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Abstract

The transient effect of double diffusive naturaheection of flow in a differentially heated
sand grain with Soret and Dufour coefficients igdgd numerically. The right vertical wall
has constant temperatufie. The lower inlet opening is heated uniformly wifixed
temperaturdl}, and the velocity at the inlet of the fluid doméanset to the falling velocity
V;. The conditionT}, > T, is maintained all over the domain. The concerdrain right wall

is maintained higher than inlet openin@. (< C;). The governing equations are solved
numerically subject to appropriate boundary condgiby a penalty finite-element method.
Solutions are obtained for fixed Prandtl numbar £ 1.73), Rayleigh numbeRé& = 10),
Dufour coefficient D; = 0.5)and Soret coefficient§ = 0.5). Transient analysis of the
streamlines, isotherms, iso-concentration, fallietpcity and forces on sand grain, the local
and average Nusselt number and Sherwood numbepetature and concentration at
subdomain centre as well as average form, subdohminontal and vertical velocities are
presented graphically. It is found that the ratéedt transfer and mass transfer in the sand
grain enhances and reduces respectively for shoner periods and then they become
almost steady.
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1. Introduction

The mixed convection in enclosures continues ta ery active area of research during
the past few decades. While a good number of wak® made significant contributions

for the development of the theory, an equally goothber of works have been devoted to
many engineering applications that include eledtrar computer equipment, thermal

energy storage systems etc.
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Mixed convection heat transfer is an important gme@non in engineering systems
due to its wide applications in electronic coolihgat exchangers, and thermal systems.
Enhancement of heat transfer in such systems is @ssential from the industrial and
energy saving perspectives. For a detailed surfdifecature on the natural convection
heat transfer was given by Davis [1] and Ostradh However, we shall refer to a few
important works that may serve as background ferpiesent work. Transient flow field
and heat transfer behavior of cold water in an @k is numerically investigated by
Chang and Yang [3]. Ho and Tu [4] also studiedgiemt flow of water. Osoriet al. [5]
analyzed experimentally and numerically the nataoadvection of water near its density
inversion in a square enclosure.

Double diffusive convection of water has been stddiy Sezai and Mohamad [6] and
Sivasankaran and Kandaswamy [7, 8]. In most ofpttablems, Soret and Dufour effects
are assumed to be negligible. But the present wimr&stigates both the effects. The
diffusion of matter caused by temperature gradi¢Btwet effect) and diffusion of heat
caused by concentration gradients (Dufour effefomne very significant when the
temperature and concentration gradients are vemye.laGenerally these effects are
considered as second order phenomenon. The effeaysbhecome important in some
applications such as the solidification of binalpys, groundwater pollutant migration,
chemical reactors, and geosciences.

Joly et al. [9], Bahloul et al. [10], Mansouret al. [11], Pathaet al. [12] and Platten
[13]. Jolyet al. [9] showed the Soret effect on natural conveciioa vertical enclosure.
They investigated the particular situation where thuoyancy forces induced by the
thermal and solutal effects are opposing each o#mer of equal intensity. Double
diffusive and Soret induced convection in a shallwwizontal enclosure is analytically
and numerically studied by Bahlogtlal. [10] and also studied numerically by Manseur
al. [11]. They found that the Nusselt number decreasgeéneral with the Soret parameter
while the Sherwood number increased or decreastdting parameter depending on the
temperature gradient induced by each solution.

It is essential to study heat transfer in an engckosvith partially heated active walls.
Only a few studies are reported in the literatumecerning heat transfer in enclosures with
partially heated side walls, by Frederick and Quib4], Erbayet al. [15] and Oztop [16].
Natural convection in an enclosure with partialtyive walls was studied by Nithyadesti
al. [17 - 19] and Kandaswang al. [20] without Soret and Dufour effects. Chamkha][21
analyzed heat and mass transfer for a non-Newtdhiahflow along a surface embedded
in a porous medium with uniform wall heat and mé#eges and heat generation or
absorption. The influence of the concentrationhtermal buoyancy ratio, power-law fluid
viscosity index, mixed convection parameter, sucti@r injection parameter,
dimensionless heat generation or absorption pasaraet the Lewis number on the local
Nusselt and the Sherwood numbers was conducteid study. Teamah [22] numerically
performed double diffusive natural convection intamgular enclosure in the presences of
magnetic field and heat source. The author consitiEaminar regime under steady state
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condition and presented the predicted results lier dverage Nusselt and Sherwood
numbers for various parametric conditions.

The present study deals with the transient nattgaVvection of flow in a differentially
heated sand grain in the presence of solute camtiemt with Soret and Dufour effects.
The first stop for polluted water entering a waterk is normally a large tank, where
large particles are left to settle. More generalhgvity settling is an economical method
of separating particles. If the fluid in the taiskmoving at a controlled low velocity, the
particles can be sorted in separate containerga@iogoto the time it takes for them reach
the bottom. Therefore, transient free convecti@o dlecomes a crucial point of this study.
The main issues discussed in this paper are: ctweefalling velocity, heat and mass
transfer characteristics of a sand grain.

2. Model Definition

Fig. 1 shows a schematic diagram of a differentially heétatand grain. This model
simulates a sand grain falling in water. The giaicelerates from standstill and rapidly
reaches its terminal velocity. The model is an lagxeymmetric fluid-flow simulation in a
moving coordinate system, coupled to a partialedéftial equation (PDE) for the force
balance of the particle describing the grain’s ontiDue to axial symmetry, the flow can
be modeled in 2D instead of 3D.

bAoA A

—— slip symmetry

TC! Ch

adiabatic Th Ce, Vi

bk

Fig. 1. Modeling domain of the sand grain.

The problem is solved in the accelerating referesyestem of the sand grain. This
means that the volume force density in the Navier-Stokes equation is
F, =0.F, =—pag, wherea s the acceleration of the grain agt the acceleration due

to gravity.
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The force balance ignx = F, +F, wherem denotes the mass of the partictethe
position of the particlefy the gravitational force, arfd, they component of the force that
the water exerts on the sand grain.

The gravitational force ing == Dyain Vorain 9 wherevggin is the volume of the sand

grain andggrain  its density.

The force that the water exerts on the grain isutated by integrating the normal
component of the stress tensor over the surfatkeoparticle. Since the model is axially
symmetric, the force will only haveyacomponent.

The dimensionless governing equations for transiatural convection in a sand grain
in terms of the Navier-Stokes and energy equatiergaven as [23-25]:
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Prandtl number, thermal and Solutal Rayleigh nusib&chmidt number, Dufour and
Soret coefficients respectively.

The corresponding boundary conditions take thefatig form:
At the inlet boundaryv =1,9=1,C=0,U =0,
at the right vertical boundarﬂ:O C=1,U=V=0,

at the circular boundarie? - _0,U=V=0,
oN BN

at the top surface convective boundary conditi®s:0,
at left vertical boundary slip symmetry conditienaipplied.

The above equations are non-dimensionalized bygusia following dimensionless
dependent and independent variables:

x=X v=Y u=Y =t v=Y p=P =TT .G
RV Ve A A ORrS
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The local Nusselt and Sherwood numbers at the theatdace of the sand grain may

and __ocC
Y2 e X

be expressed, respectively RS, ., =- 06
0

X=1

1
The average Nusselt and Sherwood numberq\@reJ‘Num dy and Sh:jshmdx ,
0 0
respectively

3. Numerical |mplementation

The Galerkin finite element method [26, 27] is ugedsolve the non-dimensional
governing equations along with boundary conditiéms the considered problem. The
equation of continuity has been used as a constdaie to mass conservation and this
restriction may be used to find the pressure tistion. The penalty finite element method
[28] is used to solve the Egs. (2) - (5), where phessureP is eliminated by a penalty
constraint?, and the incompressibility criteria given by Ef)) which can be expressed as
ou oV
i ®
The continuity equation is automatically fulfilleidr large values off. Then the

velocity componentsU, V), temperatured) and concentratio) are expanded using a
basis sef q;}k”:1 as

U =300, (X.Y.0) V=3 V0, (X.Y.1) 8= 80, (X.Y.7) c=3 o, (x.v.r) )

k=1 k=1 k=1 k=1

The Galerkin finite element technique yields thebsmquent nonlinear residual
equations for the Egs. (2), (3), (4) and (5), retipely at nodes of the internal domain

N N
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Three points Gaussian quadrature is used to eeatbatintegrals in these equations.
The non-linear residual Egs. (8), (9), (10) and) (a4fe solved using Newton—Raphson
method to determine the coefficients of the exparssiin Eq. (7). The convergence of
solutions is assumed when the relative error forheaariable between consecutive
iterations is recorded below the convergence aoiter such thqtpnﬂ_gun <10, Wheren
is the number of iteration angl is a function otJ, V, ¢ andC.

4. Mesh Generation

In the finite element method, the mesh generatatné technique to subdivide a domain
into a set of sub-domains, called finite elememtsntrol volume, etc. The discrete
locations are defined by the numerical grid, atohtthe variables are to be calculated. It
is basically a discrete representation of the g&dgendomain on which the problem is to
be solved. The computational domains with irreggkaometries by a collection of finite
elements make the method a valuable practical ftmothe solution of boundary value
problems arising in various fields of engineeriRiy. 2 displays the finite element mesh of
the present physical domain.
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Fig. 2. Mesh generation of the sand.grain. Fig. 3. Grid testing for the sand grain.
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4.1. Grid testing

An extensive mesh testing procedure is conductedjuarantee a grid-independent
solution forRa = 1¢%, Pr = 1.73,D; = 0.5 andS = 0.5 in a sand grain. In the present work,
we examine five different non-uniform grid systemdéh the following number of
elements within the resolution field: 2569, 473616, 8657 and 10426. The numerical
scheme is carried out for highly precise key in theerage Nusselt numb&u and
Sherwood numbegh for the aforesaid elements to develop an undedsigrof the grid
fineness as shown in Fig. 3. The scale of the geefdusselt number and Sherwood
number for 8657 elements shows a little differewdd the results obtained for the other
elements. Hence, considering the non-uniform grédesn of 8657 elements is preferred.

4.1. Code validation

The present numerical solution is validated by canmg the current code results for
streamlines, isotherms and concentratiolRat 0.5,N=1,D; =S5 =05, =5,Pr =
11.573 andRar = 10 with the graphical representation of Nithyadevd ariang [29]
which was reported for Double diffusive natural wection in a partially heated enclosure
with Soret and Dufour effects. Fig. 4 demonstrates above stated comparison. The
numerical solutions (present work and Nithyadew &ang [29]) are in good agreement.

Isotherms Concentration Streamlines

Present work

”I
/| ‘\IW

.‘I
/;‘h‘
I

Nithyadevi and Yang

Fig. 4. Comparison between present work and Nitayaand Yang [29].

5. Results and Discussion

The model is an axially symmetric fluid-flow simtitan in a moving coordinate system.
In this section, numerical results in terms of atnénes and isotherms for transient
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analysis are displayed, while Rayleigh numbRea(= Ra,), Prandtl numbePr, Dufour
coefficientD; and Soret coefficier§ are fixed at 1%) 1.73, 0.5 and 0.5 respectively. Also,
falling velocity and forces on the sand grain, Yadues of the local and average Nusselt
and Sherwood numbers, average temperature, terapeit grain centreJ-velocity, V-
velocity in the sub domain with non dimensionaldilave been calculated.

5.1. Velocity field

The velocity field (modulus of the velocity vectan)terms of streamlines is displayed in
Fig. 5. The occurring non-dimensional time of ursth@ot is chosen as the measure for the
development time of the convective flow. The sedEsnapshots are of the velocity field,
from a moment just after the sand grain is releas®d it is approaching steady state.
Notice that the velocities are plotted in the refee system of the sand grain. Firstly, the
plot shows that the streamlines are identicaltierd is no perturbation in velocity field.
The deviation slightly grows as the time is inceshsDue to time passing, the sand grain
accelerates from standstill and the recirculatmm® above the grain. Then created vortex
enhances in size sequentially and rapidly readiseeiiminal velocity. Finally after non-
dimensional time = 0.1, the velocity field becomes steady.

\\N\\\\
t=0.001 t=0.01 t=0.02 1=0.03 1=0.04 t=0.05
1=0.06 1=0.07 t=0.08 t=0.09 t=0.1 steady

Fig. 5. Streamlines with different non-dimensional.
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5.2. Temperaturefield

Fig. 6 depicts the thermal development as a funatibtime for the sand grain. At the
primary stage of time the isothermal lines occupytiulk of the sand grain. The isotherms
tend to move from right wall to the left insulatedrface due to falling velocity of the
grain. Gradually they are clustered near the ldwarsurface as the time is increased. As
well as the boundary layer thickness rises neah#faged surface. At time> 0.1 there is
no variation in the isothermal lines so that stestdye pattern is observed.

5.3. Concentration

Fig. 7 shows the mass concentration phenomenarimstof iso-concentration lines. It is
observed from this figure that iso-concentrations amost parallel to the active parts
with compared to the isotherms indicating that baths are spread out the whole sand
grain and the convection is initiated. Increasinget conduction mode of heat transfer is
done. Further increasing time conduction is doneidadcross the grain for the terminal
falling velocity of the solid particle. The iso-amentration lines tend to move from right
highly concentrated wall to the left insulated agd. Then they are gathered near the
lower concentrated bottom surface until the moisosteady.

25\
0
0.9
———1.0—

©=0.0¢ t1=0.1

0.9

10—

t=0.07 t=0.08

Fig. 6. Isotherms with different nondimensionaldim
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5.4. Flow rate

The falling velocity of the grain and the forces tve sand grain as a function of
dimensionless time are exposed in Figs. 8 (i))- lfiiis clear that after the solution time of
0.1, the velocity approaches the terminal veloditye terminal velocity equals 0.291 m/s.
When this state is reached, the gravity and theefofrom the water cancel out. From fig.
8(ii) we see that the fluid force ie the water ¢xem the sphere (upper line) increases as
the grain gains speed. The gravity force (lowee)liremains the same, and the total force
(middle line) tends toward zero as the solutionrapphes steady state.
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0]
Fig. 8. Plots of (i) falling velocity and (i) thlerces on the sand grain versus time.
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5.5. Heat and mass transfer

The local Nusselt numbeNQ,.,) and Sherwood numbeB8i..,) along bottom hot and
right vertical surfaces respectively and rate @thfdu) and mass3h) transfer versus time
are presented in Figs. 9 (i) and (ii). With inciegs up to 0.01, théNucy and Shigea
increases and decreases respectively due to inoteofietemperature difference and
decrement of thickness of boundary layer. Then lbéthem become invariant. The time-
averaged\u and Sh are obtained by computing the time average ofatrerage Nusselt
and Sherwood number for a process, given by toted being the duration of the process
of interestNu andsh are the same pattern Idg,cq andShigeq With time.

4 35
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15F
N
N ]
2r =T
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L] 0.02 0.04 0.06 0.08 01 0 0.02 0.04 0.08 0.08 01
T T
0] (ii)
Fig. 9. Plots of (i) local and (ii) averaffe andsh at the respective surfaces versus time
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Fig. 10. Plots of (if, andC,, (ii) @ andC at the centre of the subdomain versus time.

5.6. Temperature and concentration

Figs. 10 (i) and (ii) show the average fluid tengtere and concentration versus time as
well as temperature and concentration at subdomaitre of the sand grain. Average
temperaturefy,) goes up but concentratiof4) goes down for increasing values of time
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up tor < 0.01. Then they are almost identical with the ation of time. Temperature and
concentration at the centre of the grain are atseved in similar pattern (Fig. 9).

5.7. Velocity
The X-velocity U) and Y-velocity ¥) in the subdomain of the sand grain as a funatfon

time are illustrated in Figs. 11 (i)-(ii). It isese that at = 0.04, theJ andV velocities are
of wavy pattern and increase sharply. Then thekewae optimum velocity gradually.

2x10% 2.5 x10%

2—

- 05—

@ (ii)

Fig. 11. Plots of subdomain (i) X-velocity and (ii) Y-velocityV versus dimensionless time.

6. Conclusion

The problem of transient falling behavior of a samdin in the presence of Dufour and
Soret effects has been studied numerically. Flempierature and concentration fields in
terms of streamlines, isotherms and iso-conceantratiespectively have been considered
for various dimensionless times until the steadgtestobserved. The results of the
numerical analysis lead to the following conclusion

a. The structure of the falling flow, temperature ammhcentration fields of the sand
grain is found to be significantly dependent upoatime ¢).

b. The heat transfer rate is more effective than @ite of mass transfer.

The non-linear behavior &f andV velocities is due to the falling particle.

d. The mean temperature and concentration of the geaid increase and decrease
with dimensionless time, respectively.

o

One can easily adapt the model to hold for a gérsedally symmetric object (by
redrawing the geometry) or even an arbitrarily glthpbject (by modeling in 3D).
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