Available Online JOURNAL OF
SCIENTIFIC RESEARCH

Publications J. Sci. Resb (3), 435-445 (2013) www.banglajol.info/index.php/JSR

Direct Numerical Simulation in Two Dimensional Homogeneous | sotr opic
Turbulence Using Spectral Method

M.S. 1. Mallik*?, M. A. Uddin? and M. A. Rahman®

!Department of Mathematics, Shahjalal Universitofence & Technology
Sylhet-3114, Bangladesh

’Department of Arts and Sciences, Ahsanullah Unityecs Science & Technology
Dhaka, Bangladesh

Received 17 November 2012, accepted in final revisem 11 August 2013

Abstract

Direct numerical simulation (DNS) in two-dimensibiemogeneous isotropic turbulence
is performed by using the Spectral method at a RegmumbeRe = 1000 on a uniformly
distributed 128x128 grid points. The Reynolds number is low enought thize
computational grid is capable of resolving all fhessible turbulent scales. The statistical
properties in the computed flow field show a gogdeament with the qualitative behavior
of decaying turbulence. The behavior of the flomatures in the computed flow field also
follow the classical idea of the fluid flow in turence.
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1. Introduction

Understanding the structure in space of a turblent as well as its statistical properties
remains a challenge both for the experimentalist thie theoretician. Direct simulation,

i.e. resolution of the basic fluid dynamics equagiaising the powerful computers has
proven to be a valuable additional tool for thedgtof fully developed turbulence. For the

range of parameters in which they are feasibledtrect simulations allow measurement
of many quantities inaccessible in the laborat@go, visualization of the small-scale

vortical structures in the computed flow fields be®s easier. Now-a-days, high
resolution simulations in two and three space dsimrs at Reynolds numbers of several
thousand or more are possible [1-2], and have tede@ew and important properties of
two and three-dimensional turbulence.
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Direct numerical simulation (DNS) is considered the most exact approach to
turbulence simulation but it is too expensive arldrge scale of computational resources
is required to carry out the DNS [3-8]. If Reynoldamber of flow is very high and
computational grid is very large then it becomesranand more expensive and time
consuming. Turbulent fluid motion is fully threeatltnsional and complex. However, in
computational point of view, two-dimensional (2Qirkulence is easier than the fully
developed three-dimensional turbulence to compbiscretization method is another
issue to conduct the numerical simulation in tuengke. A literature review suggests that
the numerical method widely used for DNS is eithgectral method or the conventional
finite difference method with structured grids.

The overall aim of our present research is to dgvel numerical code based on
spectral method in order to simulate and analyzephysics of turbulence. However,
before its uses to the complicated flow fieldsurbulence, it is essential to examine the
performance and effectiveness through some simplg@ bBenchmark problems in
turbulence. Therefore, in this study, we perforrtiesl direct numerical simulation in two
dimensional homogeneous isotropic turbulence aegn®ds numbeRe = 1000 with
128x128grid points. Our interest is in whether the presamherical solver can simulate
and resolve the turbulent scales in homogeneousofso turbulence. The Reynolds
number is low enough that the computational gridcapable of resolving all possible
turbulent scales in homogeneous isotropic turb@eMe also discuss about the flow
structures in the computed flow field by contoud aector plots of the flow.

2. Flow Governing Equations

The governing equations are the unsteady incomptedsavier-Stokes equation and the
equation of continuity as follows:

du 1 -

—+ (uM)u= -Op+—0%u, 1
at (um)u pr o U 1)
Omw=0, )

Hereu is the velocity field,p is the pressure arige is the Reynolds number of the
flow. The Eqg. (1) can be written in the rotatiof@m as follows:

ou 1 2 1 2

—=—pxu-01 p+— +—0%u, 3

a [p 2LD Re )
where, (u[ﬂ])u:wxu+%DL2|. (4)

and w=0Oxu=curlu, is the vorticity. )5
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It is noted that the rotational form of Navier-Séskis commonly used in high Reynolds
number flow simulations [9]. Rotational form of NexStokes equations gives better
physical properties in terms of conservation laiiiusd and the result is more stable than
the convective form. It is also less expensive friita computational point of view.
Hence, in this study we solve Eq. (3) with contindig. (2).

3. Discretization Method

The discretization of governing equation is perfednn three steps of time integration
based on spectral method [10]. Some descriptiamisfmethod is given in the previous
studies by Tanahas#Hial. [4-6]. It is stated earlier that we intend to depespectral DNS
code to simulate three-dimensional flow fields lse details of the spectral method will be
given elsewhere. However, the three steps of timtegration performed in this study are
described as follows:

First step:
un+1/3: un+%(3sn _ Sn—l),

where,s" = -u" Mu" andAt is the time step increment .
Second step:

n+1/3
u™23 = y™ 2B _ 4op™, where, p2pmi= DM

At

Third step:

U™ = un+2/3+£(Dn+1+ Dn+Z3), where, pn=_Lpz,n.
2 Re

Here the first step is for the nonlinear term perfed by second order Adams-
Bashforth method. The second step is for pressdigstanent performed by backward
Euler method, and the third step is for viscosiynt performed by Crank-Nicolson
method.

4. Initial Conditions

It is the difficult part to produce initial flow éids for homogeneous turbulence. In this
study, in the procedure to make the initial floeldis, the initial flow condition is assumed

to have the decay of energy spectrum [11]. We as: (/(k) K is the wave number, is a

vector potential and then the initial velocity @iés determined (in Fourier space) by
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(k) = 0x glk) whet g (k) = A (k) exdio; ()} (6)

A(k) is the amplitude of the vector potential apdk)is its random phase9, (k)is
determined by an uniform random number within mmge[o,zn].
The amplitudeﬁ(k) is determined so that the following relation issfad:

e = YOxal)=  ToxA(K) Q

[k|-1/2<k<|K|+1/2 [K|-1/2<ks|k|+1/2

Here we should note that the energy does not deperglx)sinceg,(k)is a phase.

The above operation (Eq. (7)) corresponds to détémmthe energy distribution within a
spherical shell, whose radiusMs in the wave-number space. However, in the current

study we uniformly distribute the energy%,s(k), wherey  is the number of the wave
Nw.k ‘

number vectors whose length is within the rang@k‘ofl/gy‘k‘ﬂ/g). Here the actual
velocity condition for homogeneous turbulence imifier space

G,(k)=0,C(-k) 8

should be fulfilled. Using this procedure we haa&ualated the initial velocity for DNS in
which the decay of initial energy is fully monitaren addition, to obtain a reliable result
for DNS in homogeneous isotropic turbulence, we @macerned about two necessary
conditions such as; (i) grid spacing is less thaed times of Kolmogorov microscale, and
(i) dimension of the computational domain is larglean four times of integral length
scale. According to these conditions the maximumssjide Reynolds numbeRé) of the
flow is considered for this computation.

5. Computational Parameter

The computational domain of the mesh was seleded periodic domains2r. The
computation has been performed using 128x128 catipoal grids and the possible
Reynolds number of the flow is 1000. The computatitas been done with non
dimensional time incremenat = 0.0001 and is executed up to tinhe; n At, wheren is
the time step.

6. Resultsand Discussion

6.1. Turbulence Statistics

In this section we discuss some statistics in 2hdgeneous isotropic turbulence. The
total resolved energ§* versus time is presented in Fig. 1, where
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EX= %L_ZI 9)

In Fig. 1 we can observe that the total energyeqguivalently the kinetic energy
decreases with time until the end of the calcutatibhe trend of the profile is always
decaying which is in agreement with the result okdtaet al. [12], where the kinetic
energy spectrum of a decaying homogeneous isottopitilence is calculated using a
pure Lagrangian vortex method.

Fig. 2 shows the decay of resolved enstrophy, wther@nstrophy is defined by
= %|D <uP | (10)

In Fig. 2, we can observe that the enstrophy deesewith increase of time, which is
also in agreement with the result of Yokota et[&R] for a decaying homogeneous
isotropic turbulence.
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The turbulence dissipation,versus time is presented in Fig. 3, where theigition
is defined by

e=2vs;§; (11)

_ 1f0uj Ouj
where, Sj =3 EJrW ,

Like the total energy and enstrophy given in Fifjsand 2, the dissipation also
decreases with time, and with the increase of tifrtbe computation the dissipation tends
to be zero, that is, we will get dissipated flaelds. However, observing the profiles of
total energy, entropy and dissipation in Figs. Bn2l 3, we can conclude that our DNS
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computation tends to produce a real and fully dgyed turbulence fields at the Reynolds
numberRe = 1000.

The decay of root mean squarar(s.) of velocity fluctuations is presented in Fig. 4,
wherer.m.s. is calculated by using the definition given as

Urms = VUZ (12)

It is revealed that them.s. of velocity fluctuation decreases with the inaeaf time
and it reaches about 0.80 at the end of the caicnlé& = 0.30).
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The development of Kolmogorov microscalg,s presented in Fig. 5, whereis
defined as

34
0= {—] , (13)

In Fig. 5, we can observe that the Kolmogorov nscede increases with the increase
of time. At the end of the calculation it reachewvadue of about 0.0066. Since the
computation is performed for small time and als@lh so we can say that the calculated
result in our study is reasonable.

Fig. 6 shows the development of integral lengthestavhichis defined as

I = I u(x)dx, (14)

where u(x) is the two-point correlation co-efficient. Thetagration is evaluated using
Simpson’s 3/8 rule in the space of computation.

It is revealed that the profile of integral scalens up from the initial stage to near
about middle stage then it turns down up to finage of the computation. At the end of
the computation the result of integral scale reaemut 0.19t(= 0.30).
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The time dependence of Taylor microscale is presemt Fig. 7, where Taylor
microscale is defined as:

f ui
A= ,
" oy, 10x; z 13)

Fig. 7 shows that the profile of Taylor microscate 2D homogeneous isotropic
turbulence increases with the increase of timés hevealed that in the initial stage the
increasing rate is very slow and tends to be cohsfhen the increasing rate turns up
gradually up to final stage and finally it reachaisout 0.10 at = 0.30. Since the
computation in our study is performed for smalldiand 2D homogeneous turbulence, so
our calculated result is reasonable.

The development of Enstrophy based length sé¢alis, presented in Fig. 8, which is

defined as
1

= [ﬁ]g , where d=v[ox(@xu)f . (16)
d

In Fig. 8, we can observe that the enstrophy bésegth scale tends to be constant at
the initial stage. Then it decreases with time optite middle stage and after that it
increases gradually with time up to the final stafyethe end of the calculation it reaches
about 0.0105. Like the other statistical values tt@sult is also considerable for this
computation in the homogeneous isotropic turbulence

Skewness and flatness factors of velocity and teiiivatives are important statistical
properties that represent characteristics of terué. The production of the rate of
dissipation of turbulent kinetic energy, or equérly, the production of enstrophy is
directly related to skewness in isotropic turbukerd3]. Skewness and flatness of a
velocity componenty; are defined as follows:
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Fig. 9 shows the profile of skewness of velocitynponentu. At the beginning of the
computation it decreases, and then for few tim@sst¢ is almost constant. Then it
increases rapidly within a short time steps andllfjn it decreases till the end of the
computation (= 0.30). The development of derivative of skewrafsgelocity component
uis given in Fig. 11 which is about 0.08 at theibeimg of the computatiort £ 0) and it
reaches about 0.32 at the end of calculation. Téleawior of the derivative of the
skewness in the whole calculation domain is in gageeement with the result of Yokota
et al. [12]. The flatness and derivative of flasme$ velocity component (Figs. 10 and
12) are almost 3.4 at the beginning of the compuriaand shows almost similar pattern
up to the final stage of the calculation. Sincis itvell established by the researchers that
the flatness should reach the values somewheretivelen 3 to 4, so our computed results
in 2D simulation show an excellent agreement witimt.
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6.2. Flow structures

We have calculated the velocity components, vaytiand pressure at non-dimensional
time t = 0.30 by using spectral method, and using thesepated data we have shown
different contour and vector plots of the flow fieWe have also investigated the relation
among velocity, vorticity and pressure by examirtimgjr flow structures.

We know from the properties of fluid flow that tkeis a relation among velocity,
vorticity and pressure. At an instantaneous timbegne the velocity is positive (i.e.
anticlockwise), there the vorticity is positivey & 0) and the pressure is low € 0). On
the other hand, where the velocity is negative. (@leckwise), there the vorticity is
negative @ < 0) and a high pressurp % 0) should exist.

In Fig. 13, we observe the behavior of velocityrtiaity and pressure of the flow field
at a non-dimensional tinte= 0.30. We can see from these figures that, wiereelocity
is positive (i.e. anticlockwise) (Fig. 13(a)), tkerticity is positive (Fig. 13(b)) and the
pressure is low (Fig. 13(c)) in the correspondiagion. On the other hand, where the
velocity is negative (i.e. clockwise), the vorticis negative and high pressure exist in the
corresponding region.

The highest value ab andp appear at red region and lowest value at bluereii
the corresponding contour plots. Whereastakes a value in the range 11.2w <
80.7133 in most of the regions apthhkes a value in the range<Op < 1 in most regions
of the corresponding contour plots.

By examining the vector plot of velocity, contodotpof vorticity and pressure field,
we can observe that the computed results agreewithlithe classical idea of the fluid
flow in turbulence.
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By examining the vector plot of velocity, contodotpof vorticity and pressure field,
we can observe that the computed results agreewitblithe classical idea of the fluid

flow in turbulence.

7. Conclusion

Direct numerical simulation in two dimensional hageaeous isotropic turbulence have
been successfully performed by using spectral niettica Reynolds numbeRe = 1000
with 128x128grid points. To our knowledge with this Reynoldsmiier our selected
computational grid points hopefully resolve possilturbulent scales. The statistical
properties such as energy, enstrophy, dissipatioot mean square of the velocity
decrease with the increase of time which revedlttia computed flow fields agree well



M. S I. Mallik et al. J. Sci. Res. 5 (3), 435-445 (2013) 445

with the qualitative behavior of decaying turbulencFrom the development of
kolmogorov microscale, Taylor microscale, integlahgth scale, enstrophy based
microscale, skewness, flathess and their derivatitas also revealed that the computed
flow fields agree well with the qualitative behaviof fully developed and decaying
turbulence. By examining the flow structures in computation, we have observed that
our results also maintain the relation among thigl fvelocity, vorticity and pressure.
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