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Abstract 
 

Direct numerical simulation (DNS) in two-dimensional homogeneous isotropic turbulence 
is performed by using the Spectral method at a Reynolds number Re = 1000 on a uniformly 
distributed 128128×  grid points. The Reynolds number is low enough that the 
computational grid is capable of resolving all the possible turbulent scales. The statistical 
properties in the computed flow field show a good agreement with the qualitative behavior 
of decaying turbulence. The behavior of the flow structures in the computed flow field also 
follow the classical idea of the fluid flow in turbulence. 
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1. Introduction 
 
Understanding the structure in space of a turbulent flow as well as its statistical properties 
remains a challenge both for the experimentalist and the theoretician. Direct simulation, 
i.e. resolution of the basic fluid dynamics equations using the powerful computers has 
proven to be a valuable additional tool for the study of fully developed turbulence. For the 
range of parameters in which they are feasible, the direct simulations allow measurement 
of many quantities inaccessible in the laboratory. Also, visualization of the small-scale 
vortical structures in the computed flow fields becomes easier. Now-a-days, high 
resolution simulations in two and three space dimensions at Reynolds numbers of several 
thousand or more are possible [1-2], and have revealed new and important properties of 
two and three-dimensional turbulence.  
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Direct numerical simulation (DNS) is considered as the most exact approach to 
turbulence simulation but it is too expensive and a large scale of computational resources 
is required to carry out the DNS [3-8]. If Reynolds number of flow is very high and 
computational grid is very large then it becomes more and more expensive and time 
consuming. Turbulent fluid motion is fully three-dimensional and complex. However, in 
computational point of view, two-dimensional (2D) turbulence is easier than the fully 
developed three-dimensional turbulence to compute. Discretization method is another 
issue to conduct the numerical simulation in turbulence. A literature review suggests that 
the numerical method widely used for DNS is either spectral method or the conventional 
finite difference method with structured grids.  

The overall aim of our present research is to develop a numerical code based on 
spectral method in order to simulate and analyze the physics of turbulence. However, 
before its uses to the complicated flow fields in turbulence, it is essential to examine the 
performance and effectiveness through some simple and benchmark problems in 
turbulence. Therefore, in this study, we performed the direct numerical simulation in two 
dimensional homogeneous isotropic turbulence at a Reynolds number Re = 1000 with

128128× grid points. Our interest is in whether the present numerical solver can simulate 
and resolve the turbulent scales in homogeneous isotropic turbulence. The Reynolds 
number is low enough that the computational grid is capable of resolving all possible 
turbulent scales in homogeneous isotropic turbulence. We also discuss about the flow 
structures in the computed flow field by contour and vector plots of the flow.   
 
2. Flow Governing Equations 
 
The governing equations are the unsteady incompressible Navier-Stokes equation and the 
equation of continuity as follows:   
       

( ) u
Re

+p=uu+
t

u 21 ∇−∇∇⋅
∂
∂

,                                                    (1) 

0=u⋅∇ ,                                                          (2) 
 
Here u is the velocity field, p is the pressure and Re is the Reynolds number of the 

flow. The Eq. (1) can be written in the rotational form as follows: 
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)( u+uω=uu ∇×∇⋅ ,                                      (4) 

 

and   u=u=ω curl×∇ ,  is the vorticity.                             (5) 
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It is noted that the rotational form of Navier-Stokes is commonly used in high Reynolds 
number flow simulations [9]. Rotational form of Navier-Stokes equations gives better 
physical properties in terms of conservation laws of fluid and the result is more stable than 
the convective form. It is also less expensive from the computational point of view. 
Hence, in this study we solve Eq. (3) with continuity Eq. (2). 
 
3. Discretization Method 
 
The discretization of governing equation is performed in three steps of time integration 
based on spectral method [10]. Some description of this method is given in the previous 
studies by Tanahashi et al. [4-6]. It is stated earlier that we intend to develop spectral DNS 
code to simulate three-dimensional flow fields so the details of the spectral method will be 
given elsewhere. However, the three steps of time integration performed in this study are 
described as follows: 
 
First step: 
 

( )11/3 3s
2

−− nnn+n s
∆t

+u=u ,    

 

where, nnn uu=s ∇⋅− and ∆t is the time  step increment .    
 
Second step: 
 

12/3 +n2/3+n+n p∆tu=u ∇− , where,  
∆t

u
=p

+n
+n

1/3
12 ⋅∇∇ , 

 

Third step:  
 

( )+2/3n+n+2/3n+n D+D
∆t

+u=u 11

2
,   where,  nn u

Re
=D 21 ∇ , 

 
Here the first step is for the nonlinear term performed by second order Adams-

Bashforth method. The second step is for pressure adjustment performed by backward 
Euler method, and the third step is for viscosity term performed by Crank-Nicolson 
method. 
 
4. Initial Conditions 
 
It is the difficult part to produce initial flow fields for homogeneous turbulence. In this 
study, in the procedure to make the initial flow fields, the initial flow condition is assumed 
to have the decay of energy spectrum [11]. We assume ( )kφ , k is the wave number,  is a 
vector potential and then the initial velocity field is determined (in Fourier space) by 
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( ) ( )kku φ̂ˆ ×∇=                      where, ( ) ( ) ( ){ }kikAk iii Θ= expφ̂                                          (6) 

( )kAi
is the amplitude of the vector potential and ( )kiΘ is its random phase. ( )kiΘ is 

determined by an uniform random number within the range [ ]π2,0 . 

The amplitude ( )kAi is determined so that the following relation is satisfied: 

 

( ) ( )kkE
kkk

iini ∑
+≤<−

×∇=
2/12/1

φ̂ ( )kA
kkk

i∑
+≤<−

×∇=
2/12/1

                                                 (7) 

Here we should note that the energy does not depend on ( )kiΘ since ( )kiΘ is a phase. 

The above operation (Eq. (7)) corresponds to determining the energy distribution within a 
spherical shell, whose radius isk , in the wave-number space. However, in the current 

study we uniformly distribute the energy as( )
kw

ini

N

kE

,

, where 
kwN ,
is the number of the wave 

number vectors whose length is within the range of( )2/1,2/1 +− kk . Here the actual 

velocity condition for homogeneous turbulence in Fourier space 
 

( ) ( )kuku ii −∗= ˆˆ                                                                                                             (8) 

 

should be fulfilled. Using this procedure we have calculated the initial velocity for DNS in 
which the decay of initial energy is fully monitored. In addition, to obtain a reliable result 
for DNS in homogeneous isotropic turbulence, we are concerned about two necessary 
conditions such as; (i) grid spacing is less than three times of Kolmogorov microscale, and 
(ii) dimension of the computational domain is larger than four times of integral length 
scale. According to these conditions the maximum possible Reynolds number (Re) of the 
flow is considered for this computation.  
 
5. Computational Parameter 
 
The computational domain of the mesh was selected to a periodic domain 2π×2π. The 
computation has been performed using 128×128 computational grids and the possible 
Reynolds number of the flow is 1000. The computation has been done with non 
dimensional time increment, ∆t = 0.0001 and is executed up to time, t = n ∆t, where n is 
the time step. 
 
6. Results and Discussion 
 
6.1. Turbulence Statistics 
 
In this section we discuss some statistics in 2D homogeneous isotropic turbulence. The 
total  resolved energy, Ek versus time is presented in Fig. 1, where        
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| |2

2
1

u=E k .                                                               (9) 

 
In Fig. 1 we can observe that the total energy or, equivalently the kinetic energy 

decreases with time until the end of the calculation. The trend of the profile is always 
decaying which is in agreement with the result of Yokota et al. [12], where the kinetic 
energy spectrum of a decaying homogeneous isotropic turbulence is calculated using a 
pure Lagrangian vortex method. 

 
Fig. 2 shows the decay of resolved enstrophy, where the enstrophy is defined by  

| |2
2
1

u=Ω ×∇ ,                                                                         (10) 

In Fig. 2, we can observe that the enstrophy decreases with increase of time, which is 
also in agreement with the result of Yokota et al. [12] for a decaying homogeneous 
isotropic turbulence.  

 

        
                  Fig. 1. Decay of energy (Ek).                                  Fig. 2. Decay of enstrophy (Ω). 
 

The turbulence dissipation, ε versus time is presented in Fig. 3, where the dissipation 
is defined by 

 

ijij ssν=ε 2 ,                                          (11) 

 

where, 

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Like the total energy and enstrophy given in Figs. 1 and 2, the dissipation also 

decreases with time, and with the increase of time of the computation the dissipation tends 
to be zero, that is, we will get  dissipated flow fields. However, observing the profiles of 
total energy, entropy and dissipation in Figs. 1, 2 and 3, we can conclude that our DNS 
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computation tends to produce a real and fully developed turbulence fields at the Reynolds 
number Re = 1000. 

The decay of root mean square (r.m.s.) of velocity fluctuations is presented in Fig. 4, 
where r.m.s. is calculated by using the definition given as 

 

2
r.m.s. u=u ,                                                                                 (12) 

It is revealed that the r.m.s. of velocity fluctuation decreases with the increase of time 
and it reaches about 0.80 at the end of the calculation (t = 0.30). 
 

                   
           Fig. 3. Decay of dissipation (ε).                               Fig. 4. Decay of r.m.s. of velocity (ur.m.s.). 

 
 
The development of Kolmogorov microscale, η is presented in Fig. 5, where η is 

defined as   
 

   
4

1
3
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
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

ε

v
=η ,                                                                             (13)  

 

In Fig. 5, we can observe that the Kolmogorov microscale increases with the increase 
of time. At the end of the calculation it reaches a value of about 0.0066. Since the 
computation is performed for small time and also in 2D, so we can say that the calculated 
result in our study is reasonable.  

Fig. 6 shows the development of integral length scale, l which is defined as 

( )∫ dxxu=l ,                                                                             (14) 

where u(x) is the two-point correlation co-efficient. The integration is evaluated using 
Simpson’s 3/8 rule in the space of computation. 

It is revealed that the profile of integral scale turns up from the initial stage to near 
about middle stage then it turns down up to final stage of the computation. At the end of 
the computation the result of integral scale reaches about 0.19 (t = 0.30).  
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          Fig. 5. Kolmogorov microscale (η).                        Fig. 6. Integral length scale (l). 

 
 
The time dependence of Taylor microscale is presented in Fig. 7, where Taylor 

microscale is defined as: 
 

( )2ji

i
i

xu

u
=λ

∂∂ /
,                                                                         (15) 

 

Fig. 7 shows that the profile of Taylor microscale in 2D homogeneous isotropic 

turbulence increases with the increase of time. It is revealed that in the initial stage the 

increasing rate is very slow and tends to be constant. Then the increasing rate turns up 

gradually up to final stage and finally it reaches about 0.10 at t = 0.30. Since the 

computation in our study is performed for small time and 2D homogeneous turbulence, so 

our calculated result is reasonable.  

The development of Enstrophy based length scale, ld is presented in Fig. 8, which is 

defined as  

6
1

3


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


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

d

v
=ld

, where  ( )| |2uν=d ×∇×∇ .                                                     (16) 

 
In Fig. 8, we can observe that the enstrophy based length scale tends to be constant at 

the initial stage. Then it decreases with time up to the middle stage and after that it 

increases gradually with time up to the final stage. At the end of the calculation it reaches 

about 0.0105. Like the other statistical values this result is also considerable for this 

computation in the homogeneous isotropic turbulence. 

Skewness and flatness factors of velocity and their derivatives are important statistical 

properties that represent characteristics of turbulence. The production of the rate of 

dissipation of turbulent kinetic energy, or equivalently, the production of enstrophy is 

directly related to skewness in isotropic turbulence [13]. Skewness and flatness of a 

velocity component, ui are defined as follows: 
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232

3

/
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i

iu

u

u
=S  and 

22

4

i
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iu

u

u
=F .                                                 (17) 

 
Here,

iu denotes an ensemble average of ui. 

 

                 
       Fig. 7. Taylor microscale (λ).                                    Fig. 8. Enstrophy based length scale (ld). 

 

Fig. 9 shows the profile of skewness of velocity component u. At the beginning of the 
computation it decreases, and then for few time steps it is almost constant. Then it 
increases rapidly within a short time steps and finally, it decreases till the end of the 
computation (t = 0.30). The development of derivative of skewness of velocity component 
u is given in Fig. 11 which is about 0.08 at the beginning of the computation (t = 0) and it 
reaches about 0.32 at the end of calculation. The behavior of the derivative of the 
skewness in the whole calculation domain is in good agreement with the result of Yokota 
et al. [12]. The flatness and derivative of flatness of velocity component u (Figs. 10 and 
12) are almost 3.4 at the beginning of the computation and shows almost similar pattern 
up to the final stage of the calculation. Since it is well established by the researchers that 
the flatness should reach the values somewhere in between 3 to 4, so our computed results 
in 2D simulation show an excellent agreement with them. 

 

             

 
 

Fig. 9. Skewness of velocity component u.                Fig.10. Flatness of velocity component u. 

t

T
ay

lo
r

m
ic

ro
sc

al
e

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.04

0.08

0.12

0.16

0.2

t

E
ns

tr
o

ph
y

b
as

ed
le

ng
th

sc
al

e
0 0.05 0.1 0.15 0.2 0.25 0.30

0.005

0.01

0.015

0.02

0.025

0.03

t

S
ke

w
n

es
s

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

F
la

tn
es

s

0 0.05 0.1 0.15 0.2 0.25 0.3
0

1

2

3

4

5

6



M. S. I. Mallik et al. J. Sci. Res. 5 (3), 435-445 (2013) 443 
 

     
 
                                                                                       
 

 

 

6.2.  Flow structures 

 

We have calculated the velocity components, vorticity and pressure at non-dimensional 

time t = 0.30 by using spectral method, and using these computed data we have shown 

different contour and vector plots of the flow field. We have also investigated the relation 

among velocity, vorticity and pressure by examining their flow structures.  

We know from the properties of fluid flow that there is a relation among velocity, 

vorticity and pressure. At an instantaneous time, where the velocity is positive (i.e. 

anticlockwise), there the vorticity is positive (ω > 0) and the pressure is low (p < 0). On 

the other hand, where the velocity is negative (i.e. clockwise), there the vorticity is 

negative (ω < 0) and a high pressure (p > 0) should exist.  

In Fig. 13, we observe the behavior of velocity, vorticity and pressure of the flow field 

at a non-dimensional time t = 0.30. We can see from these figures that, where the velocity 

is positive (i.e. anticlockwise) (Fig. 13(a)), the vorticity is positive (Fig. 13(b)) and the 

pressure is low (Fig. 13(c)) in the corresponding region. On the other hand, where the 

velocity is negative (i.e. clockwise), the vorticity is negative and high pressure exist in the 

corresponding region. 

The highest value of ω and p appear at red region and lowest value at blue region in 

the corresponding contour plots. Whereas, ω takes a value in the range 11.92 ≤ ω ≤ 

80.7133 in most of the regions and p takes a value in the range 0 ≤ p ≤ 1 in most regions 

of the corresponding contour plots.  

By examining the vector plot of velocity, contour plot of vorticity and pressure field, 

we can observe that the computed results agree well with the classical idea of the fluid 

flow in turbulence.  
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 Fig. 13(a). Vector plot of velocity at t = 0.30.     Fig. 13(b). Contour plot of vorticity (ω) at t = 0.30.   
 
 

 

                                   Fig. 13(c). Contour plot of pressure at t = 0.30. 

 

By examining the vector plot of velocity, contour plot of vorticity and pressure field, 
we can observe that the computed results agree well with the classical idea of the fluid 
flow in turbulence.  

7.  Conclusion   

Direct numerical simulation in two dimensional homogeneous isotropic turbulence have 
been successfully performed by using spectral method at a Reynolds number, Re = 1000 
with 128128× grid points. To our knowledge with this Reynolds number our selected 
computational grid points hopefully resolve possible turbulent scales. The statistical 
properties such as energy, enstrophy, dissipation, root mean square of the velocity 
decrease with the increase of time which reveal that the computed flow fields agree well 
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with the qualitative behavior of decaying turbulence. From the development of 
kolmogorov microscale, Taylor microscale, integral length scale, enstrophy based 
microscale, skewness, flatness and their derivatives, it is also revealed that the computed 
flow fields agree well with the qualitative behavior of fully developed and decaying 
turbulence. By examining the flow structures in our computation, we have observed that 
our results also maintain the relation among the fluid velocity, vorticity and pressure. 
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