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Abstract 
 

A graph ),( qpG = with p vertices and q edges is called a mean graph if there is an 

injective function f  that maps V(G) to },...,3,2,1,0{ q  such that for each edge uv, is labeled 

with   
2

)()( vfuf +   if  )()( vfuf +   is even and 
2

1)()( ++ vfuf  if )()( vfuf +  is odd. 

Then the resulting edge labels are distinct. In this paper, we prove some general theorems 
on mean graphs and show that the graphs

nm KPG )(+= , Jewel graph
nJ , Jelly fish graph 

nJF)( and
32PK c

n +  are mean graphs.  
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1.  Introduction  
 
By a graph we mean a finite, simple and undirected one. The vertex set and the edge set of 
a graph G are denoted by V(G) and E(G) respectively. The disjoint union of   m copies of 
the graph G is denoted by mG. The union of two graphs G1 and G2  is the graph   G1 ∪ G2 

with V(G1 ∪ G2) = V (G1) ∪ V (G2) and E (G1 ∪ G2) = E(G1) ∪ E(G2)  . A vertex of 
degree one is called a pendant vertex. Let ),( qpG =  be a mean graph with p vertices and  

q  edges  and   let v be a vertex with label q and let one of the mean labelings of G satisfy 
the following:   If q is odd (even) and all the labels of the vertices which are adjacent to v 
are even (odd), then we call this mean labeling as extra mean labeling [4] and the graph G 
as extra mean graph.  
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The Jewel graph 
nJ  is a graph with vertex set }1:,,,,{)( niuyvxuJV in ≤≤=  and edge 

set }1:,,,,,,{)( nivuuuxyvyuyvxuxJE iin ≤≤= . The graph Jelly fish 
nJF )( has 2n vertices 

and 2n+1 edges with vertex set }21,1:,,,{))(( −≤≤≤≤= njnivuvuJFV jin
 and edge set 

},{}21:{}1:{))(( 11 nniin vuvuuunivvniuuJFE ∪−≤≤∪≤≤= . Terms and notations not 
defined here are used in the sense of Harary [1]. 

The concept of mean labeling was introduced by Somasundaram and Ponraj [2] and 
further studied by the same authors in [3]. Motivated by the work of the above authors, we 
have established the mean labeling of some standard graphs in [4,5]. In this paper we 
extend our study to establish the mean labeling some more graphs like Jewel graphnJ  and 
Jelly fish graph 

nJF)( . 
 
2. Mean Graphs 
 
Remark 2.1: For any mean graph G, qq and1,0 − must be the vertex labels. Either 1 or 2 

must be a vertex labeling, a vertex of label  q – 1 is adjacent with a vertex of label q and a 
vertex of label 0 is adjacent with a vertex of label 1 or 2. 
 
Theorem 2. 2: Let ),( 111 qpG = be a mean graph with mean labeling f and let xue =  be an 

edge with 1)( 1 −= qxf and 
1)( quf = . Let ),( 222 qpG = be a mean graph with mean 

labeling g and let yve ='  be an edge with 0)( =yg  and )2or(1)( =vg . If G is a graph 

obtained by joining the vertex x with y and u with v by an edge, then G is a mean graph. 
 
Proof: Add the number 21 +q to all the vertex labels of the graph 

2G .Then the vertex              

labels of 
2G remain distinct and the edge labels of 

2G  are increased by 21 +q .That is the 

edge labels of 
2G are 2,...,4,3 2111 ++++ qqqq . Now the label of the edge xy is 

1
2

12

2

21
1

111 +=






 +=






 ++−
q

qqq . Also the label of the edge  uv  is 2
2

3
1

11 +=






 ++
q

qq  

if 1)( =vg and the label of the edge  uv  is 2
2

4
1

11 +=






 ++
q

qq  if .2)( =vg Hence 

the edge labels of the graph G are 1, 2, 3,…, 221 ++ qq  and the vertex labels of G are also 

distinct. This completes the proof. 
 
Example 2.3: Let 41 PG =  and )( 3,12 KSG = .The mean labeling of G1 and G2 are given 

below. 
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The mean graph obtained by the above construction is given in Fig. 1. 
 
 

 

 

 

 

 

Fig. 1 

 

Theorem 2.4: Let ),( 111 qpG = be a mean graph with mean labeling  f and let uxe =  be 

an edge with 1)( 1 −= qxf and 1)( quf =  and let )2,2(2 qpG =  be a mean graph with mean 

labeling  g and let vye ='  be an edge with 0)( =yg  and 1)( =vg . If G is a graph 

obtained by identifying the edge 'e  with the edge  e  (that is identifying u with v and x 
with y), then G is a mean graph. 
 
Proof: Let   }21:,,{)( 11 −≤≤= piuxuGV i

 and }21:,,{)( 22 −≤≤= pivyvGV i
. 

Then }21,21:,,,{)( 21 −≤≤−≤≤=== pjpivuyxvuGV ji
. Clearly G has 221 −+ pp  

vertices and 121 −+ qq  edges. 

     Define }1,...,3,2,1,0{)(: 21 −+→ qqGVh by 




∈−+
∈

=
)(if1)(

)(if)(
)(

21

1

GVwqwg

GVwwf
wh   .  

      Here .1)()(and)()( 11 −==== qyhxhqvhuh  Since 1G and 2G are mean graphs 

and the vertex labels of 2G  are increased by 11 −q , the vertex labels of G are distinct. 

The edge labels of the graph 1G under h   are 
1,...,3,2,1 q  and the edge labels  of 2G  

(except 'e ) under h  are .1,...,2,1 2111 −+++ qqqq  Hence G is a mean graph. 

 
Example 2.5: Let 

51 CG =  and 42 PG = .The mean labeling of 1G  and 2G are given 

below. 
 
 
 
 

 

 

 

The mean graph obtained by the above construction is given Fig. 2. 

5 

0 

1 

4 

3 

0 1 2 3 

v y u x 

 10 

11 
6 

7 

5 8 9 

0 

1 

2 

3 



268 On Construction of 
 

 

 

                           

 

                                                                                         

                                                                          
Fig. 2 

 
Theorem 2.6: Let ),( 111 qpG = be an extra mean graph with an extra mean labeling f and 

let xue =  be an edge with 1)( 1 −= qxf and 
1)( quf = . Let ),( 222 qpG = be a mean graph 

with mean labeling g and let yve ='  be an edge with 0)( =yg  and 2)( =vg . The graph 

G obtained by identifying the edge 'e  with the edge  e  (that is identifying x with y and u 
with v), then G is a mean graph. 
 
Proof: Let }211:,,{)1( −≤≤= piiuxuGV   and  }21:,,{)( 22 −≤≤= pivyvGV i

. Then 

}21,21:,,,{)( 21 −≤≤−≤≤=== pjpivuyxvuGV ji
. Clearly G has 221 −+ pp  vertices 

and 121 −+ qq  edges. 

Define }1...,3,2,1,0{)(: 21 −+→ qqGVh  by ;1)( 1 += quh   ;1)( 1 −= qxh  

21for)()( 1 −≤≤= piufuh ii  and .21for1)()( 21 −≤≤−+= pjqvgvh jj
  

Since 1G  is a mean graph, the vertex labels of 1G  under h are remain distinct and 

}1,1,...,2,1,0{))(( 111 +−⊆ qqGVh . Since the label of the vertices of },{)( 2 vyGV −  are 

increased by 11 −q and 2G is a mean graph, the labels of the vertices of },{)( 2 vyGV −  

are distinct. Also }1,...,2,{}),{)(( 21112 −++⊆− qqqqvyGVh . The edge labels of the 

graph 1G , except the edges incident with  u, under h  remain distinct. Since 1G  is an extra 

mean graph with mean labeling f, for each vertex w incident with u in G1, )(uf  and  

)(wf  are of opposite parity. Therefore the induced edge label under f   is 

 

,
2

1)(

2

)()(
)(* 1 k

wfqwfuf
uwf =

++
=




 += an integer.  Also,      

k
wfqwhuh

uwh =++=




 +=
2

)(1

2

)()(
)(* 1 .  

 
Hence, the induced edge labels of  1G  under h   are 1,...,3,2,1 q  and the edge labels of 

2G  (except 'e ) under h are ,2,1 11 ++ qq  .1..., 21 −+qq  Hence G is a mean graph. 

 
Example 2.7: Let 

61 CG =  and 
62 CG = . The extra mean labeling of 1G  and a mean 

labeling of 2G are given below.        
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The mean graph obtained by the above construction is given in Fig.  3. 

 

 

 

               

 

 

 

 

Fig. 3 

Theorem 2.8: The Jewel graph nJ is an extra mean graph. 

 
Proof: Let }1:,,,,{)( niuyvxuJV in ≤≤=  and }1:,,,,,,{)( nivuuuxyvyuyvxuxJE iin ≤≤= . 

Then 
nJ  has 4+n  vertices and 52 +n  edges. Define }52,...,2,1,0{)(: +→ nJVf n  as 

follows:  
0)( =uf ; 52)( += nvf ; 2)( =xf ; 42)( += nyf ; .1for22)( niiuf i ≤≤+=     

 
For each vertex label f , the induced edge label *f  is defined as follows: 

 
1)(* += iuuf i for ni ≤≤1 ; ;1for4)(* niinvuf i ≤≤++=

;2)(*;1)(* +== nuyfuxf 4)(* += nxvf ; 52)(* += nvyf ;

3)(* += nxyf . 

 
Clearly f  is a mean labeling of G. Moreover q is odd and all the vertices which are 

adjacent to the vertex labeled q are even. Thus, G is an extra mean graph. 
 
Example 2.9: The mean labeling of  5J  is given in Fig. 4. 
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Fig.  4 

 
Theorem 2.10: Let 

nm KPG )(+= be the graph with the vertex set 

}1,1:,{)( njmivuGV ji ≤≤≤≤=   and the edge set 

njmivuvuuuGE jmjii ≤≤−≤≤= + 1and11:,,{)( 11
}. Then G is a mean graph. 

 
Proof: Let }1,1:,{)( njmivuGV ji ≤≤≤≤= . 

Define }12,...,2,1,0{)(: −+→ nmGVf  as follows:  

;0)(1 =uf  

 













≤≤+




 +−++






 +≤≤−+
=

mi
m

imn

m
iin

uf i

1
2

1
for)(222

2

1
2for322

)(
 and  

jvf j 2)( =  for  nj ≤≤1 .Then }.12,...,22,12,2,...,4,2,0{))(( −+++= mnnnnGVf  

For each vertex label f , the induced edge label *f  is defined as follows: 

jvuf j =)(* 1   for  nj ≤≤1 , 1
2

12
)(* 21 +=




 += n
n

uuf , 

jn
jn

vuf jm ++=




 ++= 1
2

212
)(*  for  nj ≤≤1 , 

222
2

122322
)(* 1 −+=




 −++−+=+ in
inin

uuf ii
  for 






 +≤≤
2

1
2

m
i , 
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1)(22
2

)1(222)(222
)(* 1 +−+=




 −−+++−++=+ imn
imnimn

uuf ii
  for 

11
2

1 −≤≤+




 +
mi

m . Now }.12,...,3,2,1{)}(:)(*{ −+=∈ nmGEeef  

 
It can be verified that   f  is a mean labeling of G. Hence G is a mean graph. 

 
Example 2.11: The mean labeling of 

59 )( KP + is given in Fig. 5. 

 

 

 

 

 

 

 

 

Fig. 5 

Theorem 2.12: The graph Jelly fish 
nJF)( is a mean graph. 

Proof: Let }21,1:,,,{))(( −≤≤≤≤= njnivuvuJFV jin
 and 

},{}21:{}1:{))(( 11 nnjin vuvuuunjvvniuuJFE ∪−≤≤∪≤≤= . 

 
Define }12,...,2,1,0{))((: +→ nJFVf n

as follows: 

;0)( =uf niiuf i ≤≤= 1for2)( ; 12)( += nvf ; 32)( += jvf j   for 

21 −≤≤ nj .  

For each vertex label f , the induced edge label *f  is defined as follows: 

 

iuuf i =)(*   for ni ≤≤1 , 2)(* ++= jnvvf j  for 21 −≤≤ nj ; 

1
2

22
)(* 1 +=




 += n
n

uuf n
, 2

2

32
)(* 1 +=




 += n
n

vuf , 12
2

14
)(* +=




 += n
n

vuf n
. 

 
Therefore, }.12,2,...,2,1,,...,3,2,1{)}(:)(*{ +++=∈ nnnnnGEeef   

 
It can be verified that   f  is a mean labeling of 

nJF)(  and hence 
nJF)( is a mean graph. 

 
Example 2.13: The mean labeling of  

5)(JF  is given in Fig. 6. 
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                      Fig. 6 

 
Theorem 2.14: Let G be a mean tree with },...,,{)( 21 pvvvGV =  and let 'G  be a copy of G 

and with }',...,','{)'( 21 pvvvGV = . Then the graph )(+G obtained by joining the vertex 

iv with 'iv  by an edge for all ,1 pi ≤≤ is a mean graph. 

 
Proof: Let f be a mean labeling of G. Clearly )'()()( )( GVGVGV ∪=+ . Add the number 

12 −p  to the label of the vertices 'iv  for pi ≤≤1 . Then the vertex labels of the graph 

'G  remain distinct and the edge labels of 'G  are increased by 12 −p . Since G is a tree, 

}1,...,3,2,1,0{))(( −= pGVf  and the edge labels of G are 1,...,3,2,1 −p . Also the induced 

edge labels of  'G  are 23,...,22 ,12 ,2 −++ pppp . For each ,to1 ni = the label of 

the edge .)(
2

12)()(
is' pvf

pvfvf
vv i

ii
ii +=







 −++  Therefore the induced edge labels of 

'iivv  for pi ≤≤1 are 12,...,2,1, −++ pppp . Thus  )(+G  is a mean graph. 

 
Example 2.15: Let G be a Comb obtained from the path 

4P . The mean labeling of )(+G is 

given in Fig. 7.  
 
 

 

 

 

 

 

 

 

Fig. 7 

 
Theorem 2.16: The graph 

32PK c
n + is a mean graph for all n. 
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Proof: Let },...,,,{)( 321 nn uuuuKV = . Let },,,,,{)2( 3 zyxwvuPV =  and 

},,,{)2( 3 yzxyvwuvPE = .  

Define }46,...,2,1,0{)2(: 3 +=→+ nqPKVf c
n

as follows:  

;0)(,2)( == vfuf  

,4)( =wf       niiuf i ≤≤−+= 1for)1(65)( , 

.36)(,46)(,16)( +=+=+= nzfnyfnxf  

For each vertex labelf , the induced edge label *f  is defined as follows: 

,1)(* =uvf                           ,2)(* =vwf  

13)(* += iuuf i                  for   ni ≤≤1 , 

ivuf i 3)(* =                      for    ni ≤≤1 ,    

23)(* += iwuf i               for    ni ≤≤1 , 

)(3)(* inxuf i +=            for    ni ≤≤1 , 

2)(3)(* ++= inyuf i        for    ni ≤≤1 , 

1)(3)(* ++= inzuf i        for    ni ≤≤1 , 

,36)(* += nxyf              46)(* += nyzf . 

 
It can be verified that   f  is a mean labeling and hence  

32PK c
n + is a mean graph. 

 
Example 2.17: The mean labeling of  

33 2PK c +  is given in Fig. 8. 

 
 

 

 

 
                                                         

Fig. 8 
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