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Abstract 

 
For a fixed element n  of a nearlattice S, a convex subnearlattice of S containing n is called 
an n-ideal of S. An n-ideal generated by a single element a is called a principal n-ideal, 
denoted by <a>n. The set of principal n-ideals is denoted by Pn(S). A distributive nearlattice 
S is called relatively Stone nearlattice if each closed interval [x,y]

),( Syxyx ∈<  is a Stone lattice. In this paper, we give several characterizations of 
those Pn(S) which are relatively Stone in terms of n-ideals and relative n-annihilators. 
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1.  Introduction  
 
Relatively Stone lattices have studied by many authors including Ali [1], Cornish [2] and 
mandelker [3]. In this paper we work on relatively Stone nearlattice. A nearlattice S is a 
meet semilattice with the property that any two elements possessing a common upper 
bound, have a supremum. Nearlattice S is distributive if for all Szyx ∈,, , 

)()(=)( zxyxzyx ∧∨∧∨∧  provided zy ∨  exists. An element s  of a nearlattice S  
is called  standard if for all Syxt ∈,, , 

       )()(=)]()[( sxtyxtsxyxt ∧∧∨∧∧∧∨∧∧ . 
The element s  is called neutral if 
  (i)  s  is standard and 
  (ii)  for all Szyx ∈,, ,  )()(=)]()[( zxsyxszxyxs ∧∧∨∧∧∧∨∧∧ . 

In a distributive nearlattice every element is neutral and hence standard. 
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An element n  of a nearlattice S is called  medial if  
 

)()()(=),,( nynxyxynxm ∧∨∧∨∧  exists in S for all .  
 

A nearlattice S is called a  medial nearlattice if ),,( zyxm  exists for all . An   
element   n    in   a nearlattice  S is called    sesquimedial if for all  

 ( ) )()()]()[()]()[( zyyxnznynynx ∧∨∧∨∧∨∧∧∧∨∧  exists in S. An 
element n  of a nearlattice  S is called an  upper element if nx ∨  exists for all . 
Every upper element is of course a sesquimedial element. An element n  is called a  
central element of S if it is neutral, upper and complemented in each interval containing it.  
     For   Sba ∈, ,  >,< ba    denotes   the   relative  annihilator.  That  is, 

}:{>=,< baxSxba ≤∧∈ . Also note that >,>=<,< baaba ∧ .  
Again for Lba ∈, , where L is a lattice, }:{=>,< baxLxba d ≥∨∈  is a dual 

relative annihilator. 
In case  of  a  nearlattice  it is not  possible  to define a  dual relative annihilator 

ideal for any a  and b . But if n is an upper element of S, then nx ∨  exists for all 
Sx∈ .  

Then for any ](na∈ , xa ∨  exists for all Sx∈  by the upper bound property of S. 
Thus for any ](na∈ , we can talk about dual relative annihilator ideal of the form 

dba >,<  for any Sb∈ . That is, for any na ≤  in  S, 
 

 }:{=>,< baxSxba d ≥∨∈ . 
 

For Sba ∈,  and an upper element Sn∈ ,   
We define }><),,(:{=>,< n

n bxnamSxba ∈∈  
                     }.),,(:{= nbxnamnbSx ∨≤≤∧∈  

     We call nba >,<  the  annihilator of a   relative to b   around the element n or 
simply a  relative n - annihilator. For two n-ideals A and B of a nearlattice S, >,< BA  
denotes   ,),,(:{ BxnamSx ∈∈ for all } when n  is a medial element. 
     A distributive lattice L  with 0 and 1 is called a  Stone lattice if it is 
pseudocomplemented and for each La∈ , 1=∗∗∗ ∨ aa . We also know that a distributive 
pseudocomplemented lattice is a Stone lattice if and only if for each Lba ∈, ,  

∗∗∗ ∨∧ baba =)( . A  nearlattice S is   relatively   pseudocomplemented if the  interval  
],[ ba  for each  Sba ∈, , ba <  is   pseudocomplemented. A distributive nearlattice S is 

called  relatively Stone nearlattice if each closed interval ],[ yx  with yx <  ( Syx ∈, ) 
is a Stone lattice. 

For a fixed element n  of a neartattice S, a convex subnearlattice of S containing n  is 
called an n -ideal of S. An n -ideal generated by a single element a  is called a principal 
n-ideal, denoted by na >< . The set of principal n-ideals is denoted by )(SPn . When 

Sn∈  is standard and medial then for any Sa∈    
)}()(=:{=>< nyayynaSya n ∧∨∧≤∧∈  

           )}()()(=:{= nanyayySy ∧∨∧∨∧∈  
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When n  is an upper element, na ><  is the closed interval [ nana ∨∧ , ]. For 
detailed literature on n -ideals and principal n -ideals see Akhter et. al. [4]. 
     When n  is a sesquimedial element of a distributive nearlattice S, then Pn(S) is also a 
distributive nearlattice. Pn(S) is relatively pseudocomplemented if the interval 

]><,>[< nn ba  in Pn(S) for each  

)(><,>< SPba nnn ∈ , nn ba ><>< ⊂  is pseudocomplemented.  
     Moreover, Pn(S) is a relatively Stone nearlattice if each closed interval 

]><,>[< nn ba  with ))(><,>(<  >< < >< SPbaba nnnnn ∈  is a Stone lattice. 
  

Theorem 1.1.   Let  S  be  a distributive  nearlattice  with an upper element n.  Then the 
following conditions hold : 
      (i)   >><,>>=<<><,><><< nnnnn xyxyx ∨  ; 

      (ii) >><,><<>=,><< nnJyn yxJx ∈∨ ,  the supremum of n- ideals       

             >><,><< nn yx   in the lattice of n- ideals of S,  for any Sx∈   and any n-  
              ideal J. 
 
Proof.  (i).  Obviously L  
To prove the reverse inclusion, let , ., 

then >><,><< nn xyt∈ . This implies nxtnym ><),,( ∈ . 

That is, nn xtnym ><>),,(< ⊆  and  

so nnnnn xtxty ><)><>(<)><>(< ⊆∩∨∩ . 

That is, nnnn xyxt ><]><>[<>< ⊆∨∩   

which implies >><,><><< nnn xyxt ∨∈ . 
Thus,  and so R.H.S.⊆ L.H.S. 
 

Hence L.H.S.=R.H.S.. 
 

(ii).   Obviously R.H.S.⊆ L.H.S. 
 

To prove the reverse inclusion, let , then Jtnxm ∈),,(  that is 
jtnxm =),,(  for some Jj∈ . 

This implies >><,><< nn jxt∈ . 
Thus  t ∈ R.H.S. and so (ii) holds. □ 

      
Following  lemma  will  be needed  for  further  development  of this paper. This is in fact, 
the dual of Cornish [2, Lemma 3.6] and very easy to prove. So we prefer to omit the 
proof. 
 
Lemma 1.2.   Let L be a distributive lattice . Then the following conditions hold : 

(i)    dd xyxyx >,=<>,< ∧  ; 
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(ii)   dFyd yxFx >,<=>),[< ∈∨ ,  where F  is a filter of  L ; 

(iii)  ∨∩∩∨ ]},[>,{<=],[}>,<>,{< baaxbaayax ddd ]},[>,{< baay d ∩ , 

    where ],[ ba   represents any interval in L. □ 
 

Lemma 1.3 and 1.4 are essential for the proof of our main result of this paper. 
 
Lemma 1.3   Let S be a distributive nearlattice with an upper element n. Suppose 

Scba ∈,, . 
(i)     If ncba ≥,, ,  then >=><,>),,(<< nn cbnam  

       >><,><<>><,><< nnnn cbca ∨   is equivalent to 

       .>,<>,>=<,< cbcacba ∨∧  
 (ii)    If ncba ≤,, ,  then >=><,>),,(<< nn cbnam  

       >><,><<>><,><< nnnn cbca ∨   is equivalent to 

       .>,<>,=<>,< ddd cbcacba ∨∨  
 

Proof.  (i).   Suppose ncba ≥,, , and  
>><,><<>><,>>=<<><,>),,(<< nnnnnn cbcacbnam ∨ . 

That is, >><,><<>><,>>=<<><,><><< nnnnnnn cbcacba ∨∩ . 
Let >,< cbax ∧∈ .Then cbax ≤∧∧ ,   

],[>=<><>< banxbax nnn ∧∩∧∩  
  )]()(,[= banxn ∧∧∨  
 ])(,[= nbaxn ∨∧∧  
 ].,[ cn⊆  

   

Hence   >><,><< nn cbax ∧∈  

 >><,>),,(=<< nn cbnam  

 >><,><<>>><,>=<< nnnn cbca ∨  

Thus qpx ∨≤ , where >><,><< nn cap∈  and >><,><< nn cbq∈ . 

Then nnn cap ><><>< ⊆∩ . That is, ],[],[],[ cnannpnp ⊆∩∨∧ . 
Thus, ],[])(,[ cnanpn ⊆∧∨  which implies cap ≤∧  and so >,< cap∈ . 
Similarly, >,< cbq∈  and so >,<>,< cbcax ∨∈ . 
Hence >,<>,<>,< cbcacba ∨⊆∧ . 
But >,<>,<>,< cbacbca ∧⊆∨  is obvious. 
Therefore, >,<>,>=<,< cbcacba ∨∧ . 
Conversely, suppose >,<>,>=<,< cbcacba ∨∧ . 
Let >><,>),,(<< nn cbnamx∈ . 
Then ],[],[],[=>),,(<>< cnbannxnxbnamx nn ⊆∧∩∨∧∩ . 
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That is, ],[)]()(,[ cnbanxn ⊆∧∧∨ . 
Thus ],[])(,[ cnnbaxn ⊆∨∧∧  which implies  

cbax ≤∧∧  and so >,<>,>=<,< cbcacbax ∨∧∈ . 
This implies srx ∨= , where >,< car∈  and >,< cbs∈ . 
Then car ≤∧  and cbs ≤∧ .   
Now, ],[],[=><>< annrnrar nn ∩∨∧∩  

])(,[= anrn ∧∨  
])(,[= narn ∨∧  

nccn >=<],[⊆  

Hence >><,><< nn car∈ . Similarly >><,><< nn cbs∈  

Thus >><,><<>><,><< nnnn cbcax ∨∈  and so 

>><,><<>><,><<>><,>),,(<< nnnnnn cbcacbnam ∨⊆ . 

Since >><,>),,(<<>><,><<>><,><< nnnnnn cbnamcbca ⊆∨  
is obvious, so 

>><,><<>><,><< = >><,>),,(<< nnnnnn cbcacbnam ∨ .  
A dual calculation of above proof proves (ii). □ 

 
Lemma 1.4.   Let S be a distributive nearlattice with an upper element n. Suppose 

Scba ∈,, . 
(i)   If ncba ≥,,   and ba ∨   exists  then = >><><,><< nnn bac ∨   

          >><,><<>><,><< nnnn bcac ∨   is equivalent to          

           .>,<>,>=<,< bcacbac ∨∨  
(ii)    If ncba ≤,, , then = >><><,><< nnn bac ∨          

          >><,><<>><,><< nnnn bcac ∨  

        is equivalent to .>,<>,=<>,< ddd bcacbac ∨∧  
  
Proof.  (i).  Suppose ncba ≥,,  and ba ∨  exists and 

>><,><<>><,>>=<<><><,><< nnnnnnn bcacbac ∨∨ . 

Let >,< bacx ∨∈ . Then bacx ∨≤∧ .   
Then ],[],[=><>< cnnxnxcx nn ∩∨∧∩  
  ])(,[= cnxn ∧∨  
 ])(,[= ncxn ∨∧  
 ],[ ban ∨⊆  
 nn ba ><>=< ∨  

That is nnnn bacx ><><><>< ∨⊆∩ .  

Thus = >><><,><< nnn bacx ∨∈  >><,><<>><,><< nnnn bcac ∨ .  
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So, qpx ∨≤    where >><,><< nn acp∈ and >><,><< nn bcq∈  

Since   >><,><< nn acp∈    so   nnn acp ><><>< ⊆∩ . 
That is   ].,[],[],[ ancnnpnp ⊆∩∨∧  
Thus  ].,[])(,[ ancnpn ⊆∧∨  
That is   ].,[])(,[ anncpn ⊆∨∧  
This implies   acp ≤∧  and so >,< acp∈ . 
Similarly,  >,< bcq∈ . 
Hence >,<>,< bcacx ∨∈  and so >,<>,<>,< bcacbac ∨⊆∨ . 

 
Since the reverse inequality is trivial, 

so  >,<>,>=<,< bcacbac ∨∨ . 
Conversely, suppose >,<>,>=<,< bcacbac ∨∨ . 
Let .>><><,><< nnn bacx ∨∈  

Then   nnnn bacx ><><><>< ∨⊆∩ . 
That is ],[],[],[ bancnnxnx ∨⊆∩∨∧  
and so ],[])(,[ bancnxn ∨⊆∧∨ . 
That is  ],[])(,[ banncxn ∨⊆∨∧ . 
This implies  bacx ∨≤∧  and so >,<>,>=<,< bcacbacx ∨∨∈ . 
Thus trx ∨= , where >,< acr∈  and >,< bct∈ .   
Now, ],[],[=><>< cnnrnrcr nn ∩∨∧∩  
 ])(,[= ncrn ∨∧  
 naan >=<],[⊆  
 (Here  >,< acr∈ implies acr ≤∧ ) 

So >><,><< nn acr∈ . Similarly >><,><< nn bct∈ . 

Hence >><,><<>><,><< nnnn bcacx ∨∈ , and so  

.>><,><<>><,><<>><><,><< nnnnnnn bcacbac ∨⊆∨  
Since the reverse inequality is trivial, so 

.>><,><<>><,>>=<<><><,><< nnnnnnn bcacbac ∨∨  
By the dual calculation of above we can easily prove (ii). □ 

 
Following result on Stone lattices is well known due to Cornish [2] and Katrinak [5, 6]. 
 
Theorem 1.5. Let L be a pseudocomplemented distributive lattice. Then the following 
conditions are equivalent : 

   (i)    L  is Stone ; 
  (ii)    For each Lyx ∈, ,  ∗∗∗ ∨∧ yxyx =)(  ; 

  (iii)   If 0=yx ∧ ,  Lyx ∈,   then  1.=∗∗ ∨ yx  □ 
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Similarly  we  can  prove the  following  result which is dual to above Theorem. 
 
Theorem 1.6.   Let L be a dual pseudocomplemented distributive lattice. Then the 
following conditions are equivalent : 

 (i)    L   is dual Stone ; 
(ii)    For each Lyx ∈, ,  ddd yxyx ∗∗∗ ∧∨ =)(  ; 

(iii)   If 1=yx ∨ ,  Lyx ∈,   then  0,=dd yx ∗∗ ∧   where dx∗   denotes 
 the dual pseudocomplement of x . □ 

 
Ali [1] in his Theorem 3.2.7 has given a nice characterization of relatively dual Stone 

lattices in terms of dual relative annihilators, which is in fact the dual of Cornish [2, 
Theorem 3.7]. As we have mentioned earlier that in nearlattices the idea of dual relative 
annihilators is not always possible. But when n  is an upper element in S then nx ∨  
exists for all Sx∈ . Thus for any ](na∈ , ax ∨  exists for all Sx∈ . Hence we can 

define dba >,<  for all ](na∈  and Sb∈ . 
 
Theorem 1.7.  Let  n    be  an upper element  of a distributive nearlattice S  such that (n]  
is relatively dual pseudocomplemented. Let ](,, ncba ∈   be arbitrary elements and A, B 
be arbitrary filters of (n]. Then the following conditions are equivalent : 

    (i)    (n]  is relatively dual Stone  ; 
   (ii)   ]( = >,<>,< nabba dd ∨   ; 

   (iii)  ddd bcacbac >,<>,< = >,< ∨∧  ; 

   (iv)  ddd BcAcBAc >),[<>),[< = >),[< ∨∨  ; 

   (v)   ddd cbcacba >,<>,< = >,< ∨∨   ; 
 
Proof. (i) ⇒ (ii). Suppose (i) holds. 
Let ](nz∈  be arbitrary. Consider the interval ].,[= zbazI ∨∨  

Then zba ∨∨  is the largest element of I. 
Since by (i), I is dual Stone, then by Theorem 1.5(iii), there exists Isr ∈,   
such that rzbzbasa ∨∨∨∨∨ ==  and rsz ∧= . 
Now, bsa ≥∨  implies dbas >,<∈  and azbarzbrb ≥∨∨∨∨∨ ==  

implies dabr >,<∈ . 
Hence (ii) holds. 
 

    (ii) ⇒  (iii). Suppose (ii) holds. 
In (iii), SHLSHR .... ⊆  is obvious. 
Let dbacz >,< ∧∈ , then bacz ∧≥∨ . 
Since (ii) holds, so yxz ∧=  where dbax >,<∈  and daby >,<∈ . 
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Then bax ≥∨  and .aby ≥∨    
Thus, czxcx ∨∨∨ =  

 )( bax ∧∨≥  
 ,)()(= bbxax ≥∨∧∨  

 which implies dbcx >,<∈ . Similarly, dacy >,<∈ . 

Hence dd bcacyxz >,<>,<= ∨∈∧  and so 

ddd bcacbac >,<>,<>,< ∨⊆∧ . 
Thus (iii) holds. 
 

    (iii) ⇒  (iv) follows from Lemma 1.2(ii). 
    (iv) ⇒  (iii) is trivial. 
    (iii) ⇒  (ii) follows from Lemma 1.2(i) by putting bac ∧= . 
     (ii) ⇒  (v).  Suppose (ii) holds.  
 

Let dcbaz >,< ∨∈ . Then by (ii), yxz ∧= , where bax ≥∨  and aby ≥∨ . 
Also cbazbaxax ≥∨∨≥∨∨∨ = . 

This implies dcax >,<∈ . Similarly, dcby >,<∈ . 

Hence dd cbcayxz >,<>,<= ∨∈∧  and so 

ddd cbcacba >,<>,<>,< ∨⊆∨ . 
Since the reverse inequality is obvious,  so  (v) holds. 

     (v) ⇒  (i).  Suppose (v)  holds. 
Let ],[ bax∈ ,  ba < . Suppose dx0  denotes the relatively dual  
pseudocomplemented of x in ],[ ba . 

Then clearly  ,=:],[{=)[=)[ 00 bxtbatxx dd ∨∈ the largest element of [a,b]}. 

It is easy to see that ],[>,=<)[ 0 babxx d
d ∩ . 

Now suppose ],[, bayx ∈  with byx =∨ ,   

Then by (v), )[)[=)[   0000 dddd yxyx ∨∧  

 dd yx 00 )[)[= ∨  
 ]),[>,(<]),[>,(<= babybabx dd ∩∨∩  
 ],[)>,<>,(<= babybx dd ∩∨   (by lemma 1.2(iii)) 
 ],[>,=< babyx d ∩∨  
 ],[>,=< babb d ∩  
 ].,[ = ],[](= baban ∩  

This implies ayx dd =00 ∧ . 
Hence by Theorem 1.6, ],[ ba  is dual Stone and so (n] is relatively dual Stone. □ 

Following Theorems are due to Akhter [7] which will be used to prove the main result of 
this paper. 
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Theorem 1.8.    Let S  be a distributive medial nearlattice with an upper element n  and 
let I, J  be two  n- ideals of  S.  Then for any JIx ∨∈ , 11= jinx ∨∨   and 

22= jinx ∧∧   for some  JjjIii ∈∈ 2121 , ,,   with nji ≥11,   and nji ≤22 , . □ 
 

Theorem 1.9.   For an element n  of a nearlattice  S,  the following conditions are 
equivalent : 

(i)  n  is central in  S 
(ii)   n  is upper and the map )[]()(: nnSP d

n ×→Φ   defined by 

       ( ) ),(=>< nanaa n ∨∧Φ   is an isomorphism,  where dn](   represents 
        the dual of the lattice  (n]. □ 
 Now we prove our main results of this paper, which are generalizations of Cornish [2, 

Theorem 3.7], Mandelker [3, Theorem 5] and a result of Davey [8], also see Raihan et. al. 
[9]. These give characterizations of those Pn(S) which are relatively Stone , when S is 
medial. 
 
Theorem 1.10.    Let n  be a  central  element of a distributive medial  nearlattice  and 
Pn(S) be  relatively   pseudocomplemented. Suppose  A, B   are two n - ideals of  S.  Then 
for all,  Scba ∈,,    the following conditions are equivalent : 

(i)   Pn(S)  is relatively Stone ; 
(ii)   Sabba nnnn  = >><,><<>><,><< ∨  ; 

(iii) = >><><,><< nnn bac ∨ >><,><<>><,><< nnnn bcac ∨ , whenever       
ba ∨   exists ; 

(iv)  >,><<>,><< = >,><< BcAcBAc nnn ∨∨  ; 

(v)   = >><,>),,(<< nn cbnam  

>><>,><<>><,><< nnnn cbca ∨  
Proof.  (i) ⇒  (ii).  Let . 
Consider the interval >]><,><><>[< = nnnn zzbaI ∩∩  in Pn(S). Then 

nnn zba ><><>< ∩∩  is the smallest element of the interval I. 
By (i), I is Stone. Then by Theorem 1.5, there exist principal n-ideals 

Iqp nn ∈><,><  such that,   
 nnnnnn zbapza ><><>< = ><><>< ∩∩∩∩  

 nnn qzb ><><>< = ∩∩  

 and nnn qpz ><>=<>< ∨ .   
Now, 

 nnnnn zpapa ><><>< = ><>< ∩∩∩  
                  nnnn bzba ><><><>=< ⊆∩∩  

 implies >><,><<>< nnn bap ⊆ .   

Also, nnnnn qzbqb ><><>< = ><><  ∩∩∩  
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      nnnn azba ><><><>=< ⊆∩∩  

 implies >><,><<>< nnn abq ⊆ . 

Thus >><,><<>><,><<>< nnnnn abbaz ∨⊆  and  

so >><,><<>><,><< nnnn abbaz ∨∈ . 

Hence . = >><,><<>><,><< Sabba nnnn ∨  

    (ii) ⇒  (iii).  Suppose (ii) holds and ba ∨  exists. 
 

For (iii),  is obvious. 
Now, let >><><,><< nnn bacz ∨∈ . 

Then >><><,><< nnn bacnz ∨∈∨  and 

so nn bacnnzm ><><),,( ∨∈∨ . 
That is ],[),,( nbanbacnnzm ∨∨∧∧∈∨ . 
This implies nbancnz ∨∨≤∨∧∨ )()( . 

Now by (ii), >><,><<>><,><< nnnn abbanz ∨∈∨ . 

So )()( nqnpnz ∨∨∨≤∨  for some >><,><< nn banp ∈∨  and 

>><,><< nn abnq ∈∨ . 
Hence, trnqnznpnznz ∨∨∧∨∨∨∧∨∨ =))()(())()((=  (say). 
Now, )()()(=),,( nbnanpannpm ∨≤∨∧∨∨ . 
So nbnarnb ∨≤∨∧≤∧ )( .   
Hence, )()(=)(  ncnzrncr ∨∧∨∧∨∧  

 )( nbar ∨∨∧≤  
 ))(())((= nbrnar ∨∧∨∨∧  
 ).( nb∨≤  

This implies >><,><< nn bcr∈ . Similarly, >><,><< nn act∈ . 

Hence, >><,><<>><,><< nnnn bcacnz ∨∈∨ . 

Again >><><,><< nnn bacz ∨∈  

implies >><><,><< nnn bacnz ∨∈∧ . 
Then a dual calculation of above shows that 

>><,><<>><,><< nnnn bcacnz ∨∈∧ . 

Thus by convexity, >><,><<>><,><< nnnn bcacz ∨∈  and 
so . 
Hence (iii) holds. 

     

(iii) ⇒  (iv).  Suppose (iii) holds. 
In (iv),  is obvious. 
Now let >,><< BAcx n ∨∈ . Then >,><< BAcnx n ∨∈∨ . 
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Thus .),,( BAcnnxm ∨∈∨  
Now ncnnxcnnxm ≥∨∧∨∨ )()(=),,(  implies 

)[)(),,( nBAcnnxm ∩∨∈∨ . 
Hence by Theorem 1.1(ii),  >))[())[(,><< nBnAcnx n ∩∨∩∈∨  

 .>><,><<= ))[())[( nnnBnAr rc∩∨∩∈∨  
 But by Theorem 1.8, ))[())[( nBnAr ∩∨∩∈  implies tsr ∨=  for some 

As∈ , Bt∈  and ., nts ≥   
Then by (iii),  >><,>>=<<><,><< nnnn tscrc ∨  

                    >><><,>=<< nnn tsc ∨  

                 >><,><<>><,>=<< nnnn tcsc ∨  
                          .>,><<>,><< BcAc nn ∨⊆   

 Hence .>,><<>,><< BcAcnx nn ∨∈∨  

Also >,><< BAcx n ∨∈  implies .>,><< BAcnx n ∨∈∧  
Since ncnnxcnnxm ≤∧∨∧∧ )()(=),,( , so >]()(,><< nBAcnx n ∩∨∈∧ . 
Then, by Theorem 1.1(ii),  >])((])((,><< nBnAcnx n ∩∨∩∈∧  

                        .>><,><<= ])((])(( nnnBnAl lc∩∨∩∈∨  
 Again, using Theorem 1.8, we see that qpl ∧=  where Ap∈ , Bq∈  and nqp ≤, .  

Then by (iii),  >><,>>=<<><,><< nnnn qpclc ∧  

                 >><><,>=<< nnn qpc ∨  
                  >><,><<>><,>=<< nnnn qcpc ∨  
                  .>,><<>,><< BcAc nn ∨⊆  

Hence .>,><<>,><< BcAcnx nn ∨∈∧  

Therefore, by convexity, >,><<>,><< BcAcx nn ∨∈  and so  
Thus (iv) holds. 

     (iv) ⇒  (iii) is trivial. 
     (ii) ⇒  (v).  Suppose (ii) holds. In (v), R  is obvious. 

Now let >><,>),,(<< nn cbnamz∈ , 

which implies >><,>),,(<< nn cbnamnz ∈∨ . 

By (ii), >><,><<>><,><< nnnn abbanz ∨∈∨ . 

Then by Theorem 1.8, yxnz ∨∨ =   for some  >><,><< nn bax∈  

and >><,><< nn aby∈  and nyx ≥, . 

Thus, nnn bax ><><>< ⊆∩  and   
 nnnnn baxaxso ><><>< = ><><  ∩∩∩  

 nnn banz ><><>< ∩∩∨⊆  
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 nn bnamnz >),,(<>< = ∩∨  

 .>< nc⊆  

This implies .>><,><< nn cax∈  Similarly >><,><< nn cby∈  

and so >><,><<>><,><< nnnn cbcanz ∨∈∨ . 
Similarly, a dual calculation of above shows that 

>><,><<>><,><< nnnn cbcanz ∨∈∧ . 
Thus by convexity, 

>><,><<>><,><< nnnn cbcaz ∨∈  and so  
Hence (v) holds. 

     (v) ⇒  (i). Suppose (v) holds. 
Let ncba ≥,, . 
By (v),  = >><,>),,(<< nn cbnam  

 >><,><<>><,><< nnnn cbca ∨ . 
But by Lemma 1.3(i), this is equivalent to >,<>,< = >,< cbcacba ∨∧ . 
Then by Rahman [10, Theorem 3.3], this shows that [n) is a relatively Stone. 

      Similarly, for ncba ≤,, , using the Lemma 1.3(ii) and Theorem 1.7, we find that (n] 
is relatively dual Stone. 

Therefore, by Theorem 1.9, Pn(S) is relatively Stone. 
 

Finally we need to prove that (iii) ⇒  (i).  
 

Suppose (iii) holds. Let )[,, nScba ∩∈ . 
By (iii), = >><><,><< nnn bac ∨  >><,><<>><,><< nnnn bcac ∨ . 
But by Lemma 1.4(i), this is equivalent to  >,<>,< = >,< bcacbac ∨∨ . 
Then by Rahman [10, Theorem 3.3], this shows that [n) is relatively Stone. 

      Similarly for ncba ≤,, , using the Lemma 1.4(ii) and Theorem 1.7, we find that (n] 
is relatively dual Stone. 

Therefore, by Theorem 1.9, Pn(S) is relatively Stone. □ 
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