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Abstract  

 

The transient effect of double diffusive natural convection of flow in a differentially heated 
sand grain with Soret and Dufour coefficients is studied numerically. The right vertical wall 
has constant temperature Tc. The lower inlet opening is heated uniformly with fixed 
temperature Th and the velocity at the inlet of the fluid domain is set to the falling velocity 
Vi. The condition Th > Tc is maintained all over the domain. The concentration in right wall 
is maintained higher than inlet opening (Cc < Ch). The governing equations are solved 
numerically subject to appropriate boundary conditions by a penalty finite-element method. 
Solutions are obtained for fixed Prandtl number (Pr = 1.73), Rayleigh number (Ra = 104), 
Dufour coefficient (Df = 0.5) and Soret coefficient (Sr = 0.5). Transient analysis of the 
streamlines, isotherms, iso-concentration, falling velocity and forces on sand grain, the local 
and average Nusselt number and Sherwood number, temperature and concentration at 
subdomain centre as well as average form, subdomain horizontal and vertical velocities are 
presented graphically. It is found that the rate of heat transfer and mass transfer in the sand 
grain enhances and reduces respectively for shorter time periods and then they become 
almost steady. 
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1.  Introduction 
 
The mixed convection in enclosures continues to be a very active area of research during 
the past few decades. While a good number of works have made significant contributions 
for the development of the theory, an equally good number of works have been devoted to 
many engineering applications that include electronic or computer equipment, thermal 
energy storage systems etc.  
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Mixed convection heat transfer is an important phenomenon in engineering systems 
due to its wide applications in electronic cooling, heat exchangers, and thermal systems. 
Enhancement of heat transfer in such systems is very essential from the industrial and 
energy saving perspectives. For a detailed survey of literature on the natural convection 
heat transfer was given by Davis [1] and Ostrach [2]. However, we shall refer to a few 
important works that may serve as background for the present work. Transient flow field 
and heat transfer behavior of cold water in an enclosure is numerically investigated by 
Chang and Yang [3]. Ho and Tu [4] also studied transient flow of water. Osorio et al. [5] 
analyzed experimentally and numerically the natural convection of water near its density 
inversion in a square enclosure. 

Double diffusive convection of water has been studied by Sezai and Mohamad [6] and 
Sivasankaran and Kandaswamy [7, 8]. In most of the problems, Soret and Dufour effects 
are assumed to be negligible. But the present work investigates both the effects. The 
diffusion of matter caused by temperature gradients (Soret effect) and diffusion of heat 
caused by concentration gradients (Dufour effect) become very significant when the 
temperature and concentration gradients are very large. Generally these effects are 
considered as second order phenomenon. The effects may become important in some 
applications such as the solidification of binary alloys, groundwater pollutant migration, 
chemical reactors, and geosciences. 

Joly et al. [9], Bahloul et al. [10], Mansour et al. [11], Patha et al. [12] and Platten 
[13]. Joly et al. [9] showed the Soret effect on natural convection in a vertical enclosure. 
They investigated the particular situation where the buoyancy forces induced by the 
thermal and solutal effects are opposing each other and of equal intensity. Double 
diffusive and Soret induced convection in a shallow horizontal enclosure is analytically 
and numerically studied by Bahloul et al. [10] and also studied numerically by Mansour et 
al. [11]. They found that the Nusselt number decreased in general with the Soret parameter 
while the Sherwood number increased or decreased with this parameter depending on the 
temperature gradient induced by each solution. 

It is essential to study heat transfer in an enclosure with partially heated active walls. 
Only a few studies are reported in the literature concerning heat transfer in enclosures with 
partially heated side walls, by Frederick and Quiroz [14], Erbay et al. [15] and Oztop [16]. 
Natural convection in an enclosure with partially active walls was studied by Nithyadevi et 
al. [17 - 19] and Kandaswamy et al. [20] without Soret and Dufour effects. Chamkha [21] 
analyzed heat and mass transfer for a non-Newtonian fluid flow along a surface embedded 
in a porous medium with uniform wall heat and mass fluxes and heat generation or 
absorption. The influence of the concentration to thermal buoyancy ratio, power-law fluid 
viscosity index, mixed convection parameter, suction or injection parameter, 
dimensionless heat generation or absorption parameter and the Lewis number on the local 
Nusselt and the Sherwood numbers was conducted in his study. Teamah [22] numerically 
performed double diffusive natural convection in rectangular enclosure in the presences of 
magnetic field and heat source. The author considered laminar regime under steady state 
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condition and presented the predicted results for the average Nusselt and Sherwood 
numbers for various parametric conditions. 

The present study deals with the transient natural convection of flow in a differentially 
heated sand grain in the presence of solute concentration with Soret and Dufour effects. 
The first stop for polluted water entering a water work is normally a large tank, where 
large particles are left to settle. More generally, gravity settling is an economical method 
of separating particles. If the fluid in the tank is moving at a controlled low velocity, the 
particles can be sorted in separate containers according to the time it takes for them reach 
the bottom. Therefore, transient free convection also becomes a crucial point of this study. 
The main issues discussed in this paper are: convective falling velocity, heat and mass 
transfer characteristics of a sand grain. 
 

2. Model Definition 
 

Fig. 1 shows a schematic diagram of a differentially heated sand grain. This model 
simulates a sand grain falling in water. The grain accelerates from standstill and rapidly 
reaches its terminal velocity. The model is an axially symmetric fluid-flow simulation in a 
moving coordinate system, coupled to a partial differential equation (PDE) for the force 
balance of the particle describing the grain’s motion. Due to axial symmetry, the flow can 
be modeled in 2D instead of 3D.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The problem is solved in the accelerating reference system of the sand grain. This 

means that the volume force density F in the Navier-Stokes equation is 

0=xF , agFy ρ−= , where a is the acceleration of the grain and g is the acceleration due 

to gravity.  

Fig. 1. Modeling domain of the sand grain. 

Th, Cc, Vi 

Tc, Ch 

adiabatic 

slip symmetry 
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The force balance is 
yg FFxm += , where m denotes the mass of the particle, x the 

position of the particle, Fg the gravitational force, and Fy the y component of the force that 
the water exerts on the sand grain.  

The gravitational force is gvF graingraing ρ−= , where vgrain is the volume of the sand 

grain and ρgrain   its density.  
The force that the water exerts on the grain is calculated by integrating the normal 

component of the stress tensor over the surface of the particle. Since the model is axially 
symmetric, the force will only have a y component. 

The dimensionless governing equations for transient natural convection in a sand grain 
in terms of the Navier-Stokes and energy equation are given as [23-25]: 
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are the Reynolds number, buoyancy ratio, 

Prandtl number, thermal and Solutal Rayleigh numbers, Schmidt number, Dufour and 
Soret coefficients respectively.   

The corresponding boundary conditions take the following form: 
 

At the inlet boundary: V = 1, 1θ = , C = 0, U = 0, 

at the right vertical boundary: 0θ = , C = 1, U = V = 0, 

at the circular boundaries: 0=
∂
∂
N

θ , 0
C

N

∂ =
∂

, U = V = 0, 

at the top surface convective boundary condition: P = 0,  

at left vertical boundary slip symmetry condition is applied. 

The above equations are non-dimensionalized by using the following dimensionless 
dependent and independent variables: 
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The local Nusselt and Sherwood numbers at the heated surface of the sand grain may 

be expressed, respectively as 
0

local
Y

Nu
Y

θ
=

∂= −
∂

and
1

local
X

C
Sh

X =

∂= −
∂

. 

The average Nusselt and Sherwood numbers are 
1

0

localNu Nu dY= ∫  and 
1

0

localSh Sh dX= ∫ , 

respectively  
 

3. Numerical Implementation  
 
The Galerkin finite element method [26, 27] is used to solve the non-dimensional 
governing equations along with boundary conditions for the considered problem. The 
equation of continuity has been used as a constraint due to mass conservation and this 
restriction may be used to find the pressure distribution. The penalty finite element method 
[28] is used to solve the Eqs. (2) - (5), where the pressure P is eliminated by a penalty 
constraint ξ, and the incompressibility criteria given by Eq. (1) which can be expressed as   

 
U V

P
X Y

ξ ∂ ∂ = − + ∂ ∂ 
 (6) 

The continuity equation is automatically fulfilled for large values of ξ. Then the 
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The Galerkin finite element technique yields the subsequent nonlinear residual 

equations for the Eqs. (2), (3), (4) and (5), respectively at nodes of the internal domain Ω: 
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Three points Gaussian quadrature is used to evaluate the integrals in these equations. 
The non-linear residual Eqs. (8), (9), (10) and (11) are solved using Newton–Raphson 
method to determine the coefficients of the expansions in Eq. (7). The convergence of 
solutions is assumed when the relative error for each variable between consecutive 
iterations is recorded below the convergence criterion ε such that 1 410n n+ −Ψ − Ψ ≤ , where n 
is the number of iteration and Ψ  is a function of U, V, θ and C. 
  
4. Mesh Generation 
 

In the finite element method, the mesh generation is the technique to subdivide a domain 
into a set of sub-domains, called finite elements, control volume, etc. The discrete 
locations are defined by the numerical grid, at which the variables are to be calculated. It 
is basically a discrete representation of the geometric domain on which the problem is to 
be solved. The computational domains with irregular geometries by a collection of finite 
elements make the method a valuable practical tool for the solution of boundary value 
problems arising in various fields of engineering. Fig. 2 displays the finite element mesh of 
the present physical domain. 
 
 
 

 

 

 

 

 

 

 

 

 

 Fig. 2. Mesh generation of the sand.grain. 

 
Fig. 3. Grid testing for the sand grain. 
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4.1. Grid testing 
 

An extensive mesh testing procedure is conducted to guarantee a grid-independent 
solution for Ra = 104, Pr = 1.73, Df = 0.5 and Sr = 0.5 in a sand grain. In the present work, 
we examine five different non-uniform grid systems with the following number of 
elements within the resolution field: 2569, 4730, 6516, 8657 and 10426. The numerical 
scheme is carried out for highly precise key in the average Nusselt number Nu and 
Sherwood number Sh for the aforesaid elements to develop an understanding of the grid 
fineness as shown in Fig. 3. The scale of the average Nusselt number and Sherwood 
number for 8657 elements shows a little difference with the results obtained for the other 
elements. Hence, considering the non-uniform grid system of 8657 elements is preferred.  
 

4.1. Code validation 
 

The present numerical solution is validated by comparing the current code results for 
streamlines, isotherms and concentration at R = 0.5, N = 1, Df = Sr = 0.5, Sc = 5, Pr = 
11.573 and RaT = 105 with the graphical representation of  Nithyadevi and Yang [29] 
which was reported for Double diffusive natural convection in a partially heated enclosure 
with Soret and Dufour effects. Fig. 4 demonstrates the above stated comparison. The 
numerical solutions (present work and Nithyadevi and Yang [29]) are in good agreement. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Results and Discussion  
 

The model is an axially symmetric fluid-flow simulation in a moving coordinate system.  

In this section, numerical results in terms of streamlines and isotherms for transient 

Fig. 4. Comparison between present work and Nithyadevi and Yang [29]. 
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analysis are displayed, while Rayleigh number (RaT = Rac), Prandtl number Pr, Dufour 

coefficient Df and Soret coefficient Sr are fixed at 104, 1.73, 0.5 and 0.5 respectively. Also, 

falling velocity and forces on the sand grain, the values of the local and average Nusselt 

and Sherwood numbers, average temperature, temperature at grain centre, U-velocity, V-

velocity in the sub domain with non dimensional time have been calculated. 
 

5.1. Velocity field 
 

The velocity field (modulus of the velocity vector) in terms of streamlines is displayed in 

Fig. 5. The occurring non-dimensional time of undershoot is chosen as the measure for the 

development time of the convective flow. The series of snapshots are of the velocity field, 

from a moment just after the sand grain is released until it is approaching steady state. 

Notice that the velocities are plotted in the reference system of the sand grain. Firstly, the 

plot shows that the streamlines are identical ie, there is no perturbation in velocity field. 

The deviation slightly grows as the time is increased. Due to time passing, the sand grain 

accelerates from standstill and the recirculation forms above the grain. Then created vortex 

enhances in size sequentially and rapidly reaches its terminal velocity. Finally after non-

dimensional time τ = 0.1, the velocity field becomes steady. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Streamlines with different non-dimensional. 

τ = 0.001 τ = 0.01 τ = 0.02 τ = 0.03 τ = 0.04 τ = 0.05 

τ = 0.06 τ = 0.07 τ = 0.08 τ = 0.09 τ = 0.1 steady 
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5.2. Temperature field 
 

Fig. 6 depicts the thermal development as a function of time for the sand grain. At the 

primary stage of time the isothermal lines occupy the bulk of the sand grain. The isotherms 

tend to move from right wall to the left insulated surface due to falling velocity of the 

grain. Gradually they are clustered near the lower hot surface as the time is increased. As 

well as the boundary layer thickness rises near the heated surface. At time τ > 0.1 there is 

no variation in the isothermal lines so that steady state pattern is observed. 

 

5.3. Concentration 
 

Fig. 7 shows the mass concentration phenomenon in terms of iso-concentration lines. It is 

observed from this figure that iso-concentrations are almost parallel to the active parts 

with compared to the isotherms indicating that both lines are spread out the whole sand 

grain and the convection is initiated. Increasing time, conduction mode of heat transfer is 

done. Further increasing time conduction is dominated across the grain for the terminal 

falling velocity of the solid particle. The iso-concentration lines tend to move from right 

highly concentrated wall to the left insulated surface. Then they are gathered near the 

lower concentrated bottom surface until the motion is steady.  

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Isotherms with different nondimensional time. 

τ = 0.001 τ = 0.01 τ = 0.02 τ = 0.03 τ = 0.04 τ = 0.05 

τ = 0.06 τ = 0.07 τ = 0.08 τ = 0.09 τ = 0.1 steady 
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5.4. Flow rate 
 

The falling velocity of the grain and the forces on the sand grain as a function of 
dimensionless time are exposed in Figs. 8 (i) - (ii). It is clear that after the solution time of 
0.1, the velocity approaches the terminal velocity. The terminal velocity equals 0.291 m/s. 
When this state is reached, the gravity and the forces from the water cancel out. From fig. 
8(ii) we see that the fluid force ie the water exerts on the sphere (upper line) increases as 
the grain gains speed. The gravity force (lower line) remains the same, and the total force 
(middle line) tends toward zero as the solution approaches steady state. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

τ = 0.001 τ = 0.01 τ = 0.02 τ = 0.03 τ = 0.04 τ = 0.05 

τ = 0.06 τ = 0.07 τ = 0.08 τ = 0.09 τ = 0.1 steady 

τ = τ = 

τ = 

Fig. 7. Iso-concentrations with different nondimensional time. 

τ 
0.01 0.06 0.07 0.08 0.09 0.1 0.02 0.03 0.04 0.05 

τ 
0.01 0.06 0.07 0.08 0.09 0.1 0.02 0.03 0.04 0.05 

(ii) (i) 

Fig. 8. Plots of (i) falling velocity and (ii) the forces on the sand grain versus time. 
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5.5. Heat and mass transfer 
 

The local Nusselt number (Nulocal) and Sherwood number (Shlocal) along bottom hot and 
right vertical surfaces respectively and rate of heat (Nu) and mass (Sh) transfer versus time 
are presented in Figs. 9 (i) and (ii). With increasing τ up to 0.01, the Nulocal and Shlocal 
increases and decreases respectively due to increment of temperature difference and 
decrement of thickness of boundary layer. Then both of them become invariant. The time-
averaged Nu and Sh are obtained by computing the time average of the average Nusselt 
and Sherwood number for a process, given by total time being the duration of the process 
of interest. Nu and Sh are the same pattern as Nulocal and Shlocal with time. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

5.6. Temperature and concentration 
 
Figs. 10 (i) and (ii) show the average fluid temperature and concentration versus time as 
well as temperature and concentration at subdomain centre of the sand grain. Average 
temperature (θav) goes up but concentration (Cav) goes down for increasing values of time 

Fig. 9. Plots of (i) local and (ii) average Nu and Sh at the respective surfaces versus time 

Fig. 10. Plots of (i) θav and Cav (ii) θ and C at the centre of the subdomain versus time. 

(ii) (i) 

(ii) (i) 
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up to τ ≤ 0.01. Then they are almost identical with the variation of time. Temperature and 
concentration at the centre of the grain are also observed in similar pattern (Fig. 9). 
 
5.7. Velocity 
 

The X-velocity (U) and Y-velocity (V) in the subdomain of the sand grain as a function of 
time are illustrated in Figs. 11 (i)-(ii). It is seen that at τ = 0.04, the U and V velocities are 
of wavy pattern and increase sharply. Then these achieve optimum velocity gradually.  
 
 

 

 

 

 

 

 

 

 
 
 

6.  Conclusion 
 

The problem of transient falling behavior of a sand grain in the presence of Dufour and 
Soret effects has been studied numerically. Flow, temperature and concentration fields in 
terms of streamlines, isotherms and iso-concentration, respectively have been considered 
for various dimensionless times until the steady state observed. The results of the 
numerical analysis lead to the following conclusions: 
 

a. The structure of the falling flow, temperature and concentration fields of the sand 
grain is found to be significantly dependent upon the time (τ). 

b. The heat transfer rate is more effective than the rate of mass transfer.  
c. The non-linear behavior of U and V velocities is due to the falling particle.  
d. The mean temperature and concentration of the sand grain increase and decrease 

with dimensionless time, respectively.  
 

One can easily adapt the model to hold for a general axially symmetric object (by 
redrawing the geometry) or even an arbitrarily shaped object (by modeling in 3D). 
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