Allmaras model,

−

ν , is identical to the turbulent kinem tic viscosity except in the near-wall 
(viscous-affected) region. The transport equation for 

−a
ν  is 
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where, Gν is the production of turbulent viscosity and Yν is the destruction of turbulent 
viscosity that occurs in the near-wall region due to wall blocking and viscous damping.  σν 
and Cb2 are constants and v is the molecular kinematic viscosity. Sν is a user-defined 
source term. Note that the turbulence kinetic energy k is not calculated in the Spalart-
Allmaras model. 

To obtain the modified turbulent viscosity, ν, for the Spalart-Allmaras model from the 
turbulence intensity, I and length scale, l, the following equation can be used: 

      IlU avg2
3

=ν                                                                                                                  (5) 

where, Ll ×= 07.0   and ( ) 8
1

Re16.0 −=I  (here, L = sphere diameter) 
In this model the constants are considered as: 
 

      Cbi = 0.1355, Cb2 = 0.62, Cv1 =7.1, Cw2 = 0.03, Pr = 0.667 
 
2.2. The shear-stress transport (SST) k-ω model 

 
The SST k-ω turbulence model is a two-equation eddy-viscosity model developed by 
Menter [12] to effectively blend the robust and accurate formulation of the k-ω model in 
the near-wall region with the free-stream independence of the k-e model in the far field. 
To achieve this, the k-e model is converted into a k-ω formulation. The SST k-ω model is 
similar to the standard k-ω model, but includes the following refinements: 
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a. The standard k-ω model and the transformed k-e model are both multiplied by a 
blending function and both models are added together.  

b. The blending function is designed to be one in the near-wall region, which activates 
the standard k-ω model, and zero away from the surface, which activates the 
transformed k-e model. 

c. The SST model incorporates a damped cross-diffusion derivative term in the ω 
equation. 

d. The definition of the turbulent viscosity is modified to account for the transport of 
the turbulent shear stress. 

e. The modeling constants are different. 
 

These features make the SST k-ω model more accurate and reliable for a wider class 
of flows (e.g., adverse pressure gradient flows, airfoils, transonic shock waves) than the 
standard k-ω model. 

The shear-stress transport (SST) k-ω model is so named because the definition of the 
turbulent viscosity is modified to account for the transport of the principal turbulent shear 
stress.  The use of a k-ω formulation in the inner parts of the boundary layer [13] makes 
the model directly usable all the way down to the wall through the visous sub-layer, hence 
the SST k-ω model can be used as a Low-Re turbulence model without any extra damping 
functions. The SST formulation also switches to a k-ε behaviour in the free-stream and 
thereby avoids the common k-ω problem that the model is too sensitive to the inlet free-
stream turbulence properties. It is this feature that gives the SST k-ω model an advantage 
in terms of performance over both the standard k-ω model and the standard k-ε model. 
Other modifications include the addition of a cross-diffusion term in the ω equation and a 
blending function to ensure that the model equations behave appropriately in both the 
near-wall and far-field zones. 

Transport equations for the SST k-ω model are given by: 
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In these equations, 

kG  represents the generation of turbulence kinetic energy due to 
mean velocity gradients, Gω represents the generation of ω, Гk and Гω represent the 
effective diffusivity of k and ω, respectively, Yk and Yω represent the dissipation of k and 
ω due to turbulence, Dω represents the cross-diffusion term, Sk and Sω are user-defined 
source terms. 

~

 
2.3. Boundary conditions 
 
Since the geometry of an axisymmetric body is, in effect, a half body section rotated about 
an axis parallel to the free stream velocity, the bottom boundary of the domain is modeled 
as an axis boundary. Additionally, the left and top boundaries of the domain are modeled 
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as ‘velocity inlet’, the right boundary is modeled as an ‘outflow boundary’, and the 
surface of the body itself is modeled as a ‘wall’.  
 
2.4. Viscous drag 
 
The viscous drag of a body is generally derivable from the boundary-layer flow either on 
the basis of the local forces acting on the surface of the body or on the basis of the 
velocity profile of the wake far downstream. The local hydrodynamic force on a unit of 
surface area is resolvable into a surface shearing stress or local skin friction tangent to the 
body surface and a pressure p normal to the surface. The summation over the whole body 
surface of the axial components of the local skin friction and of the pressure gives, 
respectively, the skin-friction drag Df and the pressure drag Dp which for a body of 
revolution in axisymmetric flow become 
 
       ;  ∫= ex

wwf dxrD
0

cos2 ατπ ∫= ex

wp dxprD
0

sin2 απ

where, rw is the radius from the axis to the body surface, α is the arc length along the 
meridian profile, and xe is the total arc length of the body from nose to tail. The sum of the 
two drags then constitutes the total viscous drag, D or D=Df +Dp 

The drag coefficient, CD and the pressure coefficient, Cp based on some appropriate 
reference area A are given by:  
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where, p∞ is pressure of free stream and U∞ is free stream velocity. 
 
3.  Methodology 
 
The computational domain is extended ten times the sphere diameter in fore and aft of the 
sphere. The region also extended to ten times the sphere diameter in the vertical direction 
from the edge. It is ensured that in the selected model, the numerical results would be 
accurate and that the problem would be solvable in a reasonable amount of time.  

For the purposes of grid construction, the computational domain for sphere model is 
divided into two regions: the boundary layer region and the free stream region. Dividing 
the domain in this fashion is a common practice in problems where the effects of the 
viscous boundary layer that forms on the body are expected to significantly affect the flow 
field and where enhanced grid resolution in the vicinity of the boundary layer is 
important. The boundary layers are attached to the spheres and the direction of the 
boundary layer grids is defined such that the grids extended into the interior of the 
domains. Based on prior experience with numerical simulations involving boundary layers 
and the expected growth of the boundary layer meridionally along the sphere, both 
boundary layer meshes are approximately 3 cm in height. Increasing the number of rows 
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in the boundary layer meshes only served to vary cell density, and did not change the total 
height of the mesh. Finally, the growth factors are chosen to increase the resolution of the 
meshes at the base of the boundary layers (where flow parameter gradients are largest) 
while still maintaining high grid resolution, low cell skewness at the top of the boundary 
layers, and a total boundary layer mesh thickness of approximately 3 cm. Low skewness is 
important to ensure similar cell proportions between outer boundary layer cells and 
neighboring free stream region cells. The boundary layer grid parameters for the 
axisymmetric sphere models are shown in Table 1. If the growth factor is not listed in the 
following tables, it would be considered as unity.  
 
           Table 1. Boundary layer parameters of axisymmetric sphere grids. 
 

Meridional node 
count on sphere 

First row thickness in 
boundary layer 

Boundary layer 
growth factor  

Number of rows 
in boundary layer 

120 0.0001 1.24 20 
 

Meshing of the free stream regions took place in two steps. First, the edges of the 
regions are meshed, and then, using the edge meshes, the interiors of the regions (or faces) 
are meshed. Since boundary layer meshing has already been performed, only the axis 
boundary, inlet, outlet, and top edges have to be meshed. Comparatively coarse meshes 
are specified on the exterior (inlet, outlet, and top) boundaries due to the lack of large flow 
property fluctuations (and thus low grid densities) in those regions. For better control of 
edge node spacing, the bottom boundary is constructed in multiple sections. Grading is 
necessary to ensure a smooth transition between the relatively small cell sizes near the 
boundary layer grids and the relatively large cell sizes on the outer edges of the domains. 
Table 2 shows the node spacing on the edges of the domains for each edge node 
distribution.  

 
 Table 2. The node spacing of sphere on the edges of the domains for each edge node distribution.  

 
Node 
on  
FS 1 

Growth 
factor on 
FS 1 

Node on 
FS 2 

Node on  
RS 1 

Growth 
factor on  
RS 1 

Node on  
RS 2 

Growth 
factor on  
RS 2 

Node 
count on 
TB 

50 0.9 12 50 1.111 12 20 40 
 

      FS = Front section; RS = Rear section; TB = Top boundary. 

 
   Table 3. Axisymmetric sphere boundary node spacing distributions. 

 
Front face Middle face Rear face Normal to the axis 

No. of 
Nodes 

Growth 
factor 

No. of 
Nodes 

Growth 
factor(both 
direction) 

No. of 
Nodes 

Growth 
factor 

No. of 
Nodes 

Growth 
factor 

45 1.04 80 1.02 75 1.05 90 1.05 
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For the purpose of grid construction, the computational domain is divided into three 
faces: Middle face, Front face and Rear face. At first, the edges of the faces are meshed, 
and then, using the edge meshes, the interiors of the faces are meshed. The node spacing 
on the edges of the domain for each node distribution is given in the Table 3. 

Once the edges are meshed, the interior of the domains need to be meshed using 
automatic face mesh generation scheme. The meshing scheme that is chosen is pave 
meshing scheme. The pave scheme creates an unstructured grid of mesh elements, which 
is particularly desirable for its applicability to a wide range of face geometries, its ability 
to deal with irregularly shaped interiors, and its ease of use. There is no restriction on 
mesh node spacing imposed by the pave scheme since only triangular face elements are 
used. More cells are constructed near the surface of the sphere to tackle the high velocity 
gradient in the boundary layer region of the viscous flow. Fig. 1(a) shows the grid for the 
axisymmetric sphere, which is symmetric about the axis of rotation. Also, Fig. 1(b) shows 
the close up view that visualizes the boundary layer clearly. A commercial software 
GAMBIT is used for grid generation. 

 
 Velocity Inlet 
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Fig. 1(a).  Axisymmetric sphere unstructured grid with boundary conditions.  
 

 
Fig. 1(b). Close up view near boundary layer of sphere.  

Sphere (Wall) Axis 

 
 
A finite volume method [14, 15] is employed using a commercial software FLUENT 

to obtain a solution of the Reynolds averaged Navier-Stokes equations.  The coupling 
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between the pressure and velocity fields is achieved using PISO algorithm [14].  A second 
order upwind scheme is used for the convection and the central-differencing scheme for 
diffusion terms.   
 
4.  Results and Discussion 
 
Computed results for axisymmetric turbulent flow around sphere are compared to 
Achenbach’s experimental data [5] for transcitical flow at Re = 5×106. According to the 
experimental observation of Achenbach, the flow around sphere can be classified into four 
regions depending on the Reynolds number. In the subcritical region (Re < 3×105) the 
drag coefficient is namely independent of Reynolds number. The critical region (3×105 < 
Re < 4×105) is characterized by a rapid drop of the drag coefficient. The minimum being 
reached at the critical Re = 3.7×105, with further increase in Reynolds number, CD slightly 
increases again which is known as supercritical flow (4×105 < Re< 2×106) and it seems 
that the curve is going to reach another maximum.  The transition from supercritical to 
transcritical (Re > 2×106) is rather floating.  

Achenbach’s experiment is performed at a transcritical Reynolds number where the 
flow is considered fully turbulent and thus can be directly compared to the turbulent 
computational models. In the present study, the turbulent flow is simulated using Spalart-
Allmaras (S-A) and shear stress transport k- ω turbulence model at Re = 5×106.   
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Fig. 2. Plot of pressure coefficient on the surface of 
sphere at Re = 5×106. 

 
 
The predicted pressure coefficient over the surface of the sphere is shown in Fig. 2. 

The computed results are very close to the Achenbach’s experimental values [5]. Fig. 3 
shows computed values of skin friction coefficient over the sphere. In this case, the 
computed skin friction coefficient curves does not track well with Achenbach’s data 
forward of the separation point. However, the general trends of the curves are the same. 
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The accuracy of skin friction coefficient prediction in numerical simulations is highly 
dependent on the accurate resolution of the turbulent boundary layer near the surface of 
the body. Accurate calculation of near-wall effects requires an extremely fine mesh in that 
region. Since boundary layer separation arises due to pressure variations, accurate 
separation point predictions are dependent on accurate pressure calculations, which 
require a less fine mesh than skin friction calculations.  

However, the discrepancies between actual and computed Cf curves are not expected 
to greatly affect the reliability of the total drag prediction since skin friction drag accounts 
only for 10 percent of the total drag in this case. Here, the computed Cp = 0.1468, Cf = 
0.0156 and CD = 0.1625. 
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Fig. 3. Plot of skin friction coefficient on the surface of 
sphere at Re = 5×106. 

 
 
Fig. 4(a) shows the velocity vectors around sphere. The separated region and vortex 

shedding are clearly visible in the close up view near wall as shown in Fig. 4(b). Table 4 
shows the angular position of separation points as well as the percentage of difference 
from experimental values. The numerical predictions of separation point matched 
Achenbach’s experimental data well. Table 5 shows values of drag coefficient predicted 
by two turbulence models and also experimental values measured by Achenbach. 

 
Table 4. Angle of separation for axisymmetric turbulent flow around sphere. 

 
 Separation points 

(in degrees ) 
Percent difference 

Present 126 

Experimental Result [5] 118 

6.8 % 
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Table 5. Drag coefficient for axisymmetric turbulent flow around sphere. 
 

 Spalart-Allmaras 
Turbulent model 

SST k-ω 
model 

Experimental 
Result [5] 

Drag coefficient, CD 0.163 0.154 

Difference 9 % 14 % 

    0.18 

 

 

(a)  

 
(b)  

 
Fig. 4. (a) Velocity vectors around sphere, (b) close up 
view that shows the separation point. 

Separation Point 

 

Achenbach measured drag coefficients from 0.09 to 0.18 as Reynolds number varied 
from 4x105

 
to 5x106. This implies that drag is Reynolds number-dependent in the 

supercritical to transcritical range, and that the small discrepancy between Achenbach’s 
drag coefficient and the numerically computed drag coefficient may be due to Reynolds 
number mismatch more than inaccuracies in the numerical method. Achenbach also 
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presents other drag coefficient results in his paper that are obtained through integration 
rather than direct measurement; those results predict an even larger range of drag 
coefficient variation (from 0.07 to 0.24 within the same Re range). Further, the pressure 
coefficient plot shows that more pressure recovery occurred on the aft region of the sphere 
using two turbulence models than that occurred on Achenbach’s measurement. The higher 
pressure recovery of the numerical models explains the reduced drag coefficients 
prediction compared to Achenbach’s result. 
 
5. Conclusions 
 
Two dimensional axisymmetric flow solver is used to simulate turbulent flow around 
sphere at Reynolds number of 5x106.  Two turbulence models, such as, Spalarat-Allmaras 
(S-A) model and shear stress transport (SST) k-ω model are used. Drag coefficients and 
separation angle computed by the implicit pressure based unsteady axisymmetric flow 
solver agree satisfactorily with experimental measurements. However, Spalarat-Allmaras 
(S-A) turbulence model shows better performance than shear stress transport (SST) k-ω 
model. This may be attributed to the fact that the aspect ratio of the body used here is 
unity, i.e., very low for which the pressure drag dominates the viscous drag. 
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