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Abstract 
 

This manuscript attempts to introduce the concept of chromatic polynomials of total 

graphs using Mobius inversion theorem. In fact it studies various algebraic properties 

of chromatic polynomial using Mobius inversion theorem. 
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1.  Introduction  

 

Kirchhoff [1] introduced the chromatic polynomial in 1912 as an attempt to prove the four 

colour theorem. Today we usually define the chromatic polynomial for arbitrary graphs 

extended by Whithey [2]. After a while Reed [3] studied about the chromatic polynomials. 

In addition to that Yap [4] added his contribution on total colourings of graphs. As well 

Meredith [5] discussed about coefficients of chromatic polynomials in his learning. 

Further Bender and Goldman [6] contributed on the applications of Mobius inversion in 

combinatorial analysis. Further Erdos and Wilson [7] put in on the chromatic indexes. 

Moreover, Rao and Rao [8] initiated the chromatic polynomials of total graphs using 

deletion-contraction algorithm in their recent study. Also Rao et al. [9-11] contributed 

to 1-quasi and 2-quasi total graphs. 

The aim of this manuscript is to advance the notion of chromatic polynomials of 

total graphs using Mobius inversion theorem. 
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2.  Preliminaries and Fundamental Results 

 

2.1. Definition [12]: A colouring of a graph G is such that the adjacent vertices have 

different colours is called a proper colouring of the graph.  

2.2. Definition [12]: Let G be a simple graph. The chromatic polynomial of G is the 

number of ways we can achieve a proper colouring on the vertices of G with the given λ 

colours and it is denoted by P(G, λ) or PG(λ). 

 

2.3. Example: If we want to colour the null graph N4 with λ colours, we notice that this 

can be done in λ
 4 

ways because there are λ colour options for each vertex since no vertex 

is adjacent to another. 

 

2.4. Definition [13]: Let G be any graph .The total graph of G, T (G) is that a graph 

whose vertex set is V (G) E (G) and in which two vertices are adjacent if and only if 

they are adjacent are incident in G. 

 

2.5. Example: Fig. 1 represents a (4, 3)-connected graph G and its total graph T(G). 

 

2.6. Theorem [13]: By deleting an edge and contracting the corresponding vertices until it 

became a null graph which forms a chromatic polynomial known as the deletion – 

contraction algorithm.  

 

2.7. Definition [13]: A partially ordered set (S, ≤ ) is a pair consisting of a set S and a 

binary relation „≤ „on S that satisfies the following properties. 

(1) Reflexive: For all x S, x ≤ x. (2) Anti symmetric: Given any x, y S, if x ≤ y and y ≤ 

x then x = y and (3) Transitive: For all x, y, z S, if x ≤ y and y ≤ z then x ≤ z. 

 

2.8. Example: The set of all natural numbers with usual ordering “ ≤ ” is a partial order 

set. 

 

 
  

                                                                

                                                                                            
 

 
 

 

 
 

Fig. 1. A graph G with its total graph G. 

 
 

2.9. Definition [4]: A  partially order set  with the property that every pair of elements has 

a greatest lower  bound and least upper bound is called a lattice. 
 

G T(G) 
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2.10. Example: Let D12= {1,2,3,4,6,12} be the set of all divisors of 12 under the relation 

divides is a lattice . 

 

2.11. Definition [14]: A partition of a set S is defined to be subsets of S which are disjoint 

and whose union is S .Each element of a partition is known as a part. 

2.12. Example: Let  S = {1,2,3,4}.Two different partitions of S which are labeled  as P 

and Q , let P={{1,2},{3},{4}} and Q = {{1,2,3},{4}}.Two different parts of P are 

{1,2},{4}. 

 

2.13. Definition [14]: Let P , Q be two partitions of a set S, we define a relation between 

them in which we say that P is finer than Q  if every subset, in P is a subset of a subset in 

Q, where P Q. We denote this relation by PQ. 

 

2.14. Example: From the above example 2.12,  PQ, since {1,2} {1,2,3}, {3} 

{1,2,3}, {4} {4}. 

 

2.15. Definition [14]: A bond of a graph G is a partition of its vertices such that all 

vertices in the same part are connected within the graph. That is they are adjacent or there 

exists a path between them in the graph that includes only other vertices in the same part. 

The set of the bonds of a graph form the bond lattice. 

 

2.16. Example: The following figure represents a graph on three vertices and its bond 

lattice. 

        

 

 
 

 
 

 

 

 

 

Fig. 2. A graph and its bond lattice. 
 

 

2.17. Definition [14]: Let P be a partially ordered set. A function  defined on P as 

follows called as the Mobius function. If for any two elements a, b of P, 

       .  

,a b =
bcac

baifcababa
   :

.        ),( ;     if   0  ;         if   1

 
 

2.18. Mobius inversion theorem   

 

The principle of Mobius inversion is a significant module of the method of computing 

chromatic polynomials using bond lattices and the Mobius function. In 1975, Bender and 

1 

2 

3 

{{1}, {2}, {3}} 

{{1, 2, 3}} 

{{1, 2}, {3}} {{1}, {2, 3}} 
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Goldman [6] demonstrated Mobius inversion as an over counting-undercounting 

procedure. The following is Mobius inversion theorem.  

 

Theorem: Let 
eN x  (read “N sub equal to”) be a real-valued function defined for all x in 

a locally finite partially ordered set ,S  and assume that there is an element m S such 

that 
eN x =0. Define 

aN x  (read “N sub at least”) by 

:

a e

y y x

N x N y  .Thus   

:

,e a

y y x

N x x y N y . 

 

 3. Chromatic Polynomial of Total graph by using Mobius Inversion Theorem 

 

Rao et al. (2012) established   the chromatic polynomial of total graph T(G) of a  (p, q) - 

connected graph G (where p  3and 1  q  3) by deletion-contraction method in their 

recent study. Now we apply the Mobius inversion theorem to total graphs and find the 

chromatic polynomial of total graph T (G) of a (p, q)-connected graph G restricted for    

(2, 1)-connected graph. Fig. 3 represents a (2, 1) – connected graph and its total graph and 

its quasi total graphs. 

 

 

                                                                                                                                                                                           

             

                             

 

  

                  
                  G                                             T(G)                                                 Q1(G)                                   Q2(G) 

 

Fig. 3. A graph G of order 2 size 1 with its total graph and its quasi total graphs. 

 

 

3.1. Result for chromatic polynomial    
 

The chromatic polynomial of total graph of a (p, q) - connected graph is                        

λ(λ-1) [  (λ-2)
m+n-2

+( (λ -1)
m+n-4

)] if m + n – 4 > 0, and   λ(λ-1) [ (λ -2)
m+n-2

]  if  m + n - 4  

0. 
 

Proof.  In order to get the chromatic polynomial we need to find the bond lattice of T(G), 

so that we have an ordering on the bonds of the vertices of T(G). Let   the set of vertices of 

Tree T(G)  be  {v1,v2,e} as shown  in the Fig. 3. Let the  partitions be P1={{ v1},{v2},    

{e}}, P2={{{v1,v2},{e}},{{v2,e},{v1}},{{v1,e},{v2}}, P3= {{v1,v2,e}}.                               

To find the chromatic polynomial of T(G), we need to calculate Ne{{v1},{v2},{e}} the 

bond {{v1},{v2},{e}} represents all colourings in which no two adjacent vertices are 

the same colour. Let this bond be denoted by P, then by Mobius inversion theorem, 

e V1 V2 

e 

V1 V2 

e 

V1 V2 

e 

V1 V2 
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Ne(P) = 
QPQ a QNQP

:
)(),( . As a result, for each bond Q in the lattice, we 

evaluate ),( QP . Let the bond be P = {{v1}, {v2}, {e}}. First we have to calculate 

),( QP for all bonds Q in the bond lattice. The first bond in the lowest level has value 1, 

while each bond in the second level has value -1. To find the function value of the upper 

bond {{ v1,v2,e }}, we simply sum together the values for every other bond  and then 

assign  this bond the additive inverse of their value. Hence }},,{{,( 21 evvP = 2. In 

our lattice we assign each bond its respected Mobius function value as shown in Fig. 4. 

Since all the bonds on the same level have the same number of parts. Thus, for all 

bonds Q on the same level, Na(Q)= λ
 i
 , where i is the common number of parts. Now 

Na(P1)= λ
 3
,  Na(P2)= λ

 2
, Na(P3)= λ. We can then sum up the Mobius function values for all 

the bonds on a particular level and use this value as the coefficient of λ
 i
 in our sum.  

 

Hence  Ne(P) = 
QPQ a QNQP
   :

)(),( = λ
3
-3 λ

 2
+2 λ = λ (λ -1)[ (λ -2)

1+2-2
)] =           

λ (λ -1)[ (λ -2)] = λ (λ -1)[ (λ -2)
m+n-2

+( (λ -1)
m+n-4

)], (In general). 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

Fig. 4. Bond lattice with attached Mobius function values of a total graph T(G) of a (2,1)-connected 

graph G. 

 
3.2. Definition [15]: The 1-quasi total graph of a graph G, Q1(G) is the graph whose 

vertices set is V(G) E(G) and two vertices are adjacent if and only if they corresponding 

to two adjacent vertices of G or to two adjacent edges of G. 

 

3.3. Definition [15]: The 2-quasi total graph of a graph G, Q2(G) is the graph whose 

vertices set is V(G) E(G) and two vertices are adjacent if and only if they corresponding 

to two non adjacent vertices of G or one is a vertex and other is an edge incident with it in 

G. 
 

 {{v1},{ v2},{ e }} 

     {{v1, v2},{e}}      {{v2, e},{v1}}       {{v1, e},{v2}} 
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1 

-

1 -

1 

-1 

2   

 {{v1},{ v2},{ e }} 

     {{v1, v2},{e}}      {{v2, e},{v1}}       {{v1, e},{v2}} 

     {{v1, v2, e}} 

1 

-1 -1 -1 

2  
-1 

2 

-1 
-1 



474 Classification of Algebraic 

 

3.4. Example:  In Fig. 3 we find the 1-quasi total graph Q1(G) and 2-quasi total graph 

Q2(G) of a (2,1)-connected graph G. 
 

3.5. Result on quasi total graphs 
 

Here we find the chromatic polynomials of quasi total graphs of a (2, 1)-connected graph 

G by using Mobius inversion theorem. 
 

Proof: First we begin with 1- quasi total graph Q1(G) (from Fig. 3) 
 

 

     

 

       

 

 

 

 

Let the vertices of 1-quasi total graph be {v1,v2,e} and the partitions are 

P1={{v1},{v2},{e}}and P2={{v1,v2},{e}}. We compute the chromatic polynomials of the1-

quasi total graph   given in Fig. 3. In order to achieve this task, we first set up the bond 

lattice of this graph as shown in Fig. 5. We need to compute Ne({{v1}, {v2},{e}}). As 

earlier we notice that all the bonds that are found on the same level of the lattice have the 

same number of parts. Thus, all bonds Q that occurs on the same level, Na(Q) = λi
 where i 

is the common number of parts. Then, we once more sum up the Mobius function values 

for all the bonds on a particular level and use this resulting value as the co-efficient of λ
i 
in 

our sum. Hence Na(P1) = λ
 3

and 
 
Na(P2) = λ

 2
. The finest bond P1 has a value of one while 

for the coarsest bond has -1. Now the Mobius function values are µ (P1, P1) = 1 and µ (P1, 

P2) = -1 (see Fig. 5). Hence by Mobius inversion theorem  
 

Ne(P) =  Na(P1) µ (P1, P1)+ µ (P1, P2) Na(P2)  
               

 = (1) λ
 3
+ (-1) λ

 2
  =  

 
λ

 3
- λ

 2
 = [ λ

 m+n

+(-1)
m+n

 λ
 m+n-1

] = P(Q1(G), λ) . (In general)      

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Bond Lattice of Q1(G) with its Mobius function values. 

e 

V1 V2 

1 

-

1 

 {{ v1},{ v2},{ e }} 

     {{ v2,e},{v1}} 

P1 

P2 
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       From Fig. 5, we observed the 2-qasi total graph of G is same as the total graph of G, 

hence the chromatic polynomial of 2-quasi total graph is same as the chromatic 

polynomial of the total graph G (in particular this case only). Hence  
 

P(Q2(G), λ) =λ
 3
-3 λ

 2
+2 λ. 

   

4.  Characterizations of Chromatic Polynomials Using Mobius Inversion Theorem 

 

There are several well known results about the roots and coefficients of the chromatic 

polynomials being linked to some graph theoretical properties of G. We will explore few 

of these relations using Mobius inversion formula. 

 

4.1. Lemma:  The absolute value of coefficient of λ
n-1 

in a chromatic polynomial of G is 

the number of edges of the graph G of order n. 

 

Proof: Let G be finite graph with n vertices. Since to find chromatic polynomial from 

Mobius inversion theorem, first we find its bond lattice with Mobius function values. 

Since the second level of any bond lattices is composed of bonds that contain only in edge 

and singleton vertices. So the number of bonds in the second level of a bond lattice is 

always the number of edges of the graph. The first level is always composed of only one 

bond that has Mobius function value of 1. This value is always finer than every bond on 

the second level, has a function value of -1. Because Na(b) = λ
n-1 

for all bonds b on the 

second level of any lattices, the coefficient on the  λ
n-1 

terms will always be the negative of 

the number of edge in the graph. 

 

4.2. Lemma:  The sum of the coefficients of any chromatic polynomial is zero except for 

null graph. 

 

Proof: Since the Mobius function value for each value in the bond lattice of a graph is 

calculated so that the function value for a particular bond and function values of all finer 

bonds sum to zero. Particularly the function value for the coarsest bond in the bond lattice 

is chosen so that the sum of all function values of all bonds in the lattices is zero. Also, we 

note that plugging λ=1 into any chromatic polynomial is the same as summing together 

the entire coefficient. For any graph with at least one edge, this sum will always be zero as 

such a graph cannot be properly coloured with λ=1 colours. 

 

4.3. Lemma: The signs on the coefficients of chromatic polynomial are alternate. 

 

Proof:  This lemma can be proved by using mathematical induction on levels of the bond 

lattice of a graph. Suppose our base case is a bond lattice what consists of only two levels. 

The lower level will consist of only the bond in which each vertex is in a separate part, 

this bond will always have a Mobius function value of 1. On the second level, any bond b 

will have a function value of -1. Thus chromatic polynomial for the graph described by 
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this bond lattice will be k
i  

-  j k
i-1

  where j is the number of bonds on the second level of 

the lattice. We have thus shown that this polynomial has alternating coefficients.    

Now, suppose we have a bond lattice that consists of n levels, where n > 2, and that 

our result is true for bond lattice of n-1 levels. If we consider only the first n-1 levels of 

our lattice, we know that Mobius function values of the bonds on different level 

alternative on sign. Now let b be a bond on the n
th

 level of this lattice. We must show that  

the Mobius function value of b is not zero that the sign of the function value is different 

from the sign of the function values for bonds on the n-1 level. We know b will not have a 

function value of zero because we only include bonds in the lattice that correspond to 

possible sub graphs of the graph we are considering. Now, suppose b is only coarser than 

one bond on the n-1 level denoted by c.  This is not possible because the Mobius function 

value of b would have to be zero. This would occur because the function value of c is 

calculated so that the sum of the function values of all bonds finer than c and the function 

value for c is zero. Thus there must least 2 bonds on the (n-1) level that are finer than b. 

Also the sub lattices corresponding to each of these finer bonds must have some sort of 

overlap; otherwise the function value would again be zero. Because of this overlap, when 

we sum together the Mobius function value of all bonds finer than b, we will find that this 

sum will have the sign of the bonds on the n-1 level, as these values will dominates in the 

sum. Thus Mobius function value for b must have on opposite sign in order to get the sum 

back to zero. As a result we have shown that the sign of the Mobius function value in a 

bond lattice alternative between each level and, consequently that the coefficient of the 

chromatic polynomials alternative in signs. 

 

 5. Conclusion 

 

This work extended the concept of chromatic polynomial to total graphs and quasi total 

graphs using Mobius inversion theorem and established the chromatic polynomials for 

these graphs. Finally  some algebraic properties of chromatic polynomials was established 

using Mobius inversion theorem. 
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