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Abstract

For a fixed element n of a nearlattice S, a convex subnearlattice of S containing n is called
an n-ideal of S. An n-ideal generated by a single element a is called a principal n-ideal,
denoted by <a>,. The set of principal n-ideals is denoted by P,(S). A distributive nearlattice
S is called relatively Stone nearlattice if each closed interval [x,y] with
X<y (x,yeS) isa Stone lattice. In this paper, we give several characterizations of
those P,(S) which are relatively Stone in terms of n-ideals and relative n-annihilators.
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1. Introduction

Relatively Stone lattices have studied by many authors including Ali [1], Cornish [2] and
mandelker [3]. In this paper we work on relatively Stone nearlattice. A nearlattice S is a
meet semilattice with the property that any two elements possessing a common upper
bound, have a supremum. Nearlattice S is distributive if for all x,y,zeS,

XA(Yyvz)=(XxAy)v(xaz) provided Yy vz exists. An element S of a nearlattice S
is called standard if for all t,x,y e S,
tAIXAY)VXAS)]=(EAXAY)V(EAXAS).
The element S is called neutral if
(i) S isstandard and
(i) forall X,y,Z2€S, SA[(XAY)V(XAZ)]=(SAXAY)V(SAXAZ).
In a distributive nearlattice every element is neutral and hence standard.
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An element N of a nearlattice S is called medial if
m(x,n,y) = (XA y)v(xan)v(yan) existsin§ forall x,y € 5.

A nearlattice S is called a medial nearlattice if m(x,y,z) exists for all x, v,z € 5. An
element N in anearlattice Siscalled sesquimedial if forall x,v,z €5
([(X/\n)v(y AMIAI(Y ANV (ZAN])V(XAY) V(Y AzZ) exists in S. An
element N of a nearlattice S is called an upper element if X v N exists for all x € 5.
Every upper element is of course a sesquimedial element. An element N is called a

central element of S if it is neutral, upper and complemented in each interval containing it.
For a,beS, <a,b> denotes the relative annihilator. That is,

<a,b>={xeS:xAa<b}.Alsonotethat <a,b>=<a,anb>.
Again for a,beL, where L is a lattice, <a,b>,={xeL:xva>b} is a dual

relative annihilator.
In case of a nearlattice itis not possible to define a dual relative annihilator

ideal for any a and b. But if n is an upper element of S, then X\ n exists for all
XeSsS.
Then forany a € (n], av X exists forall X € S by the upper bound property of S.
Thus for any a € (n], we can talk about dual relative annihilator ideal of the form

<a,b>, forany beS.Thatis, forany a<n in S,
<a,b>,={xeS:xvazx=b}.

For a,be S and an upper element ne S,

We define < a,b >"={x e S:m(a,n,x) e<b >}
={xeS:ban<m(a,n,x)<bwvn}.

We call <a,b>" the annihilator of a relative to b around the element n or
simply a relative N - annihilator. For two n-ideals A and B of a nearlattice S, < A, B >
denotes {x € S: m(a,n,x) e B, forall @ € A} when N is a medial element.

A distributive lattice L with 0 and 1 is called a Stone lattice if it is
pseudocomplemented and for each ae L, a*va™ =1. We also know that a distributive
pseudocomplemented lattice is a Stone lattice if and only if for each a,bel,
(anb)"=a"vb". A nearlattice S is relatively pseudocomplemented if the interval
[a,b] foreach a,beS, a<Db is pseudocomplemented. A distributive nearlattice S is

called relatively Stone nearlattice if each closed interval [X,y] with X<y (x,yeS)

is a Stone lattice.
For a fixed element N of a neartattice S, a convex subnearlattice of S containing N is
called an N -ideal of S. An N -ideal generated by a single element a is called a principal

n-ideal, denoted by <a > . The set of principal n-ideals is denoted by P, (S). When
n eSS isstandard and medial then forany ae S
<a>={yeS:aannsy=(yaa)v(yan)}
={yeS:y=(yra)v(yan)v(aan)}
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When N is an upper element, <a > is the closed interval [2a AN,a v N]. For

detailed literature on N -ideals and principal N -ideals see Akhter et. al. [4].

When N is a sesquimedial element of a distributive nearlattice S, then P,(S) is also a
distributive nearlattice. P,(S) is relatively pseudocomplemented if the interval
[<a>,,<b>_]inPy(S) for each

<a> ,<b>eP(S), <a>,c<b>, ispseudocomplemented.
Moreover, P,(S) is a relatively Stone nearlattice if each closed interval
[<a>,<b>]with <a> <<b> (<a>,<b> eP,(S)) isaStone lattice.

Theorem 1.1. Let S be a distributive nearlattice with an upper element n. Then the
following conditions hold :

(i) <<X> v<y> <X>>=<<Yy> <X> >

(i) <<x>,,d >= v, ; <<X >, <y > >, the supremum of n- ideals

<< X > ,<Yy> > inthe lattice of n- ideals of S, forany X € S and any n-
ideal J.

Proof. (i). Obviously L.H.5.€ R.H.S.
To prove the reverse inclusion, let , t € R.H. 5.,

then t e<< 'y > ,< x> >.Thisimplies m(y,n,t) e< x>, .
Thatis, <m(y,n,t) > c< x>, and

o (Ry> N<t> )v(<Kx> N<t>)c<x>,.
Thatis, <t> N[<x> v<y>]c<x>,

whichimplies te<< x> v<y> <X> >,

Thus, t € L.H.5.and so R.H.S.C LH.S.

Hence L.H.S.=R.H.S..

(ii). Obviously R.H.S.c L.H.S.

To prove the reverse inclusion, let t € L.H.S., then m(x,n,t)eJ that is
m(x,n,t) = j forsome jeJ.

Thisimplies te<< x> ,< j> >.

Thus t € RA.S. and so (ii) holds. o

Following lemma will be needed for further development of this paper. This is in fact,
the dual of Cornish [2, Lemma 3.6] and very easy to prove. So we prefer to omit the
proof.

Lemma 1.2. LetL be a distributive lattice . Then the following conditions hold :
() <XAYX>=<Y, X >
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(i) <[X),F>4=v, ¢ <X y>,, where F isafilter of L;
(i) {<x,a>; v<y,a>}n[ab]l={<x,a>, N[a,b]}v {<ya>, N[ab]}
where [@,Db] represents any interval in L. o

Lemma 1.3 and 1.4 are essential for the proof of our main result of this paper.

Lemma 1.3 Let S be a distributive nearlattice with an upper element n. Suppose
a,b,ceS.
(i) Ifab,c>n, then <<m(a,n,b)> ,<c> >=
<<a> ,<c>>v<<b> ,<c> > isequivalentto
<anab,c>=<a,c>v<b,c>.
(i) Ifa,b,c<n, then <<m(a,n,b) > ,<c> >=
<<a> ,<c>>v<<b> <c> > isequivalentto

<avb,c>,;=<a,c>, v<b,c>,.

Proof. (i). Suppose a,b,c>n, and
<<m(a,n,b) > ,<c> >=<<a> ,<c>>v<<b>  <c>>.
Thatis, <<a> N<b> ,<c> >=<<a> ,<c>>v<<b>  <c>>.
Let xe<aab,c>.Then xnanb<c,
<x> Nn<aab> =<x> n[n,anab]
=[n,(xvn)A(aab)]
=[n,(x AaAb)vn]
c[n,c].
Hence Xe<<aaAb> ,<c>>
=<<m(a,n,b)> ,<c> >
=<<a> ,<c>>>v<<ph> <c> >
Thus X< pv(Q,where pe<<a>_ ,<c> >and qe<<b> ,<c> >.
Then < p> N<a> c<c> .Thatis, [pan,pvn]ln[n,al<[n,c].
Thus, [n,(pvn)aal<[n,c] whichimplies pAaa<cC andso pe<a,C>.
Similarly, g e<b,c > andso Xxe<a,c>v<bh,c>.
Hence <aAb,c>c<a,c>v<b,c>.
But <a,c>v<h,c>=<anab,c> isobvious.
Therefore, <aAb,c>=<a,c>v<bh,c>.
Conversely, suppose < aAb,c>=<a,c>v<b,c>.
Let x e<<m(a,n,b) > ,<c> >.
Then < x> ~n<m(a,n,b)> =[xAnxvn]ln[n,aabl<[n,c].
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Thatis, [n,(xvn)A(aab)l<[n,c].

Thus [n,(x AaAb)vn]c[n,c] whichimplies

XAaAb<cCandso xe<anab,c>=<a,c>v<bc>.
Thisimplies X =rv 'S, where r e<a,c > and Se<b,c >.

Then rna<c and SAb<cC.

Now, <r> n<a> =[ranrvn]n[n,a]

=[n,(rvn)aa]

=[n,(rra)vn]

c[n.c]=<c>,

Hence r e<<a > ,<C > >.Similarly Se<<b > ,<c> >

Thus X e<<a > ,<Cc> >v<<b> ,<C> > andso
<<m(a,n,b)> ,<c>>c<<a> ,<c>>v<<b> ,<c>>.
Since <<a>_ ,<c>>v<<b>  <c> >c<<m(a,n,b)> ,<c>>
is obvious, so

<<m(a,n,b)> ,<c>>=<<a>  <c>>v<<ph> <c>>.
A dual calculation of above proof proves (ii). o
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Lemma 1.4. Let S be a distributive nearlattice with an upper element n. Suppose

a,b,ceS.

(i) Ifa,b,c>n and avb exists then <<c> ,<a> v<b> >=
<<c>,<a>>v<<c>,<b> > isequivalentto
<c,avb>=<c,a>v<chb>.

(i) Ifa,b,c<n, then<<c> ,<a> v<b>>=
<«<c>,<a>>v<<c>,<b>>

is equivalentto <c,aAb>,=<c,a>;, v<c,b>,.

Proof. (i). Suppose a,b,c>n and avb existsand
<«<c>,<a> v<b>>=<<c> ,<a>>v<<Cc> ,<b>>.
Let Xe<c,avb>.Then xac<avh.
Then <x> Nn<c> =[xAan,xvn]n[n,c]
=[n,(xvn)ac]
=[n,(xac)vn]
c[n,avb]
=<a> v<b>
Thatis <X> N<c>c<a> v<b>.

Thus Xe<<c> ,<a> v<b>>= <<c> ,<a>>v<<c> ,<b> >.
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So, X< pv(Q where pe<<c> ,<a> >and qe<<c>,<b>>
Since pe<<c>,<a>> so <p> N<C>c<a>.
Thatis [pAn,pvn]n[n,c]<[n,al.

Thus [n,(pvn)ac]c[n,al.

Thatis [n,(pAc)vn]c[n,al.

Thisimplies pAC<a andso pe<c,a>.

Similarly, qe<c,b>.

Hence Xe<c,a>v<c,b>andso <c,avb>c<c,a>v<cb>.

Since the reverse inequality is trivial,
so <c,avbh>=<c,a>v<c,b>.
Conversely, suppose < C,avb>=<c,a>v<c,b>.
Let xe<<c> ,<a> v<b> >,
Then <Xx> N<c>c<a> v<b> .
Thatis [x An,xvn]n[n,c]l<[n,avh]
and so [n,(xvn)Aac]c[n,avhb].
Thatis [n,(xAc)vn]c[n,avhb].
This implies XAC<avb andso xe<c,avb>=<c,a>v<c,b>.
Thus X=rvt,where re<c,a> and te<c,b>.
Now,<r> n<c>=[ranrvn]n[n,c]
=[n,(r nc)vn]
c[na]=<a>,
(Here re<c,a> implies ranc<a)
So re<<c>,,<a> > Similarly te<<c> ,<b> >.
Hence X e<<c> ,<a>>v<<c>,<b> > andso
<«<c>,<a> v<b>>c<<c> ,<a>>v<<c> ,<b>>.
Since the reverse inequality is trivial, so
<«<c>,<a> v<b>>=<<c> ,<a>>v<<c> ,<b>>.
By the dual calculation of above we can easily prove (ii). o

Following result on Stone lattices is well known due to Cornish [2] and Katrinak [5, 6].

Theorem 1.5. Let L be a pseudocomplemented distributive lattice. Then the following
conditions are equivalent :
(i) L isStone;

(i) Foreach x,yelL, (XAYy)' =x"vy";
(iiiy f XAy=0, x,yelL then x"vy =1 o
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Similarly we can prove the following result which is dual to above Theorem.

Theorem 1.6. Let L be a dual pseudocomplemented distributive lattice. Then the
following conditions are equivalent :
(i) L isdual Stone;

(i) Foreach x,yelL, (xvy)?=x" Ay ;
(i) 1f xvy=1, x,yel then X Ay =0, where X denotes
the dual pseudocomplement of X. o

Ali [1] in his Theorem 3.2.7 has given a nice characterization of relatively dual Stone
lattices in terms of dual relative annihilators, which is in fact the dual of Cornish [2,
Theorem 3.7]. As we have mentioned earlier that in nearlattices the idea of dual relative
annihilators is not always possible. But when N is an upper element in S then Xvn

exists for all X € S. Thus for any a € (n], Xva exists for all xeS. Hence we can
define <a,b >, forall ae(n] and beS.

Theorem 1.7. Let N be an upper element of a distributive nearlattice S such that (n]
is relatively dual pseudocomplemented. Let a,b,c € (n] be arbitrary elements and A, B

be arbitrary filters of (n]. Then the following conditions are equivalent :
(i) (n] is relatively dual Stone ;

(i) <a,b>,v<ba>,=(n];

(iii) <c,anb>,=<c,a>,v<chb>,;

(iv) <[c),AvB>,=<][c),A>,v<[c),B>,;
(v) <avb,c>,=<a,c>,v<bc>, ;

Proof. (i) = (ii). Suppose (i) holds.
Let z € (n] be arbitrary. Consider the interval | =[z,avbv z].

Then av bv z isthe largest element of I.
Since by (i), 1 is dual Stone, then by Theorem 1.5(iii), there exists I, S € |

suchthat avs=avbvz=bvzvrand z=SAr.

Now, avs>b implies se<a,b>; and bvr=bvzvr=avbvz>a
implies r e<b,a >, .

Hence (ii) holds.

(if) = (iii). Suppose (ii) holds.

In (iii), R.H.S < L.H.S is obvious.
Let ze<c,anb>,,then zvc>anab.

Since (ii) holds, so Z= X A'Y where xe<a,b>, and y e<b,a>,.
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Then xva=b and yvb>a.
Thus, Xvc=Xvzve
>xv(anah)
=(xva)a(xvh)>b,
which implies X €< ¢,b >, . Similarly, y e<c,a>,.
Hence z=xAye<c,a>; v<c,b>, andso
<c,anb>,c<c,a>,v<cb>,.
Thus (iii) holds.
(iii) = (iv) follows from Lemma 1.2(ii).
(iv) = (iii) is trivial.
(iii) = (ii) follows from Lemma 1.2(i) by putting C =a A b .
(if) = (v). Suppose (ii) holds.
Let ze<avhb,c>,. Thenby (ii), z=xAy,where xva>band yvb>a.
Also xva=xvavb>zvavb>c.
This implies x e<a,c >, . Similarly, y e<b,c>,.
Hence z=XAYye<a,c>; v<Db,c>, andso
<avb,c>,c<a,c>;,v<b,c>,.

Since the reverse inequality is obvious, so (v) holds.
(v) = (i). Suppose (v) holds.

Let x e[a,b], a<b. Suppose x°® denotes the relatively dual
pseudocomplemented of x in [a,b].
Then clearly [x*') =[x)* ={t e[a,b]: t v x =b, the largest element of [a,b]}.
It is easy to see that [x)* =< x,b >, M[a,b].
Now suppose X,y €[a,b] with xvy=Db,
Thenby (v), [X* Ay*) =[x")v[y*)
=[)™ v[y)"
= (< X,b>, A[a,b]) v (< y,b >, ~[a,b])
=(<x,b>, v<y,b>,)n[a,b] (bylemma 1.2(iii))
=<xvy,b>,N[a,b]
=<b,b>, N[a,b]
=(n]n[a,b]=[a,b].
This implies X% A yOd =a.
Hence by Theorem 1.6, [a, b] is dual Stone and so (n] is relatively dual Stone. o

Following Theorems are due to Akhter [7] which will be used to prove the main result of
this paper.
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Theorem 1.8. Let S be a distributive medial nearlattice with an upper element n and
let I, J be two n- ideals of S. Then for any xelvJ, xvn=ivj and

XAn=i, A j, forsome i,i,el,j,j,ed withi, j>n andi, j,<n.o

1’j1 2’j2

Theorem 1.9. For an element n of a nearlattice S, the following conditions are
equivalent :
(i) n iscentralin S

(i) n isupperandthemap @ : P, (S) — (n]° x[n) defined by
®(<a>,)=(arn,avn) isanisomorphism, where (n]° represents

the dual of the lattice (n]. o
Now we prove our main results of this paper, which are generalizations of Cornish [2,
Theorem 3.7], Mandelker [3, Theorem 5] and a result of Davey [8], also see Raihan et. al.
[9]. These give characterizations of those P,(S) which are relatively Stone , when S is
medial.

Theorem 1.10. Letn be a central element of a distributive medial nearlattice and
P.(S) be relatively pseudocomplemented. Suppose A, B are two N - ideals of S. Then
for all, a,b,ceS the following conditions are equivalent :
(i) Py(S) is relatively Stone ;
(i) <<a>,<b>>v<<b> ,<a>>=§;
(lij<<c> ,<a> v<b>>=<<c> ,<a>>v<<c>,<b> >, whenever
avb exists;
(iv) <<c>,,AvB>=<<c>  ,A>v<<c>,B>;
(v) <<m(a,n,b) >,<Cc>>=
<«<a> ,<c>>v<<h> ><c> >
Proof. (i) = (ii). Letz €5.
Consider the interval | =[<a> N<b> Nn<z> ,<z>>] in Py(S). Then
<a> N<b> n<z> isthe smallest element of the interval I.
By (i), | is Stone. Then by Theorem 1.5, there exist principal n-ideals
<p>,<qg>,el suchthat,
<a> N<z> Nn<p> =<a> nN<b> Nn<z>
:<b>nm<z>nr\<q>n
and <z> =<p> v<(Qg>.
Now,
<a> N<p> =<a> N<p> N<z>,
=<a> Nn<b> N<z> c<b>,
implies < p> c<<a> ,<b>>.

Also, <b> Nn<q> =<b> Nn<z> N<g>
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=<a> N<b> N<z> c<a>,
implies <q> c<<b> ,<a> >.
Thus <z> c<<a> ,<b>>v<<b>  <a> > and
so ze<<a>_ ,<b>>v<<b> <a> >.
Hence <<a > ,<b>>v<<b> ,<a>>=S.
(ii) = (iii). Suppose (ii) holdsand a v b exists.
For (iii), R.H.S € L.H.5 is obvious.
Now, let Ze<<cCc> ,<a> v<b> >.
Then Zvne<<c> ,<a> v<b> > and
so m(zvn,n,c)e<a> v<b> .
Thatis m(zvn,n,c)e[anban,avbwvn].
This implies (zvn)a(cvn)<avbvn.
Now by (i), zvne<<a>_ ,<b>>v<<b> <a> >.
So zvn<(pvn)v(qvn) for some pvne<<a>  ,<b>> and
qvne<<b>  ,<a> >.
Hence,zvn=((zvn)A(pvn)v({(zvn)Aa(gvn))=rvt (say).
Now, m(pvn,n,a)=(pvn)a(avn)<(bvn).
SobAan<ra(avn)<bwvn.
Hence, ra(cvn)=ra(zvn)a(cvn)
<ra(avbwvn)
=(ra(avn))v(ra(bvn))
<(bvn).
This implies r e<<c¢ >_,<b > > . Similarly, te<<c> ,<a> >.
Hence, Zzvne<<c> ,<a> >v<<c> ,<b>>.
Again ze<<Cc>_ ,<a> v<b>>
implies ZAne<<c>_ ,<a> v<b>>.
Then a dual calculation of above shows that
Z/\ne<<c>n,<a>n>v<<c>n,<b>n>_
Thus by convexity, Ze<<c>_ ,<a> >v<<c> ,<b> >and
soL.HSCRH.S.
Hence (iii) holds.
(iii) = (iv). Suppose (iii) holds.
In (iv), R.H.S € L.H.S is obvious.
Now let x e<<c > ,AvB>.Then xvne<<c>  AvB>.
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Thus m(xvn,n,c) e Av B.
Now m(Xvn,n,c)=(xvn)Aa(nvc)=>n implies
m(xvn,n,c) e (AvB)nI[n).
Hence by Theorem 1.1(ii), xvne<<c>_,(An[n))v(BN[n))>
= Viearmpvenim) <<€ 2 <=2
But by Theorem 1.8, r e (An[n)) v (B [n)) implies r =sv t for some
seA, teBand s,t=n.
Then by (i), <<c¢> ,<r> >=<<c> <svt> >
=<<Cc>,,<s> v<t> >
=<<Cc>,<s>>v<<c> ,<t>>
c<<c>,A>v<<c> ,B>.
Hence xvne<<c>  ,A>v<<c>  B>.
Also x e<<c>,,Av B> implies XxAne<<c>,AvB>.
Since m(x An,n,c) =(XxAn)v(nac)<n,so xane<<c>_,(AvB)n(n]>.
Then, by Theorem 1.1(ii), x Ane<<c>_,(An(n])v (BN (n])>
= Vieanmvienmy <<€ <1>,>.
Again, using Theorem 1.8, we see that | = pAq where pe A, qeB and p,q<n.
Then by (iii), <<c> ,<|> >=<<c> ,<pAaQ>>
=<<c>,<p> v<Q>>
=<<c>,<p>>v<<c>,<Q>>
c<<c>,A>v<<c>,B>.
Hence x Ane<<c>_ ,A>v<<c>_ ,B>.
Therefore, by convexity, x e<<c > ,A>v<<c>  ,B>andsoLl.H.S CR.H.S.
Thus (iv) holds.
(iv) = (iii) is trivial.
(i) = (v). Suppose (ii) holds. In (v), R.H.5 € L.H.§ is obvious.
Now let Ze<<m(a,n,b) > ,<c> >,
which implies z v ne<<m(a,n,b) > ,<c> >.
By (i), zvne<<a> ,<b>>v<<b>  <a>>.
Thenby Theorem 1.8, zvn=Xv Yy forsome xe<<a>_ ,<b> >
and ye<<b> ,<a>>and X,y=n.
Thus, < x> Nn<a> c<b> and
SO <X> N<a> =<x> N<a> N<b>
c<zvn> n<a> Nn<b>
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=<zvn> n<m(a,n,b)>,
c<CcC >n .
This implies x e<<a > ,<c > >. Similarly y e<<b> ,<c> >

andso Zvne<<a> ,<Cc>>v<<b>  <c>>.
Similarly, a dual calculation of above shows that
ZAne<<a> ,<Cc> >v<< b >, <C> >,
Thus by convexity,
Ze<<a> ,<c>>v<<b> <c> >andsolH.SCR.H.S.
Hence (v) holds.
(v) = (i). Suppose (v) holds.
Let a,b,c>n.
By (v), <<m(a,n,b) > ,<c> >=
<<a>,<c>>v<<b> ,<c>>.

But by Lemma 1.3(i), this is equivalentto <a Ab,c>=<a,c>v<b,c>.
Then by Rahman [10, Theorem 3.3], this shows that [n) is a relatively Stone.
Similarly, for a,b,c < n, using the Lemma 1.3(ii) and Theorem 1.7, we find that (n]

is relatively dual Stone.
Therefore, by Theorem 1.9, P,(S) is relatively Stone.

Finally we need to prove that (iii) = (i).
Suppose (iii) holds. Let a,b,ce SN[n).
By (iii), <<c> ,<a>,v<b>>= <<c> <a>>v<<c> <b>>.
But by Lemma 1.4(i), this is equivalentto <c,avb>=<c,a>v<c,b>.
Then by Rahman [10, Theorem 3.3], this shows that [n) is relatively Stone.
Similarly for @,b,c < n, using the Lemma 1.4(ii) and Theorem 1.7, we find that (n]

is relatively dual Stone.
Therefore, by Theorem 1.9, P,(S) is relatively Stone. o
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