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Abstract

In this paper, we give several characterizations of those p (s) which are generalized Stone

nearlattices in terms of n-ideals. We show that when n is a central element of a nearlattice S
and p(s) is a sectionally pseudocomplemented distributive nearlattice, then P (s) is

generalized Stone if and only if for any xeS, < x>t v<x>*=5. Moreover, when
P,(S) Is sectionally pseudocomplemented distributive nearlattice, then we prove that p ()
is generalized Stone if and only if each prime n-ideal contains a unique minimal prime n-
ideal.
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1. Introduction

Generalized Stone lattices have been studied by many authors including [1], [2], [3], [4]
and [5]. On the other hand, minimal prime ideals and generalized Stone nearlattices have
been studied by [6]. In this paper, we generalize several important results on generalized
Stone nearlattices in terms of n-ideals.

A nearlattice S is a meet semilattice with the property that any two elements possessing
a common upper bound, have a supremum. Nearlattice S is distributive if for all
X,¥,2€S, xXa(yvz)=(xay)v(xaz) provided y.z exists. An element n of a

nearlattice S is called medial if m(x,n,y) = (XA y)v(xAn)v(yan) existsin$S forall

x,yeS. A nearlattice S is called a medial nearlattice if m(x,y,z) exists for all

X,¥,z2eS.Anelement S of anearlattice S is called standard if forall t,x,y S,
tA[(XAYIVXAS) ]=(AXAY)VEAXAS).
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The element S is called neutral if

(i) S isstandard and

(ii) forall x,y,zeS, SA[(XAY)V(XAZ)]=(SAXAY)V(SAXAZ).

In a distributive nearlattice every element is neutral and hence standard. Anelementn in
a nearlattice S is called sesquimedial if for all x,yzeS,
{xAn)v(yAn)]al(yan)v(z /\n)]:v(x AY)Vv(yAz) existsinS . Anelement n of
a nearlattice S is called an upper element if x\ n exists for all xeS. Every upper
element is of course a sesquimedial element. An element n is called a central element of S
if it is neutral, upper and complemented in each interval containing it.

For a fixed element N of a nearlattice S, a convex subnearlattice of S containing N is

called an n-ideal of S. For a medial element N of a nearlattice S, an N-ideal P of S is
called prime if P #S and m(x,n,y) € P(x,y €S) implies either xeP ory € F.
A prime N -ideal P is said to be a minimal prime n-ideal belonging to N -ideal | if (i)
I P and (ii) There exists no prime N- ideal Q such that Q#pP and 1 cQcP. A
prime N-ideal P of a nearlattice S is called a minimal prime n-ideal if there exists no
prime N-ideal Q suchthat Q#pP and Q c P.

Let L be a lattice with 0 and ae L. Then a" of L is called a pseudocomplement of

a if ara"=0 and if aax=0 for any xelL then x<a". A lattice L is called
pseudocomplemented if every element of L has a pseudocomplement.

A nearlattice S with 0 is called sectionally pseudocomplemented if the interval
[0,x] for each xeS, is pseudocomplemented. Of course, every finite distributive

nearlattice is sectionally pseudocomplemented. A nearlattice S is called relatively
pseudocomplemented if the interval [a,b] for each abeS, a<b is

pseudocomplemented.
A distributive nearlattice S with 0 is called a generalized Stone nearlattice if
(X' v(x]" =S for each xeS. A distributive nearlattice S with 0 is a generalized

Stone nearlattice if and only if each interval [0,x], 0< X e S is a Stone lattice.
For any n-ideal J of a nearlattice S,
J'={xeS:m(x,n,j)=n forall jeJ}.
An N -ideal generated by a single element a is called principal n-ideal, denoted by
<a>, . The set of principal N -ideal is denoted by P (S). When S is a distributive

nearlattice then for any a € S we define
<a>={yeS:aansy=(yra)v(yan)}
={yeS:y=(yra)v(yan)v(aan)}
When N is an upper element, then < a > is the closed interval [a An,avn].

We know that for a distributive nearlattice S with an upper element n, P (S) is a
distributive nearlattice with the smallest element {n}. Let <a > eP,(S). By the interval
[{n},<a>,] in P(S), we mean the set of all principal n-ideals contained in <a > . P (S)
is called sectionally pseudocomplemented if for each <a> eP(s), the interval
[{n}.<a>] In P(S) is pseudocomplemented . That is , each principal n-ideal contained
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in <a> has a relative pseudocomplement in [{n},<a > ] Which is also a member of
P.(S) . We shall denote the relative pseudocomplement of <p> in any interval by
<b>?, while <p>' denotes the pseudocomplement of <p>_in | (S).

If P (S) is a distributive sectionally pseudocomplemented nearlattice, then p (s) is a
generalized Stone nearlattice if for each <a> eP,(S), the interval [{n},<a > ] in
P (S) is a Stone lattice.

For b<a<n, if [b,n] is dual pseudocomplemented then a® denotes the relative dual

pseudocomplement of a in [b,n]. If [n,d] is pseudocomplemented then for ¢ <[n,d]. c’
denotes the relative pseudocomplement of ¢ in [n,d]. Two prime n-ideals P and Q of a
nearlattice S are called comaximal if pvQ =5.

In this paper, we have given several characterizations of those p (s) which are

generalized Stone nearlattices in terms of n-ideals. we have also discussed on O(P) and
n(P) and given some properties of n(P). Moreover, when P (S) is sectionally

pseudocomplemented distributive nearlattice, then we have proved that P (S) is

generalized Stone if and only if each prime n-ideal contains a unique minimal prime n-
ideal.

Following result is due to [7] which will be needed for the development of this paper.

Theorem 1.1. For an element n of a nearlattice S, the following conditions are
equivalent :
(i) n iscentralin S
(i) n isupper andthe map @:P,(S)— (n]* x[n) defined by
®€a>, =(aan,avn) isanisomorphism, where (n]* represents the dual of

the lattice (n]. O
When n is a central element of S ( then of course, N is upper, and so sesquimedial ),
then by Theorem 1.1, P, (S) = (n]* x[n) . Thus we have the following result.

Theorem 1.2. Let S be a nearlatticeand neS be a central element. Then
P (S) is sectionally pseudocomplemented if and only if (n] is sectionally dual

pseudocomplemented and [n) is sectionally pseudocomplemented. O

Corollary 1.3. Let n be a central elementand p (S) be a
sectionally pseudocomplemented distributive nearlattice. Then for {n}c<a> c<b>,,

<a>’=[aanavn]’=[(@aAn)®™, (avn)’].

Proof. Since P,(s) is sectionally pseudocomplemented, so by
Theorem 1.2, (n] is sectionally dual pseudocomplemented and [n) is sectionally
pseudocomplemented. Here bAn<aan<n<awvn<bwvn.
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Since (aAn)™ is the relative dual pseudocomplement of aAn in [ban,n] and
(avn)? is the relative pseudocomplement of av/n in [n,bvn], so,
[aAan,avn]n[(aan)®™,(avn)’]=[(aAn)v(aan)® (avn) A (@vn)]
=[n,n]={n}.

Now let te<a>. Then [tAn,tvn]c<a>p.

Thus, {n}=[tAn,tvn]n[aan,avn]

=[(tAan)v(aan),(tvn)A(avn)]

and so (tan)v(aan)=n=(tvn)a(awvn).

This implies (t An)>(aAn)*™ and (tvn)<(avn)°.

Hence, [t An,tvn]c[(@aAn)™,(avn)’] andso <a>’c[(aAn)™, (avn)’].

Therefore <a>’=[(aAn)™,(avn)’]. O

If S is a distributive lattice with 0 and 1, then for a central element neS,
P.(S)=F,(S). Then P (S) is pseudocomplemented if and only if (n] is dual

pseudocomplemented and [n) is pseudocomplemented, as F,(S)=(n]’ x[n). For any

n<b<1, b* denotes the pseudocomplement of b in [n,1], while for 0<a<n, a™
denotes the dual pseudocomplement of a in [0,n].

Corollary 1.4. Let n be a central element of a lattice S with 0, 1 and P (S) is a

pseudocomplemented distributive lattice. Then forany ae S,
<a>=[(aan)*,(avn)]. o

A distributive nearlattice S with 0 is generalized Stone nearlattice if for each x e S,

(X]"v(x]" =S . By [6], a distributive nearlattice S with 0 is a generalized Stone

nearlattice if and only if each interval [0,x], 0<x e S is a Stone lattice.

To prove Theorem 1.7 we need the following lemmas. Lemma 1.5 is trivial by Theorem
1.2

Lemma 1.5. Suppose n is acentral element of a distributive nearlattice S, and P, (S)
is sectionally pseudocomplemented. Then p (s) is generalized Stone if and only if (n] is
dual generalized Stone and [n) is generalized Stone. O

Lemma 1.6. Suppose P (S) is a sectionally pseudocomplemented distributive
nearlattice. Let x,yeS with <x> n<y> ={n}. Then the following conditions are
equivalent :
() <x>v<y>=S;
(i) ForanyteS, <m(x,nt)>)v<m(y,nt)>=<t>
where < m(x,n,t) >g denotes the relative pseudocomplement of
<m(x,n,t) > in [{n},<t>].
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Proof. (i)= (ii). Suppose (i) holds. Then forany te S,
<m(x,n,t) > v <m(y,n,t) >°
=(<x> Nn<t> )P v(<y> n<t>)°
=((< x>, N<t>)N<t>)v((<y> Nn<t>)"n<t>)by [8 Lemmald]
(x> n<t>)v(<y> n<t>)) by[8 Lemmal.3]
(x> v<y>N<t>,
=Sn<t>,
:<t>n,
Hence (ii) holds.
(if)y= (i). Suppose (ii) holdsand t e S.
By (i), <m(x,n,t) > v<m(y,n,t)>’=<t> .
Then using [8, Lemmas 1.3 and 1.4] and the calculation of (i) = (ii) above we get
(x> v<y>)N<t>=<t> .
Thisimplies <t> c<x>'v<y>'andso te<x>' v<y>'.

Therefore, < x> v<y>'=S. 0O

Theorem 1.7. Let n be a central element of S, and P (S) be a sectionally

pseudocomplemented distributive nearlattice. Then the following conditions are
equivalent :
(i) P/(S) isgeneralized Stone ;

(i) Forany xeS, <x> v<x>"=S;
(iii) Forall x,yeS, (Kx> N<y>) =<x> v<y>;
(iv) Forall x,yeS, <x> n<y> ={n}

impliesthat <x>' v<y>'=S§S.

Proof. (i) = (ii). Suppose (i) holds and, thete Sn forany xe S,
m(x,n,t) e<t >, andso <m(t,n,x) > e[{n},<t>].
Since P,(S) is generalized Stone , so <m(t,n,x) >° v <m(t,n,x) >X=<t> .
Then by [8, Lemma 1.4],
<t> =(<mt,nx)> n<t>)v(<mt,nx)>" N<t>)
=((<x> Nn<t> ) Nn<t>)v (Kx>, Nn<t>)"Nn<t>))
Thus by [8, Lemma 1.3],
<t> =(KX>INA<t> ) v(<X>TN<t>).
Thus <t> =(<x>' v<x>")n<t> .
Thisimplies <t> c<x > v<x>"andso te<x>' v<x>:".
Therefore < x> v<x>'"=S.
(if)= (iii). Suppose (ii) holds.
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Forany x,yeS
(£X>, A<y>)A(E x> v<y>)
=(X> N<Yy> N<X>)VIKX> N<y> N<y>)
= {n}v{n}={n}
Now let < x> ~<y> ~l={n} for some n-ideal I.
Then <y> Al c<x>!. Meeting < x >** with both sides,
we have <y > nln<x>"={n}.
This implies |~ < x>"c<y >}
HenceI=1InN&§
=ln(<x>! v<x>")
=(In<x>)v(In<x>)
c<X>rv<y>'
Therefore, < x>! v<y>i=(<x> Nn<y>)".
(i) = (iv). Let <x> n<y> ={n} forsome x,yeS.
Then by (iii),
S={n}' =(<x>n<y>)"
=<xX>Tv<y>,
Thus (iv) holds.

To complete the proof we shall show that (iv) = (i).
Suppose (iv) holds. Since P (S) is sectionally pseudocomplemented, so by Theorem 1.2,

(n] is sectionally dual pseudocomplemented and [n) is sectionally pseudocomplemented.
Suppose n<b<d. Let b® be the relative pseudocomplement of b in [n,d].

Now b® Ab% =n.

Thus <b®> N <b®> =[n,b’ Ab®]=[n,n]={n}.
Also <b’> ,<b”> c<d > . Then by equivalent conditions of (iv) given in Lemma 1.6,
we have <m(b’ n,d)>% v<m(b®n,d)>0=<d >, .
But m(b°,n,d) =b° and m(b™,n,d)=b® as n<b’, b <d.
Since by Corollary 1.4, <h® >0=<p® > and <p® >0=<p”®> =<b’> .
Therefore, <d > =<b®> v<b®>

=< bO vbOO >n
which gives b° vb® =d . This implies [n,d] is a Stone lattice.
That is, [n) is generalized Stone.

A dual proof of above shows that (iv) also implies that (n] is a dual generalized Stone
lattice. Therefore, by Lemma 1.5, p (s) is generalized Stone. O

Following corollary is an immediate consequence of above result.

Corollary 1.8. Let n be a central element of a distributive lattice L with 0 and 1 and
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let p (L) be a pseudocomplemented distributive lattice. Then the following conditions
are equivalent :

(i) P(L) isStone;

(i) Forall xeL, <x>'v<x>"=L;

(iii) Forall X,yel, (x> nNn<y>) =<x>v<y> ;

(iv) Forall x,yelL, <x> n<y>={n} impliesthat <x>'v<y>'=L.0O

For a prime ideal P of a distributive nearlattice S with 0, we define
O(P)={xeS:xAny=0 forsome yeS-P}
Clearly o(p) is an ideal and O(P) < P. Note that o(P) is the intersection of all the

minimal prime ideals of S which are contained in P.

For a prime n-ideal P of a distributive nearlattice S, we write
n(P)={yeS:m(y,n,x)=n for some xeS-P}.

Clearly, n(P) is an n-ideal and n(P) c P.

Lemma1.9. LetS bea distributive nearlattice with a medial elementn and P be a
prime n-ideal in S. Then each minimal prime n-ideal belonging to n(P) is contained
in P.

Proof. Let Q be a minimal prime n-ideal belonging to n(P). If Q « P, then choose
y eQ—P. Since Q is a prime n-ideal, so by [9,Theorem 1.5], we know that Q is either

an ideal or a filter. Without loss of generality suppose Q is an ideal. Now let
T={teS:m(y,n,t)en(P)}.

We shall show that T Q. If not, let D=(S-Q)v[y).

Then n(P)nD=.

For otherwise, y ar en(P) for some r e S—Q. Then by convexity,
yar<m(y,n,r)<(yar)vn implies m(y,n,r)en(P). Hence reT = Q, whichisa
contradiction.

Thus by [9,Theorem 1.9], there exists a prime n-ideal R containing n(P) disjoint to D.
Then RcQ.

Moreover, R=Q as Y ¢ R, this shows that Q is not a minimal prime n-ideal

belonging to n(P), which is a contradiction.

Therefore T ¢ Q. Hence there exists z ¢ Q such that m(y,n,z) en(P). Thus

m(m(y,n,z),n,x) =n forsome xS —P . Itis easy to see that
m(m(y,n,z),n,x) =m(m(y,n,x),n,z) .

Hence m(m(y,n,x),n,z) =n. Since P is prime and y,x ¢ P so m(y,n,x) ¢ P.
Therefore, zen(P) < Q, which is a contradiction.

Hence Qcp.O
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Proposition 1.10. For a medial element n if P is a prime n- ideal in a distributive
nearlattice S, then n(P) is the intersection of all minimal prime n- ideals contained in P.

Proof. Clearly n(P) is contained in any prime n-ideal which is contained in P.
Hence n(P) is contained in the intersection of all minimal prime n-ideals contained in P.

Since S is distributive, so by [7, Corollary 2.1.10], n(P) is the intersection of all
minimal prime n-ideals belonging to it.

By [8, Lemma 1.2], as each prime n-ideal contains a minimal prime n-ideal, above
remarks and Lemma 1.9 establish the proposition. O

Following result has been proved by [5] for lattices. We generalize that result for
nearlattices with the help of [10,Theorem 1.7].

Theorem 1.11. Let p(s) be a sectionally pseudocomplemented distributive

nearlattice and n be central element in S. Then the following conditions are equivalent :
(i) Forany xeS, <x>'v<x>*=S§,

equivalently, p (s) is generalized Stone ;
(if) For any two minimal prime n-idealsP andQ, PvQ =S ;

(iii) Every prime n- ideal contains a unique minimal prime n- ideal ;
(iv) For each prime n- ideal P, n(P) is a prime n- ideal.

Proof. (i)= (ii). Suppose (i) holds.

Let xeP-Q.Then <x> cP-Q.Now, <x> n<x>'={n}cQ-
So <x>!cQ asQ isprime.
Again, x e P implies < x >*c P by [8, Theorem 1.6].
Hence by (i), S=<x>! v<x>"cQvP.Therefore, PvQ=S.
(i) < (iii) is trivial.
(iii) = (iv) is direct consequence of Proposition 1.10.
(iv) = (i). Suppose (iv) holds.
First we shall show that for all x,yeS with <x> n<y> ={n} implies
<x>'v<y>=§.Ifitdoes not hold, then there exist
X,yeS with <x> n<y> ={n} suchthat < x>' v<y>'«S.
As S is distributive, so by [9, Theorem 1.9], there is a prime n-ideal P such that
<x> v<y>cP.Then <x>'cP and <y>'cp imply x¢n(P) and y ¢n(P) .
By (iv), n(P) is prime n-ideal and so m(x,n,y)=nen(P) is contradictory.
Thus forall X,y eS with <x> n<y> ={n}
impliesthat <x >’ v<y>'=S.
Hence by equivalent conditions of Theorem 1.7, (i) holds. O



S. Akhter and A. S. A. Noor, J. Sci. Res. 6 (2), 233-241 (2014) 241

References

1. R.Balbesand A. Horn, Duke Math. J. 38, 537 (1971).
http://dx.doi.org/10.1215/S0012-7094-71-03843-9

2. W. H. Cornish, Austral. Math. Soc. 14, 200 (1972).
http://dx.doi.org/10.1017/S1446788700010041

3. T.Katrinak, (Russian) Math. Fyz. Casopis 16, 128 (1966).

4. T.Katrinak, (Russian) Math. Casopis Sloven. Akad. Vied. 17, 20 (1967).

5. A.S. A Noorand M. A. Ali, The Rajshahi University Studies, Part-B 26, 83(1998).

6. A

7.

S. A. Noor and A. K. M. S. Islam, J. Sci. Jahangirnagar University 33 (1), 105 (2010).
S. Akhter, A Study of Principal n-ldeals of a Nearlattice, Ph.D. Thesis, Rajshahi University,
Rajshahi (2003).
S. Akhter and M. A. Latif, J. Sci. 35, 217 (2007).
S. Akhter and A. S. A. Noor, Ganit J. Bangladesh Math. Soc. 24, 35 (2005).
10. S. Akhter and A. S. A. Noor, J. Sci. Res. 4 (3), 589 (2012).
http://dx.doi.org/10.3329/jsr.v4i3.10103

8.
9.



http://dx.doi.org/10.1215/S0012-7094-71-03843-9
http://dx.doi.org/10.1017/S1446788700010041
http://dx.doi.org/10.3329/jsr.v4i3.10103

