Available Online

JOURNAL OF SCIENTIFIC RESEARCH

J. Sci. Res. 4 (3), 589-601 (2012)

www.banglajol.info/index.php/JSR

Characterizations of those $P_n(S)$ which are Relatively Stone Nearlattice

S. Akhter^{1*} and A. S. A. Noor²

¹Department of Mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh ²Department of Electronics and Communication Engineering, East-West University, 45 Mohakhali, Dhaka-1212, Bangladesh

Received 12 March 2012, accepted in revised form 10 June 2012

Abstract

Keywords: Principal n-ideal; Central element; Relatively Stone nearlattice.

1. Introduction

Relatively Stone lattices have studied by many authors including Ali [1], Cornish [2] and mandelker [3]. In this paper we work on relatively Stone nearlattice. A nearlattice S is a meet semilattice with the property that any two elements possessing a common upper bound, have a supremum. Nearlattice S is distributive if for all $x, y, z \in S$, $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$ provided $y \vee z$ exists. An element s of a nearlattice S is called *standard* if for all $t, x, y \in S$,

$$t \wedge [(x \wedge y) \vee (x \wedge s)] = (t \wedge x \wedge y) \vee (t \wedge x \wedge s).$$

The element s is called neutral if

(i) s is standard and

(ii) for all $x, y, z \in S$, $s \wedge [(x \wedge y) \vee (x \wedge z)] = (s \wedge x \wedge y) \vee (s \wedge x \wedge z)$.

In a distributive nearlattice every element is neutral and hence standard.

^{*} Corresponding author: shiuly_math_ru@yahoo.com

$$m(x,n,y) = (x \wedge y) \vee (x \wedge n) \vee (y \wedge n)$$
 exists in S for all $x, y \in S$.

A nearlattice S is called a *medial nearlattice* if m(x, y, z) exists for all $x, y, z \in S$. An element n in a nearlattice S is called *sesquimedial* if for all $x, y, z \in S$

 $([(x \land n) \lor (y \land n)] \land [(y \land n) \lor (z \land n)]) \lor (x \land y) \lor (y \land z)$ exists in *S*. An element *n* of a nearlattice *S* is called an *upper element* if $x \lor n$ exists for all $x \in S$. Every upper element is of course a sesquimedial element. An element *n* is called a *central element* of *S* if it is neutral, upper and complemented in each interval containing it.

For $a,b \in S$, $\langle a,b \rangle$ denotes the relative annihilator. That is,

$$\langle a,b \rangle = \{x \in S : x \land a \leq b\}$$
. Also note that $\langle a,b \rangle = \langle a,a \land b \rangle$.

Again for $a,b \in L$, where L is a lattice, $\langle a,b \rangle_d = \{x \in L : x \vee a \ge b\}$ is a dual relative annihilator.

In case of a nearlattice it is not possible to define a dual relative annihilator ideal for any a and b. But if n is an upper element of S, then $x \vee n$ exists for all $x \in S$.

Then for any $a \in (n]$, $a \vee x$ exists for all $x \in S$ by the upper bound property of S.

Thus for any $a \in (n]$, we can talk about dual relative annihilator ideal of the form

$$< a,b>_{_d}$$
 for any $b \in S$. That is, for any $a \le n$ in S ,

$$\langle a,b \rangle_d = \{x \in S : x \vee a \ge b\}$$

For $a, b \in S$ and an upper element $n \in S$,

We define
$$< a,b>^n = \{x \in S : m(a,n,x) \in < b>_n \}$$

= $\{x \in S : b \land n \le m(a,n,x) \le b \lor n \}.$

We call $\langle a,b \rangle^n$ the annihilator of a relative to b around the element n or simply a relative n - annihilator. For two n-ideals A and B of a nearlattice $S, \langle A,B \rangle$ denotes $\{x \in S : m(a,n,x) \in B, \text{ for all } a \in A\}$ when n is a medial element.

A distributive lattice L with 0 and 1 is called a *Stone lattice* if it is pseudocomplemented and for each $a \in L$, $a^* \vee a^{**} = 1$. We also know that a distributive pseudocomplemented lattice is a Stone lattice if and only if for each $a,b \in L$, $(a \wedge b)^* = a^* \vee b^*$. A nearlattice S is *relatively pseudocomplemented* if the interval [a,b] for each $a,b \in S$, a < b is pseudocomplemented. A distributive nearlattice S is called *relatively Stone nearlattice* if each closed interval [x,y] with x < y $(x,y \in S)$ is a Stone lattice.

For a fixed element n of a neartattice S, a convex subnearlattice of S containing n is called an n-ideal of S. An n-ideal generated by a single element a is called a principal n-ideal, denoted by a > n. The set of principal n-ideals is denoted by a > n. When $a \in S$ is standard and medial then for any $a \in S$

$$\langle a \rangle_n = \{ y \in S : a \land n \le y = (y \land a) \lor (y \land n) \}$$

= $\{ y \in S : y = (y \land a) \lor (y \land n) \lor (a \land n) \}$

When n is an upper element, $\langle a \rangle_n$ is the closed interval $[a \wedge n, a \vee n]$. For detailed literature on n-ideals and principal n-ideals see Akhter et. al. [4].

When n is a sesquimedial element of a distributive nearlattice S, then $P_n(S)$ is also a distributive nearlattice. $P_n(S)$ is relatively pseudocomplemented if the interval $[\langle a \rangle_n, \langle b \rangle_n]$ in $P_n(S)$ for each

$$\langle a \rangle_n, \langle b \rangle_n \in P_n(S), \langle a \rangle_n \subset \langle b \rangle_n$$
 is pseudocomplemented.

Moreover, $P_n(S)$ is a relatively Stone nearlattice if each closed interval

$$[< a >_n, < b >_n]$$
 with $< a >_n < < b >_n (< a >_n, < b >_n \in P_n(S))$ is a Stone lattice.

Theorem 1.1. Let S be a distributive nearlattice with an upper element n. Then the following conditions hold:

(i)
$$\langle\langle x \rangle_n \vee \langle y \rangle_n, \langle x \rangle_n > = \langle\langle y \rangle_n, \langle x \rangle_n > ;$$

(ii)
$$<< x>_n, J>= \lor_{y\in J} << x>_n, < y>_n>$$
, the supremum of n- ideals $<< x>_n, < y>_n>$ in the lattice of n- ideals of S, for any $x\in S$ and any n-ideal J.

Proof. (i). Obviously L. $H.S. \subseteq R. H. S.$

To prove the reverse inclusion, let, $t \in R.H.S.$,

then
$$t \in \langle \langle y \rangle_n, \langle x \rangle_n \rangle$$
. This implies $m(y, n, t) \in \langle x \rangle_n$.

That is,
$$\langle m(y, n, t) \rangle_n \subseteq \langle x \rangle_n$$
 and

so
$$(\langle y \rangle_n \cap \langle t \rangle_n) \vee (\langle x \rangle_n \cap \langle t \rangle_n) \subseteq \langle x \rangle_n$$
.

That is,
$$\langle t \rangle_n \cap [\langle x \rangle_n \vee \langle y \rangle_n] \subseteq \langle x \rangle_n$$

which implies
$$t \in \langle \langle x \rangle_n, \langle x \rangle_n, \langle x \rangle_n \rangle$$
.

Thus, $t \in L.H.S.$ and so $R.H.S. \subseteq L.H.S.$

Hence L.H.S.=R.H.S..

(ii). Obviously R.H.S. \subseteq L.H.S.

To prove the reverse inclusion, let $t \in L.H.S.$, then $m(x,n,t) \in J$ that is m(x,n,t) = j for some $j \in J$.

This implies $t \in \langle\langle x \rangle_n, \langle j \rangle_n \rangle$.

Thus $t \in R.H.S.$ and so (ii) holds. \square

Following lemma will be needed for further development of this paper. This is in fact, the dual of Cornish [2, Lemma 3.6] and very easy to prove. So we prefer to omit the proof.

Lemma 1.2. Let L be a distributive lattice. Then the following conditions hold:

(i)
$$\langle x \wedge y, x \rangle_d = \langle y, x \rangle_d$$
;

- (ii) $\langle [x), F \rangle_d = \bigvee_{y \in F} \langle x, y \rangle_d$, where F is a filter of L;
- (iii) $\{ \langle x, a \rangle_d \lor \langle y, a \rangle_d \} \cap [a, b] = \{ \langle x, a \rangle_d \cap [a, b] \} \lor \{ \langle y, a \rangle_d \cap [a, b] \},$ where [a, b] represents any interval in L. \Box

Lemma 1.3 and 1.4 are essential for the proof of our main result of this paper.

Lemma 1.3 Let S be a distributive nearlattice with an upper element n. Suppose $a,b,c \in S$.

(i) If
$$a,b,c \ge n$$
, then $<< m(a,n,b)>_n, < c>_n>=$
 $<< a>_n, < c>_n> $\lor << b>_n, < c>_n>$ is equivalent to
 $< a \land b,c> =< a,c> \lor < b,c>.$$

(ii) If
$$a,b,c \le n$$
, then $<< m(a,n,b)>_n,< c>_n>=$
 $<< a>_n,< c>_n> \lor << b>_n,< c>_n>$ is equivalent to
 $< a\lor b,c>_d=< a,c>_d\lor < b,c>_d$.

Proof. (i). Suppose $a, b, c \ge n$, and

$$<< m(a,n,b)>_n, < c>_n> = << a>_n, < c>_n> \lor << b>_n, < c>_n>.$$

That is, $<< a>_n \cap < b>_n, < c>_n> = << a>_n, < c>_n> \lor << b>_n, < c>_n>.$

Let $x \in \langle a \wedge b, c \rangle$. Then $x \wedge a \wedge b \leq c$,

$$\langle x \rangle_n \cap \langle a \wedge b \rangle_n = \langle x \rangle_n \cap [n, a \wedge b]$$

= $[n, (x \vee n) \wedge (a \wedge b)]$
= $[n, (x \wedge a \wedge b) \vee n]$
 $\subseteq [n, c].$

Hence
$$x \in << a \land b>_n, < c>_n>$$

=<< $m(a,n,b)>_n, < c>_n>$
=<< $a>_n, < c>_n> \lor << b>_n, < c>_n>$

Thus $x \le p \lor q$, where $p \in << a>_n, < c>_n>$ and $q \in << b>_n, < c>_n>$.

Then $_n \cap < a>_n \subseteq < c>_n$. That is, $[p \land n, p \lor n] \cap [n, a] \subseteq [n, c]$.

Thus, $[n,(p \lor n) \land a] \subseteq [n,c]$ which implies $p \land a \le c$ and so $p \in \langle a,c \rangle$.

Similarly, $q \in \langle b, c \rangle$ and so $x \in \langle a, c \rangle \lor \langle b, c \rangle$.

Hence $\langle a \land b, c \rangle \subset \langle a, c \rangle \lor \langle b, c \rangle$.

But $\langle a, c \rangle \lor \langle b, c \rangle \subseteq \langle a \land b, c \rangle$ is obvious.

Therefore, $\langle a \wedge b, c \rangle = \langle a, c \rangle \lor \langle b, c \rangle$.

Conversely, suppose $\langle a \land b, c \rangle = \langle a, c \rangle \lor \langle b, c \rangle$.

Let $x \in << m(a, n, b)>_n, < c>_n>.$

Then $\langle x \rangle_n \cap \langle m(a,n,b) \rangle_n = [x \wedge n, x \vee n] \cap [n,a \wedge b] \subseteq [n,c]$.

That is, $[n,(x \lor n) \land (a \land b)] \subseteq [n,c]$.

Thus $[n,(x \land a \land b) \lor n] \subseteq [n,c]$ which implies

$$x \wedge a \wedge b \leq c$$
 and so $x \in \langle a \wedge b, c \rangle = \langle a, c \rangle \vee \langle b, c \rangle$.

This implies $x = r \lor s$, where $r \in \langle a, c \rangle$ and $s \in \langle b, c \rangle$.

Then $r \wedge a \leq c$ and $s \wedge b \leq c$.

Now,
$$\langle r \rangle_n \cap \langle a \rangle_n = [r \wedge n, r \vee n] \cap [n, a]$$

$$= [n, (r \vee n) \wedge a]$$

$$= [n, (r \wedge a) \vee n]$$

$$\subseteq [n,c] = \langle c \rangle_n$$

Hence $r \in \langle \langle a \rangle_n, \langle c \rangle_n \rangle$. Similarly $s \in \langle \langle b \rangle_n, \langle c \rangle_n \rangle$

Thus
$$x \in << a>_n, < c>_n> \lor << b>_n, < c>_n>$$
 and so

$$<< m(a,n,b)>_n, < c>_n> \subseteq << a>_n, < c>_n> \vee << b>_n, < c>_n>.$$

Since
$$<< a>_n, < c>_n > \lor << b>_n, < c>_n > \subseteq << m(a,n,b)>_n, < c>_n >$$
 is obvious, so

$$<< m(a,n,b)>_n, < c>_n> = << a>_n, < c>_n> \lor << b>_n, < c>_n>.$$

A dual calculation of above proof proves (ii). \Box

Lemma 1.4. Let S be a distributive nearlattice with an upper element n. Suppose $a,b,c \in S$.

- (i) If $a,b,c \ge n$ and $a \lor b$ exists then $\langle\langle c \rangle_n,\langle a \rangle_n \lor \langle b \rangle_n \rangle =$ $\langle\langle c \rangle_n,\langle a \rangle_n \rangle \lor \langle\langle c \rangle_n,\langle b \rangle_n \rangle$ is equivalent to $\langle c,a \lor b \rangle = \langle c,a \rangle \lor \langle c,b \rangle$.
- (ii) If $a, b, c \le n$, then $<< c>_n, < a>_n \lor < b>_n> =$ $<< c>_n, < a>_n \lor << c>_n, < b>_n>$ is equivalent to $< c, a \land b>_d =< c, a>_d \lor < c, b>_d$.

Proof. (i). Suppose $a,b,c \ge n$ and $a \lor b$ exists and

$$<< c>_n, < a>_n, < b>_n> = << c>_n, < a>_n, < v>_n, < b>_n>.$$

Let $x \in \langle c, a \lor b \rangle$. Then $x \land c \leq a \lor b$.

Then
$$\langle x \rangle_n \cap \langle c \rangle_n = [x \wedge n, x \vee n] \cap [n, c]$$

$$= [n, (x \vee n) \wedge c]$$

$$= [n, (x \wedge c) \vee n]$$

$$\subseteq [n, a \vee b]$$

$$= \langle a \rangle_n \vee \langle b \rangle_n$$

That is $\langle x \rangle_n \cap \langle c \rangle_n \subseteq \langle a \rangle_n \vee \langle b \rangle_n$.

Thus
$$x \in \langle \langle c \rangle_n, \langle a \rangle_n \lor \langle b \rangle_n \rangle = \langle \langle c \rangle_n, \langle a \rangle_n \lor \langle \langle c \rangle_n, \langle b \rangle_n \rangle$$
.

So,
$$x \le p \lor q$$
 where $p \in \langle \langle c \rangle_n, \langle a \rangle_n \rangle$ and $q \in \langle \langle c \rangle_n, \langle b \rangle_n \rangle$

Since
$$p \in \langle \langle c \rangle_n, \langle a \rangle_n \rangle$$
 so $\langle p \rangle_n \cap \langle c \rangle_n \subseteq \langle a \rangle_n$.

That is $[p \land n, p \lor n] \cap [n, c] \subseteq [n, a]$.

Thus $[n,(p \lor n) \land c] \subseteq [n,a]$.

That is $[n,(p \land c) \lor n] \subseteq [n,a]$.

This implies $p \land c \le a$ and so $p \in \langle c, a \rangle$.

Similarly, $q \in \langle c, b \rangle$.

Hence $x \in \langle c, a \rangle \lor \langle c, b \rangle$ and so $\langle c, a \lor b \rangle \subset \langle c, a \rangle \lor \langle c, b \rangle$.

Since the reverse inequality is trivial,

so
$$< c, a \lor b > = < c, a > \lor < c, b >$$
.

Conversely, suppose $\langle c, a \lor b \rangle = \langle c, a \lor \lor \langle c, b \rangle$.

Let
$$x \in << c>_n, < a>_n \lor < b>_n>$$
.

Then
$$\langle x \rangle_n \cap \langle c \rangle_n \subseteq \langle a \rangle_n \vee \langle b \rangle_n$$
.

That is
$$[x \land n, x \lor n] \cap [n, c] \subseteq [n, a \lor b]$$

and so
$$[n,(x \lor n) \land c] \subseteq [n,a \lor b]$$
.

That is
$$[n,(x \land c) \lor n] \subseteq [n,a \lor b]$$
.

This implies $x \land c \le a \lor b$ and so $x \in \langle c, a \lor b \rangle = \langle c, a \lor \lor \langle c, b \rangle$.

Thus $x = r \lor t$, where $r \in \langle c, a \rangle$ and $t \in \langle c, b \rangle$.

Now,
$$\langle r \rangle_n \cap \langle c \rangle_n = [r \wedge n, r \vee n] \cap [n, c]$$

$$= [n, (r \wedge c) \vee n]$$

$$\subseteq [n, a] = \langle a \rangle_n$$
(Here $r \in \langle c, a \rangle$ implies $r \wedge c \leq a$)

So
$$r \in << c>_n, < a>_n>$$
. Similarly $t \in << c>_n, < b>_n>$.

Hence
$$x \in << c>_n, < a>_n> \lor << c>_n, < b>_n>$$
, and so

$$<< c>_n, < a>_n \lor < b>_n > \subseteq << c>_n, < a>_n \lor << c>_n, < b>_n > .$$

Since the reverse inequality is trivial, so

$$<< c>_n, < a>_n \lor < b>_n> = << c>_n, < a>_n \lor << c>_n, < b>_n>.$$

By the dual calculation of above we can easily prove (ii). \Box

Following result on Stone lattices is well known due to Cornish [2] and Katrinak [5, 6].

Theorem 1.5. Let L be a pseudocomplemented distributive lattice. Then the following conditions are equivalent:

- (i) L is Stone;
- (ii) For each $x, y \in L$, $(x \wedge y)^* = x^* \vee y^*$;
- (iii) If $x \wedge y = 0$, $x, y \in L$ then $x^* \vee y^* = 1$. \Box

Similarly we can prove the following result which is dual to above Theorem.

Theorem 1.6. Let L be a dual pseudocomplemented distributive lattice. Then the following conditions are equivalent:

- (i) L is dual Stone;
- (ii) For each $x, y \in L$, $(x \lor y)^{*d} = x^{*d} \land y^{*d}$;
- (iii) If $x \lor y = 1$, $x, y \in L$ then $x^{*d} \land y^{*d} = 0$, where x^{*d} denotes the dual pseudocomplement of $x . \Box$

Ali [1] in his Theorem 3.2.7 has given a nice characterization of relatively dual Stone lattices in terms of dual relative annihilators, which is in fact the dual of Cornish [2, Theorem 3.7]. As we have mentioned earlier that in nearlattices the idea of dual relative annihilators is not always possible. But when n is an upper element in S then $x \vee n$ exists for all $x \in S$. Thus for any $a \in (n]$, $x \vee a$ exists for all $x \in S$. Hence we can define $a \in S$ for all $a \in S$ and $a \in S$.

Theorem 1.7. Let n be an upper element of a distributive nearlattice S such that (n] is relatively dual pseudocomplemented. Let $a,b,c \in (n]$ be arbitrary elements and A, B be arbitrary filters of (n]. Then the following conditions are equivalent:

- (i) (n) is relatively dual Stone;
- (ii) $\langle a, b \rangle_d \lor \langle b, a \rangle_d = (n]$;
- (iii) $\langle c, a \land b \rangle_d = \langle c, a \rangle_d \lor \langle c, b \rangle_d$;
- (iv) $\langle [c), A \lor B \rangle_d = \langle [c), A \rangle_d \lor \langle [c), B \rangle_d$;
- (v) $\langle a \lor b, c \rangle_d = \langle a, c \rangle_d \lor \langle b, c \rangle_d$;

Proof. (i) \Rightarrow (ii). Suppose (i) holds.

Let $z \in (n]$ be arbitrary. Consider the interval $I = [z, a \lor b \lor z]$.

Then $a \lor b \lor z$ is the largest element of I.

Since by (i), I is dual Stone, then by Theorem 1.5(iii), there exists $r, s \in I$

such that $a \lor s = a \lor b \lor z = b \lor z \lor r$ and $z = s \land r$.

Now, $a \lor s \ge b$ implies $s \in \langle a, b \rangle_d$ and $b \lor r = b \lor z \lor r = a \lor b \lor z \ge a$ implies $r \in \langle b, a \rangle_d$.

Hence (ii) holds.

 $(ii) \Rightarrow (iii)$. Suppose (ii) holds.

In (iii), $R.H.S \subset L.H.S$ is obvious.

Let $z \in \langle c, a \land b \rangle_d$, then $z \lor c \ge a \land b$.

Since (ii) holds, so $z = x \wedge y$ where $x \in \langle a,b \rangle_d$ and $y \in \langle b,a \rangle_d$.

Then $x \lor a \ge b$ and $y \lor b \ge a$.

Thus,
$$x \lor c = x \lor z \lor c$$

 $\ge x \lor (a \land b)$
 $= (x \lor a) \land (x \lor b) \ge b$,

which implies $x \in \langle c, b \rangle_d$. Similarly, $y \in \langle c, a \rangle_d$.

Hence
$$z = x \land y \in \langle c, a \rangle_d \lor \langle c, b \rangle_d$$
 and so

$$\langle c, a \land b \rangle_d \subseteq \langle c, a \rangle_d \lor \langle c, b \rangle_d$$
.

Thus (iii) holds.

- (iii) \Rightarrow (iv) follows from Lemma 1.2(ii).
- (iv) \Rightarrow (iii) is trivial.
- (iii) \Rightarrow (ii) follows from Lemma 1.2(i) by putting $c = a \wedge b$.
- (ii) \Rightarrow (v). Suppose (ii) holds.

Let $z \in \langle a \lor b, c \rangle_d$. Then by (ii), $z = x \land y$, where $x \lor a \ge b$ and $y \lor b \ge a$.

Also
$$x \lor a = x \lor a \lor b \ge z \lor a \lor b \ge c$$
.

This implies $x \in \langle a, c \rangle_d$. Similarly, $y \in \langle b, c \rangle_d$.

Hence
$$z = x \land y \in \langle a, c \rangle_d \lor \langle b, c \rangle_d$$
 and so

$$\langle a \lor b, c \rangle_d \subseteq \langle a, c \rangle_d \lor \langle b, c \rangle_d$$
.

Since the reverse inequality is obvious, so (v) holds.

 $(v) \Rightarrow (i)$. Suppose (v) holds.

Let $x \in [a,b]$, a < b. Suppose x^{0d} denotes the relatively dual pseudocomplemented of x in [a,b].

Then clearly $[x^{0d}] = [x]^{0d} = \{t \in [a,b] : t \lor x = b, \text{ the largest element of } [a,b]\}.$

It is easy to see that $[x]^{0d} = \langle x, b \rangle_{d} \cap [a, b]$.

Now suppose $x, y \in [a,b]$ with $x \lor y = b$,

Then by (v),
$$[x^{0d} \wedge y^{0d}] = [x^{0d}] \vee [y^{0d}]$$

 $= [x)^{0d} \vee [y)^{0d}$
 $= (\langle x, b \rangle_d \cap [a, b]) \vee (\langle y, b \rangle_d \cap [a, b])$
 $= (\langle x, b \rangle_d \vee \langle y, b \rangle_d) \cap [a, b]$ (by lemma 1.2(iii))
 $= \langle x \vee y, b \rangle_d \cap [a, b]$
 $= \langle b, b \rangle_d \cap [a, b]$
 $= \langle n \rangle \cap [a, b] = [a, b]$.

This implies $x^{0d} \wedge y^{0d} = a$.

Hence by Theorem 1.6, [a,b] is dual Stone and so (n) is relatively dual Stone. \Box Following Theorems are due to Akhter [7] which will be used to prove the main result of this paper.

Theorem 1.8. Let S be a distributive medial nearlattice with an upper element n and let I, J be two n- ideals of S. Then for any $x \in I \vee J$, $x \vee n = i_1 \vee j_1$ and $x \wedge n = i_2 \wedge j_2$ for some $i_1, i_2 \in I$, $j_1, j_2 \in J$ with $i_1, j_1 \geq n$ and $i_2, j_2 \leq n$. \square

Theorem 1.9. For an element n of a nearlattice S, the following conditions are equivalent:

- (i) n is central in S
- (ii) n is upper and the map $\Phi: P_n(S) \to (n]^d \times [n]$ defined by

$$\Phi(\langle a \rangle_n) = (a \land n, a \lor n)$$
 is an isomorphism, where $(n]^d$ represents the dual of the lattice $(n]$. \square

Now we prove our main results of this paper, which are generalizations of Cornish [2, Theorem 3.7], Mandelker [3, Theorem 5] and a result of Davey [8], also see Raihan et. al. [9]. These give characterizations of those $P_n(S)$ which are relatively Stone, when S is medial.

Theorem 1.10. Let n be a central element of a distributive medial nearlattice and $P_n(S)$ be relatively pseudocomplemented. Suppose A, B are two n-ideals of S. Then for all, $a,b,c \in S$ the following conditions are equivalent:

- (i) $P_n(S)$ is relatively Stone;
- (ii) $\langle \langle a \rangle_n, \langle b \rangle_n \rangle \vee \langle \langle b \rangle_n, \langle a \rangle_n \rangle = S$;
- (iii) $<< c>_n, < a>_n \lor < b>_n> = << c>_n, < a>_n \lor << c>_n, < b>_n>, whenever <math>a \lor b$ exists;
- (iv) $<< c>_n, A \lor B> = << c>_n, A> \lor << c>_n, B>;$
- (v) $<< m(a,n,b)>_n, < c>_n> =$ $<< a>_n, < c>_n> \lor << b>_n>, < c>_n>$

Proof. (i) \Rightarrow (ii). Let $z \in S$.

Consider the interval $I = [\langle a \rangle_n \cap \langle b \rangle_n \cap \langle z \rangle_n, \langle z \rangle_n \rangle]$ in $P_n(S)$. Then $\langle a \rangle_n \cap \langle b \rangle_n \cap \langle z \rangle_n$ is the smallest element of the interval I.

By (i), I is Stone. Then by Theorem 1.5, there exist principal n-ideals $\langle p \rangle_n, \langle q \rangle_n \in I$ such that,

$$\langle a \rangle_n \cap \langle z \rangle_n \cap \langle p \rangle_n = \langle a \rangle_n \cap \langle b \rangle_n \cap \langle z \rangle_n$$

= $\langle b \rangle_n \cap \langle z \rangle_n \cap \langle q \rangle_n$

and
$$\langle z \rangle_n = \langle p \rangle_n \vee \langle q \rangle_n$$
.

Now,

$$< a>_n \cap _n = < a>_n \cap _n \cap < z>_n$$

= $< a>_n \cap < b>_n \cap < z>_n \subseteq < b>_n$

$$\text{implies} _n \subseteq << a>_n, < b>_n>.$$

Also,
$$< b>_n \cap < q>_n = < b>_n \cap < z>_n \cap < q>_n$$

$$= \langle a \rangle_n \cap \langle b \rangle_n \cap \langle z \rangle_n \subseteq \langle a \rangle_n$$

implies $\langle q \rangle_n \subseteq \langle \langle b \rangle_n, \langle a \rangle_n \rangle$.

Thus $\langle z \rangle_n \subseteq \langle \langle a \rangle_n, \langle b \rangle_n \rangle \vee \langle \langle b \rangle_n, \langle a \rangle_n \rangle$ and

so
$$z \in << a>_n, < b>_n> \lor << b>_n, < a>_n>$$
.

Hence $<< a>_n, < b>_n> \lor << b>_n, < a>_n> = S$.

(ii) \Rightarrow (iii). Suppose (ii) holds and $a \lor b$ exists.

For (iii), $R.H.S \subseteq L.H.S$ is obvious.

Now, let $z \in << c>_n, < a>_n << b>_n>$.

Then $z \lor n \in \langle \langle c \rangle_n, \langle a \rangle_n \lor \langle b \rangle_n \rangle$ and

so $m(z \lor n, n, c) \in \langle a \rangle_n \lor \langle b \rangle_n$.

That is $m(z \lor n, n, c) \in [a \land b \land n, a \lor b \lor n]$.

This implies $(z \lor n) \land (c \lor n) \le a \lor b \lor n$.

Now by (ii), $z \lor n \in << a>_n, < b>_n> \lor << b>_n, < a>_n>$.

So $z \lor n \le (p \lor n) \lor (q \lor n)$ for some $p \lor n \in << a>_n, < b>_n>$ and $q \lor n \in << b>_n, < a>_n>$.

Hence, $z \lor n = ((z \lor n) \land (p \lor n)) \lor ((z \lor n) \land (q \lor n)) = r \lor t$ (say).

Now, $m(p \lor n, n, a) = (p \lor n) \land (a \lor n) \le (b \lor n)$.

So $b \wedge n \leq r \wedge (a \vee n) \leq b \vee n$.

Hence, $r \wedge (c \vee n) = r \wedge (z \vee n) \wedge (c \vee n)$

$$\leq r \wedge (a \vee b \vee n)$$

$$= (r \land (a \lor n)) \lor (r \land (b \lor n))$$

$$\leq (b \vee n).$$

This implies $r \in \langle \langle c \rangle_n, \langle b \rangle_n \rangle$. Similarly, $t \in \langle \langle c \rangle_n, \langle a \rangle_n \rangle$.

Hence, $z \lor n \in << c>_n, < a>_n> \lor << c>_n, < b>_n>$.

Again $z \in << c>_n, < a>_n \lor < b>_n>$

implies $z \wedge n \in \langle \langle c \rangle_n, \langle a \rangle_n \vee \langle b \rangle_n \rangle$.

Then a dual calculation of above shows that

$$z \land n \in << c>_n, < a>_n> \lor << c>_n, < b>_n>.$$

Thus by convexity, $z \in << c>_n, < a>_n> \lor << c>_n, < b>_n>$ and so $L.H.S \subseteq R.H.S$.

Hence (iii) holds.

Hence (III) noids.

(iii) ⇒ (iv). Suppose (iii) holds.

In (iv), $R.H.S \subseteq L.H.S$ is obvious.

Now let $x \in \langle \langle c \rangle_n, A \vee B \rangle$. Then $x \vee n \in \langle \langle c \rangle_n, A \vee B \rangle$.

Thus $m(x \lor n, n, c) \in A \lor B$.

Now $m(x \lor n, n, c) = (x \lor n) \land (n \lor c) \ge n$ implies

 $m(x \lor n, n, c) \in (A \lor B) \cap [n)$.

Hence by Theorem 1.1(ii), $x \lor n \in \langle \langle c \rangle_n, (A \cap [n)) \lor (B \cap [n)) \rangle$

$$= \bigvee_{r \in (A \cap [n)) \vee (B \cap [n))} \langle \langle c \rangle_n, \langle r \rangle_n \rangle$$
.

But by Theorem 1.8, $r \in (A \cap [n)) \vee (B \cap [n))$ implies $r = s \vee t$ for some $s \in A$, $t \in B$ and $s, t \geq n$.

Then by (iii),
$$<\!\!<\!c\!\!>_n,<\!\!r\!\!>_n>=<\!\!<\!c\!\!>_n,<\!\!s\!\!>_t>_n>$$

$$=<\!\!<\!\!c\!\!>_n,<\!\!s\!\!>_n\vee<\!\!t\!\!>_n>$$

$$=<\!\!<\!\!c\!\!>_n,<\!\!s\!\!>_n>\vee<\!\!<\!\!c\!\!>_n,<\!\!t\!\!>_n>$$

$$\subseteq<\!\!<\!\!c\!\!>_n,<\!\!s\!\!>_n>\vee<\!\!<\!\!c\!\!>_n,<\!\!t\!\!>_n>$$

Hence $x \lor n \in << c>_n, A> \lor << c>_n, B>$.

Also $x \in \langle \langle c \rangle_n, A \vee B \rangle$ implies $x \wedge n \in \langle \langle c \rangle_n, A \vee B \rangle$.

Since $m(x \land n, n, c) = (x \land n) \lor (n \land c) \le n$, so $x \land n \in \langle c \rangle_n, (A \lor B) \cap (n] > .$

Then, by Theorem 1.1(ii), $x \wedge n \in << c>_n, (A \cap (n]) \vee (B \cap (n]) >$

$$=\vee_{l\in (A\cap (n])\vee (B\cap (n])}<< c>_n,< l>_n>.$$

Again, using Theorem 1.8, we see that $l = p \land q$ where $p \in A$, $q \in B$ and $p, q \le n$.

Then by (iii),
$$<\!\!<\!c\!\!>_n,<\!\!l\!\!>_n\!\!>=<\!\!<\!c\!\!>_n,<\!\!p\!\!>_n\!\!>$$
 $=<\!\!<\!c\!\!>_n,<\!\!p\!\!>_n\!\!\vee<\!\!q\!\!>_n\!\!>$ $=<\!\!<\!c\!\!>_n,<\!\!p\!\!>_n\!\!\vee<\!\!q\!\!>_n\!\!>$ $=<\!\!<\!c\!\!>_n,<\!\!p\!\!>_n\!\!>\!\vee<\!\!<\!c\!\!>_n,<\!\!q\!\!>_n\!\!>$ $\subseteq<\!\!<\!c\!\!>_n,A\!\!>\!\vee<\!\!<\!c\!\!>_n,A\!\!>\!\vee<\!\!<\!c\!\!>_n,B\!\!>$.

Hence $x \wedge n \in \langle \langle c \rangle_n, A \rangle \vee \langle \langle c \rangle_n, B \rangle$.

Therefore, by convexity, $x \in << c>_n, A> \lor << c>_n, B>$ and so $L.H.S \subseteq R.H.S.$ Thus (iv) holds.

(iv) \Rightarrow (iii) is trivial.

(ii) \Rightarrow (v). Suppose (ii) holds. In (v), R.H.S \subseteq L.H.S is obvious.

Now let $z \in << m(a, n, b)>_n, < c>_n>$,

which implies $z \lor n \in \langle m(a, n, b) \rangle_n, \langle c \rangle_n > 0$

By (ii),
$$z \lor n \in << a>_n, < b>_n> \lor << b>_n, < a>_n>.$$

Then by Theorem 1.8, $z \lor n = x \lor y$ for some $x \in \langle \langle a \rangle_n, \langle b \rangle_n \rangle$

and $y \in \langle \langle b \rangle_n, \langle a \rangle_n \rangle$ and $x, y \ge n$.

Thus,
$$< x>_n \cap < a>_n \subseteq < b>_n$$
 and
$$so < x>_n \cap < a>_n = < x>_n \cap < a>_n = < x>_n \cap < b>_n$$

 $\subseteq \langle z \vee n \rangle_n \cap \langle a \rangle_n \cap \langle b \rangle_n$

$$= \langle z \vee n \rangle_n \cap \langle m(a,n,b) \rangle_n$$

$$\subseteq \langle c \rangle_n.$$

This implies $x \in \langle \langle a \rangle_n, \langle c \rangle_n \rangle$. Similarly $y \in \langle \langle b \rangle_n, \langle c \rangle_n \rangle$

and so
$$z \lor n \in << a>_n, < c>_n> \lor << b>_n, < c>_n> .$$

Similarly, a dual calculation of above shows that

$$z \land n \in << a>_n, < c>_n> \lor << b>_n, < c>_n>.$$

Thus by convexity,

$$z \in \langle\langle a \rangle_n, \langle c \rangle_n \rangle \lor \langle\langle b \rangle_n, \langle c \rangle_n \rangle$$
 and so L.H.S $\subseteq R.H.S$.

Hence (v) holds.

 $(v) \Rightarrow (i)$. Suppose (v) holds.

Let $a,b,c \ge n$.

By (v),
$$\langle m(a,n,b) \rangle_n$$
, $\langle c \rangle_n \rangle =$
 $\langle a \rangle_n$, $\langle c \rangle_n \rangle \vee \langle \langle b \rangle_n$, $\langle c \rangle_n \rangle$.

But by Lemma 1.3(i), this is equivalent to $\langle a \land b, c \rangle = \langle a, c \rangle \lor \langle b, c \rangle$.

Then by Rahman [10, Theorem 3.3], this shows that [n) is a relatively Stone.

Similarly, for $a,b,c \le n$, using the Lemma 1.3(ii) and Theorem 1.7, we find that (n] is relatively dual Stone.

Therefore, by Theorem 1.9, $P_n(S)$ is relatively Stone.

Finally we need to prove that (iii) \Rightarrow (i).

Suppose (iii) holds. Let $a,b,c \in S \cap [n)$.

By (iii),
$$<< c>_n, < a>_n, < b>_n> = << c>_n, < a>_n> \lor << c>_n, < b>_n>.$$

But by Lemma 1.4(i), this is equivalent to $\langle c, a \lor b \rangle = \langle c, a \lor \lor \langle c, b \rangle$.

Then by Rahman [10, Theorem 3.3], this shows that [n) is relatively Stone.

Similarly for $a,b,c \le n$, using the Lemma 1.4(ii) and Theorem 1.7, we find that (n] is relatively dual Stone.

Therefore, by Theorem 1.9, $P_n(S)$ is relatively Stone. \Box

References

- 1. M. A. Ali, A study on finitely generated n-ideals of a lattice, Ph.D. Thesis, Rajshahi University, Rajshahi, Bangladesh (2000).
- W. H. Cornish, Normal lattices, J. Austral. Math. Soc. 14, 200 (1972). http://dx.doi.org/10.1017/S1446788700010041
- M. Mandelker, Duke Math. J. 40, 377 (1970). http://dx.doi.org/10.1215/S0012-7094-70-03748-8
- 4. S. Akhter and A.S.A. Noor, Ganit J. Bangladesh Math. Soc. 24, 35 (2005).
- 5. T. Katrinak, Remarks on Stone lattices I, (Russian) Math. Fyz. Casopis 16, 128 (1966).
- 6. T. Katrinak, (Russian) Math. Casopis Sloven. Akad. Vied. 17, 20 (1967).
- S. Akhter, A Study of Principal n-Ideals of a Nearlattice, Ph.D. Thesis, University of Rajshahi, Rajshahi, Bangladesh (2003).
- B. A. Davey, Algebra Universalis 43, 316 (1974). http://dx.doi.org/10.1007/BF02485743

M. S. Raihan and A. S. A. Noor, J. Sci. Res. 3 (1), 35 (2011). doi:10.3329/jsr.v3i1.3955
 M. B. Rahman, A study on distributive nearlattice, Ph. D. Thesis, Rajshahi University, Rajshahi, Bangladesh (1995).