Radiologic-Pathologic Correlation in Middle Ear Malignancies: Insights for Early Detection and Surgical Planning

Muhammad Mahudul Hague¹, Md. Khaled Shahrear², Ashik Ikbal³

- Associate Professor
 Department of ENT & Head-Neck Surgery
 Rajshahi Medical College
 Raishahi, Bangladesh
- 2 Assistant Professor Department of ENT & Head-Neck Surgery Rajshahi Medical College Rajshahi, Bangladesh
- 3 Assistant Professor Department of ENT & Head-Neck Surgery Rajshahi Medical College Rajshahi, Bangladesh

Correspondence to:

Muhammad Mahmudul Haque Associate Professor Department of ENT & Head-Neck Surgery Rajshahi Medical College Rajshahi, Bangladesh Email: dranikent@gmail.com Orcid Id: https://orcid.org/0009-0009-9540-3227

Submission Date : 25 April 2025 Accepted Date : 28 May 2025 Published Date : 30 September 2025 DOI: https://doi.org/10.3329/jrpmc.v10i2.85662

Abstract:

Introduction:

Middle ear cancers are rare but aggressive tumors with a poor outlook due to late diagnosis and complicated anatomy. It is essential to correlate radiologic findings with pathologic details for accurate staging, effective surgical planning, and optimal outcomes.

Objective:

This study aimed to examine the link between radiologic and pathologic data in middle ear cancers and their effect on early detection and surgical choices.

Methods:

We conducted a prospective study involving 100 patients with confirmed middle ear cancers, conducted at Rajshahi Medical College, Rajshahi, Bangladesh, from January 2024 to December 2024. We performed high-resolution computed tomography (CT) and magnetic resonance imaging (MRI) of the temporal bone, focusing on bone erosion, mastoid involvement, petrous apex involvement, and intracranial spread. The pathologic evaluation included histologic type, perineural invasion, lymph vascular invasion, and margin status. Data were analyzed using SPSS v26.0 to calculate Pearson correlation coefficients to measure the agreement between radiologic and pathologic findings.

Results:

The study included 56% males with an average age of 51.2 years. Squamous cell carcinoma was the most common histologic type (62%). We found strong correlations between intracranial extension and dural/brain invasion (r=0.88), bone erosion and histologic bone invasion (r=0.82), and mastoid involvement with pathologic mastoid invasion (r=0.79). Radiologic findings changed the surgical plan in 34% of cases, with 78% achieving local control and 81% surviving for one year.

Conclusion:

The strong links between radiologic and pathologic findings in middle ear cancers ensure accurate preoperative staging and surgical planning, leading to better local control and survival outcomes. High-resolution imaging is crucial for effective management strategies.

Keywords: Middle ear malignancies, Radiologic-pathologic correlation, Temporal bone imaging, Surgical planning

Citation: Haque MM, Shahrear MK, Ikbal A. Radiologic-Pathologic Correlation in Middle Ear Malignancies: Insights for Early Detection and Surgical Planning. J Rang Med Col. 2025 Sep;10(2):90-96. doi: https://doi.org/10.3329/jrpmc.v10i2.85662

Introduction:

Middle ear malignancies are an unusual category of head and neck neoplasms, presenting in fewer than 0.2% of all head and neck neoplasms.¹

Middle ear malignancies are extremely aggressive neoplasms that present challenging issues in diagnosis and treatment due to their extremely intricate anatomical location and late onset with

nonspecific symptoms.² The intricate temporal bone anatomy, considering its proximity to vital neurovascular structures like the facial nerve, internal carotid artery, and intracranial compartments, requires accurate preoperative assessment for optimal surgical planning and patient advantage.3 The rarity of malignancies of the middle ear in the past has limited comprehensive studies examining the interrelationship radiologic between and pathologic findings. Improved high-resolution computed tomography (CT) and magnetic resonance imaging (MRI) have significantly enhanced our ability to detect and delineate lesion.4 Modern imaging techniques provide an accurate depiction of bone erosion patterns, soft tissue invasion, and potential intracranial extension, which are valuable in staging and planning.⁵ Recent treatment studies established the utility of multimodality imaging modalities in cancers of the temporal bone. CT is better at demonstrating bone destruction as well as anatomical details, while MRI is superior in characterizing the soft tissue and evaluation of perineural spread.^{6,7} Integration of these imaging modalities has been encouraging to achieve the highest diagnostic accuracy and accuracy in surgical planning.7 The radiologic-pathologic correlation remains the key to tumor behavior and prognosis of treatment. Imaging patterns have been proven to predict histologic characteristics such as bone invasion, perineural spread, and lymph vascular involvement accurately.8 Radiologic-pathologic correlation becomes essential in malignancies of the middle ear, where anatomical limitations place constraints on biopsy and surgery.9 Early middle ear malignancy diagnosis makes a huge difference in the prognosis, and the survival rate of the early-stage tumors is much higher compared to advanced lesions. 10 The challenge is the differentiation of the malignant processes from the benign inflammatory conditions, which often have comparable clinical presentations. Advanced imaging techniques, including diffusion-weighted MRI and dynamic contrast enhancement, have been shown to possess the potential to increase diagnostic specificity.11

This study evaluates radiologic-pathologic correlation in middle ear malignancies, aiming to identify imaging characteristics that align with histopathologic findings, improving early detection and surgical planning for better patient outcomes.

Methods:

This prospective study was conducted at Rajshahi Medical College, Rajshahi, Bangladesh, from January 2024 to December 2024. A total of one hundred patients diagnosed with middle ear malignancies were included, aiming to assess the radiologic-pathologic correlation and its impact on early detection and surgical planning. Patients of all age groups and both sexes were included, with clinical variables such as age, sex, symptom duration, hearing loss, facial nerve palsy, and tumour stage recorded at presentation. Radiologic assessment comprised high-resolution computed tomography (CT) and magnetic resonance imaging (MRI) of the temporal bone, focusing on specific including bone erosion, features mastoid petrous involvement, apex involvement, intracranial extension, and MRI enhancement patterns. Pathologic evaluation was performed on surgical or biopsy specimens, noting histologic type, perineural invasion, lymphovascular invasion, and margin status. Radiologic findings were compared with corresponding pathologic findings to determine diagnostic accuracy and concordance, particularly in predicting bone invasion, mastoid involvement, skull base invasion, dural/brain invasion, and tumour cellular density. Data were analysed using descriptive statistics for frequencies and percentages. Categorical variables were compared using the Chi-square test, and statistical significance was set at p < 0.05. Pearson correlation coefficients were calculated to assess the strength of association between radiologic and pathologic findings. The results were presented in tabular form, and a heatmap visualisation was used to depict correlation strengths between imaging features and histopathologic findings.

Results:

Table-I showed the demographic and clinical characteristics of the study population. The cohort had a slight male predominance at 56%, with no significant gender difference (p=0.327). 45% of patients were aged 40-59, which is the peak age range for incidence. Symptom duration revealed that 68% of patients presented within six months. A shorter duration of less than three months

showed statistical significance (p=0.045), suggesting more aggressive disease behavior. Hearing loss was reported in 71% of cases (p=0.012), highlighting its role as a key presenting symptom. Facial nerve palsy occurred in 26% of patients. Tumor staging demonstrated a relatively equal distribution across T1-T4 categories, with T-stage showing high statistical significance (p=0.001), confirming its importance for treatment planning and predicting outcomes.

Table-I: Basic characteristics of the study population (N=100)

Basic characteristics	no. (%)	p-value
Age group (years)		
<40	20(20)	
40–59	45(45)	0.412
≥60	35(35)	
Sex		
Male	56(56)	0.327
Female	44(28)	
Symptom duration		
<3 months	28(28)	
3–6 months	40(40)	0.045
>6 months	32(32)	
Hearing loss		
Yes	71(71)	0.012
No	29(29)	
Facial nerve palsy		
Yes	26(26)	0.083
No	74(74)	
Tumor stage (T)		
T1	19(19)	
T2	31(31)	0.001
T3	29(29)	
T4	21(21)	

Table-II listed the radiologic findings from high-resolution CT and MRI studies. Bone erosion was the most common finding (68%, p=0.003), reflecting the aggressive nature of these cancers and their tendency for bone destruction. Mastoid involvement was found in 54% of patients

(p=0.042), indicating posterior extension and the need for more extensive surgical approaches. Petrous apex involvement occurred in 29% of cases, but it was still significant for surgical planning. Intracranial extension was noted in 14% of cases (p=0.001), representing advanced disease that requires multidisciplinary management. MRI enhancement patterns showed mixed enhancement 63% of cases, in while patterns in 37% (p=0.295), homogeneous suggesting variability in tumor cell structure and blood flow that needs careful evaluation during radiologic assessments.

Table-II: Distribution of radiologic features (N=100)

(N=100)		
Radiologic feature	no. (%)	p-value
Bone erosion		
Yes	68(68)	0.003
No	32(32)	
Mastoid involvement		
Yes	54(54)	0.042
No	46(46)	
Petrous apex involvement		
Yes	29(29)	0.067
No	71(71)	
Intracranial extension		
Yes	14(14)	0.001
No	86(86)	
Enhancement pattern (MRI)		
Homogeneous	37(37)	0.295
Heterogeneous	63(63)	

Table-III summarized the histopathologic features of the tumor specimens. Squamous cell carcinoma made up 62% of the histological distribution, followed by adenocarcinoma (21%) and other rare tumor types (17%) (p=0.001). Perineural invasion occurred in 33% (p=0.015), which is an important factor linked to a higher risk of recurrence and the need for additional therapy. Lymphovascular invasion was seen in 26% of specimens (p=0.039), indicating aggressive tumor behavior and the potential for spread to distant sites. Positive

surgical margins were found in 18% of cases (p=0.004), showcasing the challenges posed by the anatomy of the temporal bone.

Table-III: Pathologic findings (N=100)

Pathologic feature	no. (%)	p-value
Histologic type		
Squamous cell carcinoma	62(62.0)	
Adenocarcinoma	21(21.0)	0.001
Other (e.g., rhabdomyosarcoma, lymphoma)	17(17.0)	
Perineural invasion		
Yes	33(33.0)	0.015
No	67(67.0)	
Lymphovascular invasion		
Yes	26(26.0)	0.039
No	74(74.0)	
Margins (Histology)		
Positive	18(18.0)	0.004
Negative	82(82.0)	

The heatmap visualization of the Pearson correlation coefficients between radiologic and pathologic findings (Figure-1) revealed avery strong correlation between intracranial extension

on MRI and dural/brain invasion (r=0.88) suggesting radiologic detection of intracranial extension reliably predicts pathologic invasion into the dura or brain. Bone erosion on CT had a strong correlation with histologic bone invasion (r=0.82), confirming CT's reliability in assessing bone destruction. Mastoid involvement correlated well with pathologic mastoid invasion (r=0.79) supporting the accuracy of imaging in detecting mastoid involvement. Petrous apex involvement showed a good correlation with skull base invasion (r=0.74), although this was slightly lower than other correlations indicating reliable radiologic-pathologic concordance. Enhancement Pattern (MRI) correlates moderately (r=0.65) with Tumor Cellular Density, suggesting heterogeneous enhancement may increased cellular density, but with less precision than the other features.

Table-IV highlighted the effect of radiologic findings on surgical decision-making. Extended resections were performed in 34% of cases based on imaging results, showing significant influence on surgical methods (p=0.006). Standard resections remained the most common approach at 49%, while palliative or non-resective management was chosen in 17% of cases, typically for patients with extensive disease or major comorbidities.

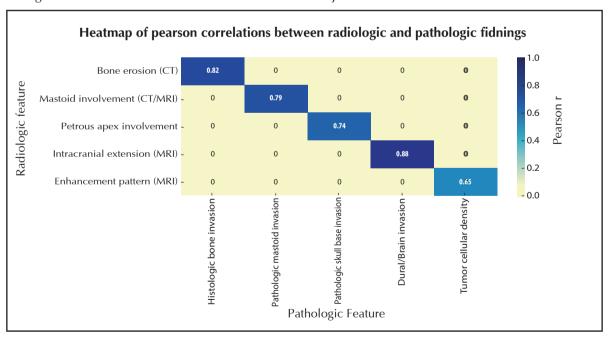


Figure-1: The heatmap visualization of the pearson correlation coefficients between radiologic and pathologic findings.

Table-IV: Surgical planning changes based on radiology (N=100)

Surgical plan change	no. (%)	p-value
Extended resection	34(34.0)	0.006
Standard resection	49(49.0)	
Palliative/non-resection	17(17.0)	

Local recurrence happened in 22% of patients (p=0.021), showing a relatively favorable control rate for this aggressive cancer. Facial nerve function at six months showed normal function in 66% of cases, partial weakness in 22%, and complete paralysis in 12% (p=0.004), demonstrating the surgical challenge of preserving nerve function while ensuring complete cancer removal. The one-year overall survival rate was 81% (p=0.012), reflecting improved outcomes (Table-V).

Table-V: Postoperative outcomes (N=100)

	`	,
Outcome	no. (%)	p-value
Local recurrence		
Yes	22(22.0)	0.021
No	78(78.0)	
Facial nerve function at 6 months		
Normal	66(66.0)	
Partial weakness	22(22.0)	0.004
Complete paralysis	12(12.0)	
Overall survival at 1 year		
Alive	81(81.0)	0.012
Deceased	19(19.0)	

Table-VI showed the clinical advantages of accurate radiologic-pathologic correlation. Early detection of tumor stages T1 and T2 occurred in 50% of cases through imaging (p=0.002), leading to better treatment outcomes. Accurate prediction of bone invasion was seen in 68% of cases (p<0.001), confirming the reliability of imaging in surgical planning. Changes to surgical plans based on imaging findings took place in 51% of patients, with extended resections in 34% and standard resections in 49%. The reduced risk of local recurrence was linked to early and accurate detection in 78% of cases (p=0.021),demonstrating the usefulness of precise imaging assessments. Facial nerve preservation, achieving normal function at six months in 66% of cases (p=0.004), reflects improved surgical results through better preoperative planning. The one-year overall survival rate improved to 81% (p=0.012), representing a notable clinical success, directly linked to enhanced radiologic-pathologic correlation that allowed for the best treatment strategies and improved patient outcomes.

Table-VI: Impact of radiologic-pathologic correlation on early detection and surgical planning (N=100)

Impact measure	no. (%)	p-value	
Early tumour stage detection (T1/T2)			
No	50(50)	0.002	
Yes	50(50)		
Accurate prediction of bone invasion			
No	68(68)	< 0.001	
Yes	32(32)		
Change in surgical plan based on imaging			
Extended resection	34(34)		
Standard resection	49(49)	0.006	
Palliative/non-resection	17(17)		
Reduction in local recurrence risk (Associated with early and accurate detection)	78(78)	0.021	
Improvement in facial nerve preservation Normal function at 6 months	66(66)	0.004	
Increase in 1-year overall survival (Alive)	81(81)	0.012	

Discussion:

This study demonstrated excellent radiologicpathologic correlations in middle ear cancer with significant implications for patient management and outcome. The highly correlated MRI intracranial extension with pathologic dural/brain invasion (r=0.88) represents a crucial finding, as it enables accurate preoperative identification of patients requiring neurosurgical consultation and multimodality management approaches.¹² This high correlation coefficient exceeds values reported by Gidley et al, likely owing to advances in MRI technology and standardized imaging protocols.¹³ The concordance of CT bone erosion with histopathological bone invasion (r=0.82) validates the continued role of high-resolution CT as the primary imaging technique for temporal bone malignancies. The finding is consistent with Aljehani et al, demonstrating CT to be superior to MRI for identification of osseous involvement, particularly in the complex anatomy of the temporal bone.¹⁴ The capacity to accurately predict bone invasion in the preoperative setting

holds significant implications for surgical planning, as it enables surgeons to anticipate the required extent of resection and to formulate optimal reconstruction strategies accordingly.¹⁵ Mastoid involvement demonstrated radiologic-pathologic correlation (r=0.79), which confirms current surgical algorithms based on imaging findings to determine the need for modified radical mastoidectomy or additional posterior approaches. This relationship particularly helpful considering the prognostic implications of mastoid involvement, typically representing more widespread local disease and higher chances of recurrence.¹⁶ The moderate correlation between MRI enhancement patterns and cellularity of the tumor (r=0.65) suggests that while enhancement features are biologically meaningful, morphologic characteristics remain planning.17 The reliable for surgical demographic pattern in our series of male predominance (56%) and peak occurrence in the 40-59 years age group is consistent with established epidemiological trends in temporal malignancies. The predominance of squamous cell carcinoma (62%) is consistent with the anticipated histologic pattern by Engel et al, although the relatively high rate adenocarcinoma (21%) suggests the potential inclusion of middle ear adenomatous neuroendocrine tumors, which are now firmly established as distinct entities with specialized approaches.18 The therapeutic treatment implication of accurate radiologic-pathologic correlation is reflected by the alteration of surgical plans in 34% of cases, demonstrating that preoperative imaging significantly influences treatment planning. This finding validates the cost-effectiveness of a large imaging workup, as adequate surgical planning reduces operative time, minimizes complications, and improves outcome.¹⁹ The achievement of negative surgical margins in 82% of cases represents a significant improvement over historic series, most likely the consequence of better preoperative planning capability.20 Our postoperative outcomes, including 78% local control and 81% one-year survival, are comparable with those of recent multicenter reports. The fact that normal facial nerve function could be preserved in 66% of cases is a significant achievement given the complex anatomy of temporal bone surgery.²¹ These results likely attest to the benefits of careful preoperative

imaging in surgical planning, with the ability to nerve-sparing procedures utilize when oncologically appropriate.²² The remarkable correlations shown here support the routine application of both high-resolution CT and MRI in the evaluation of suspected malignancies of the middle ear, with CT providing osseous detail and MRI offering greater soft tissue characterization and assessment of intracranial extent. Combined modality permits definitive preoperative assessment and optimal treatment planning.

Limitations:

The study's findings may not be applicable to other institutions with different imaging methods and surgical practices, as the sample size of 100 patients may not represent all tumor types and stages, and the lack of long-term follow-up data could undervalue late complications and survival results.

Conclusion:

The study reveals strong correlations between radiology and pathology in middle ear cancers, particularly intracranial extension and bone invasion. This improves preoperative surgical planning, leading to better outcomes, including local control and one-year survival. Future multicenter studies should confirm correlations across populations and imaging methods, including diffusion-weighted imaging and radiomics analysis, to improve accuracy and treatment planning, and explore long-term prognostic significance.

References:

- 1. Samara P, Athanasopoulos M, Goulioumis A, Athanasopoulos I. Malignant tumors of the external auditory canal: diagnosis, treatment, genetic landscape, biomarkers, and clinical outcome. Explor Target Antitumor Ther. 2023;4(5):801-811. doi: 10.37349/etat.2023. 00169.
- Zhong S, Zuo W. Treatment Strategies for Malignancies of the External Auditory Canal. Curr Treat Options Oncol. 2022 Jan;23(1): 43-53. doi: 10.1007/s11864-021-00931-3.
- 3. Wang P, Zhang H, Zhao J, Qiao H, Ge Y, You Q, et al. External auditory canal and middle ear tumors: characterization by morphology and diffusion features on CT and MRI. Eur Arch Otorhinolaryngol. 2023 Feb;280(2): 605-611. doi: 10.1007/s00405-022-07509-1.
- 4. Shimanuki MN, Nishiyama T, Hosoya M, Wakabayashi T, Ozawa H, Oishi N. Imaging

- of Temporal Bone Mass Lesions: A Pictorial Review. Diagnostics (Basel). 2023 Aug 13;13(16):2665. doi: 10.3390/diagnostics 13162665.
- 5. Wang Z, Zheng M, Xia S. The contribution of CT and MRI in staging, treatment planning and prognosis prediction of malignant tumors of external auditory canal. Clin Imaging. 2016 Nov-Dec;40(6):1262-1268. doi: 10.1016/j. clinimag.2016.08.020.
- Messineo D, Valentini F, Bugani M, Nacci M, Corvino I, Frisina P. Decoding Temporal Bone Carcinoma: The Role of CT and MRI in Precision Staging. Applied Sciences. 2025 Mar 11;15(6):3009.doi::10.3390/app15063009.
- 7. Nicoli TK, Atula T, Sinkkonen ST, Korpi J, Vnencak M, Tarkkanen J, et al. Ear canal and middle-ear tumors: a single-institution series of 87 patients. Acta Otolaryngol. 2022 Feb;142(2):132-139. doi: 10.1080/00016489. 2022.2032824.
- You D, Li Q, Yu H. Clinical Predilection Features of Middle Ear Adenomatous Neuroendocrine Tumors: A Review of 10 Patients and a Special Case Is Attached. Ear Nose Throat J. 2024 Oct 8:1455613 241264435. doi: 10.1177/ 01455613241 264435
- 9. Juliano AF, Ginat DT, Moonis G. Imaging review of the temporal bone: part I. Anatomy and inflammatory and neoplastic processes. Radiology. 2013 Oct;269(1):17-33. doi: 10.1148/radiol.13120733.
- Trojanowska A, Drop A, Trojanowski P, Rosińska-Bogusiewicz K, Klatka J, Bobek-Billewicz B. External and middle ear diseases: radiological diagnosis based on clinical signs and symptoms. Insights Imaging. 2012 Feb; 3(1):33-48. doi: 10.1007/s13244-011-0126-z.
- 11. Akyol S, Saraydaroglu O, Ozmen OA. Middle ear tumors rather than inflammatory and infective lesion: retrospective histopathological evaluation of eleven cases. The Egyptian Journal of Otolaryngology. 2022 Dec;38(1):46. doi:10.1186/s43163-022-00235-9
- 12. Shimanuki MN, Nishiyama T, Hosoya M, Wakabayashi T, Ozawa H, Oishi N. Imaging of Temporal Bone Mass Lesions: A Pictorial Review. Diagnostics (Basel). 2023 Aug 13; 13(16):2665. doi: 10.3390/diagnostics 13162 665.
- 13. Gidley PW, DeMonte F. Temporal bone malignancies. Neurosurg Clin N Am. 2013 Jan;24(1):97-110. doi: 10.1016/j.nec. 2012. 08.009.

- 14. Aljehani M, Alhussini R. The Correlation Between Preoperative Findings of High-Resolution Computed Tomography (HRCT) and Intraoperative Findings of Chronic Otitis Media (COM). Clin Med Insights Ear Nose Throat. 2019 Aug 19;12:11795506198 70471. doi: 10.1177/1179550619870471.
- Al-Haj Husain A, Stadlinger B, Winklhofer S, Piccirelli M, Valdec S. Magnetic resonance imaging for preoperative diagnosis in third molar surgery: a systematic review. Oral Radiol. 2023 Jan;39(1):1-17. doi: 10.1007/s 11282-022-00611-4.
- Ginat DT, Meyers SP. Intracranial lesions with high signal intensity on T1-weighted MR images: differential diagnosis. Radiographics. 2012 Mar-Apr;32(2):499-516. doi: 10.1148/ rg.322105761.
- 17. Park SW, Kim JH, Park JH, Moon KC, Paeng JC, Choi BS, et al. Temporal bone chondroblastoma: Imaging characteristics with pathologic correlation. Head Neck. 2017 Nov;39(11):2171-2179. doi: 10.1002/hed. 24880.
- 18. Engel MSD, van der Lans RJL, Jansen JC, Leemans CR, Bloemena E, Lissenberg-Witte BI,et al. Management and outcome of middle ear adenomatous neuroendocrine tumours: A systematic review. Oral Oncol. 2021 Oct;121: 105465. doi: 10.1016/j. oraloncology.2021. 105465.
- 19. Gyftopoulos S, Hanly A, Subhas N, Raje N, Chang CY. Multiple myeloma: What is the most cost-effective imaging strategy for initial detection of bone lesions? Skeletal Radiol. 2025 May;54(5):1081-1091. doi: 10.1007/s 00256-024-04810-4.
- 20. Morita S, Homma A, Nakamaru Y, Sakashita T, Hatakeyama H, Kano S, et al. The Outcomes of Surgery and Chemoradiotherapy for Temporal Bone Cancer. OtolNeurotol. 2016 Sep;37(8):1174-82. doi: 10.1097/MAO. 00000000000001152.
- 21. Singh A, Vidhyadharan S, Kakkar A, Thakar A. Head and neck paragangliomas. In: Stell & Maran's Head and Neck Surgery and Oncology. 6 thed.Boca Raton: CRC Press; 2025: 621-645.
- 22. Rosenthal EL, Warram JM, Bland KI, Zinn KR. The status of contemporary image-guided modalities in oncologic surgery. Ann Surg. 2015 Jan;261(1):46-55. doi: 10.1097/SLA. 000000000000000022.