Polytrauma in Emergency Settings: A Multidisciplinary Approach to Skeletal and Neurological Stabilization

Mohammad Atiqur Rahman¹, Abul Kalam Azad², Md Shamsul Alam³, Rasel-Al-Zilane⁴, Ahmad Hussain Siddique⁵

- Senior Consultant
 Department of Spine Surgery
 National Institute of Traumatology &
 Orthopaedic Rehabilitation
 Dhaka, Bangladesh
- Assistant Professor
 Department of Spine Surgery
 National Institute of Traumatology &
 Orthopaedic Rehabilitation
- Assistant Professor
 Department of Orthopedic Surgery
 National Institute of Traumatology & Orthopaedic Rehabilitation
- Junior Consultant
 Department of Spine Surgery
 National Institute of Traumatology & Orthopaedic Rehabilitation
- Junior Consultant
 Department of Orthopedic Surgery
 National Institute of Traumatology & Orthopaedic Rehabilitation

Correspondence to:

Mohammad Atiqur Rahman
Department of Spine Surgery
National Institute of Traumatology &
Orthopaedic Rehabilitation
Dhaka, Bangladesh
Email: atiqorthodmc@gmail.com
Orcid Id: https://orcid.org/0009-0008-6802-2579

Submission Date : 16 April 2025 Accepted Date : 21 May 2025 Published Date : 30 September 2025 DOI: https://doi.org/10.3329/jrpmc.v10i2.85639

Abstract

Introduction:

Polytrauma is a leading contributor to morbidity and mortality globally, particularly in low- and middle-income countries.

Objective:

This study evaluated the epidemiological trends, injury profiles, and outcomes of polytrauma patients in an emergency setting in Bangladesh, with a focus on skeletal and neurological stabilization and the role of multidisciplinary care.

Methods:

A 12-month prospective observational study was conducted at the National Institute of Traumatology and Orthopedic Rehabilitation, Dhaka, on 120 adult polytrauma patients (≥18 years) presenting within 6 hours of injury. Data collected included demographics, injury types, Glasgow Coma Scale (GCS), interventions, ICU admissions, and functional outcomes via Glasgow Outcome Scale (GOS). Cox proportional hazards modeling was applied to identify predictors of recovery.

Results:

The mean age was 38.2±14.6 years; 65% were male. Road traffic accidents accounted for 60% of injuries. Long bone fractures (51.7%) and TBIs (46.7%) were most frequent. External fixation was the most common intervention (35%). Multidisciplinary management was provided in 63.3% of cases and significantly improved outcomes (p<0.001). Mortality was 11.7%; 48.3% achieved good recovery (GOS 5). Cox analysis showed better outcomes with multidisciplinary care (HR=1.68, p=0.009), higher GCS, and younger age.

Conclusion:

Multidisciplinary trauma care is vital for improving functional outcomes in polytrauma. Early stabilization and collaborative interventions should be prioritized in resource-limited emergency settings.

Keywords: Polytrauma, Skeletal injuries, Traumatic brain injury (TBI)

Citation: Rahman MA, Azad AK, Alam MS, Zilane RA, Siddique AH. Polytrauma in Emergency Settings: A Multidisciplinary Approach toSkeletal and Neurological Stabilization. J Rang Med Col. 2025 Sep;10(2):66-71. doi: https://doi.org/10.3329/jrpmc.v10i2.85639

Introduction:

Trauma remains one of the leading causes of mortality and disability worldwide, particularly among young adults in their most productive years. According to the World Health Organization (2023), injuries account for nearly 4.4 million deaths annually, with road traffic accidents (RTAs), falls, and interpersonal violence as major contributors. Over 90% of trauma-related

deaths occur in low- and middle-income countries (LMICs), where specialized care is often scarce.¹ Polytrauma, severe injuries involving multiple systems, represents a complex clinical challenge, especially when both the musculoskeletal and central nervous systems are affected. Studies report that 35–45% of polytrauma patients sustain skeletal fractures alongside traumatic brain or spinal cord injuries, significantly increasing morbidity and recovery times.²

Polytrauma is often defined by an Injury Severity Score (ISS) of 16 or greater. Still, the Berlin Definition refines this to include at least two severe injuries accompanied by physiological compromise such as hypotension, acidosis, or coagulopathy.3 Early recognition and intervention during the "golden hour" remain critical for survival.4 Emergency departments (EDs) serve as the first line of care, where rapid stabilization, airway protection, and imaging depend on structured trauma teams, effective communication, and standardized protocols. Institutions with coordinated trauma systems report faster surgical access and improved outcomes.5

A multidisciplinary approach is central to polytrauma care, involving emergency physicians, orthopedic surgeons, neurosurgeons, anesthesiologists, and radiologists. Each specialty contributes at different stages, from resuscitation and damage control surgery to imaging and postoperative management.⁶⁻⁸

In Bangladesh, the trauma burden is severe but under-managed. RTAs are the leading cause, driven by poor infrastructure and unregulated transport. Unique injury patterns, such as scarf injuries, highlight mechanism-specific risks.9-11 Systemic issues, including limited trauma centers, poor ambulance coverage, and a lack of trained personnel, exacerbate outcomes.¹² This study investigated skeletal and neurological injury management in Bangladesh's emergency settings, aiming inform resource-sensitive, to multidisciplinary models tailored for LMIC contexts.

Methods:

This prospective observational study was carried out at the National Institute of Traumatology and Orthopedic Rehabilitation, Dhaka, Bangladesh, from January to December 2022 after approval from Institutional Ethics Committee. Adult patients (≥18 years) presenting within 6 hours of injury with polytrauma involving at least one skeletal and one neurological injury were included, while pediatric cases, isolated injuries, pre-evaluation deaths were excluded. Data were collected using a structured form documenting demographics, mechanism of injury, time to arrival, injury types, initial Glasgow Coma Scale (GCS), interventions, ICU admission,

complications, and outcomes measured by the Glasgow Outcome Scale (GOS) at discharge. The Glasgow Coma Scale (GCS) is a validated tool for assessing consciousness after traumatic brain injury, based on eye, verbal, and motor responses, with scores ranging from 3-15.13 It aids in triage, prognostication, imaging decisions, determining ICU or neurosurgical needs. The Glasgow Outcome Scale (GOS) categorizes functional recovery into five levels, from death to good recovery, and is widely used in TBI and polytrauma research to standardize assessment of outcomes.14 lt reliably reflects recovery trajectories, rehabilitation needs, and quality of life. Cox proportional hazards modeling assessed predictors of recovery, including age, GCS, multidisciplinary involvement, and baseline outcomes. Analyses were conducted with SPSS v25, with significance set at p<0.05.

Results:

Among 120 adult polytrauma patients, the mean age was 38.2 years, with males comprising 65%. Road traffic accidents were the leading cause (60%), followed by falls (23.3%) and assaults (10%) (p=0.036). Comorbidities were present in 28.3% of patients (p=0.021). Over half (53.3%) reached the hospital within one hour, and early arrival showed a significant association with outcomes (p=0.045) (Table-I).

Table-I: Basic characteristics of the study population (N=120)

Basic characteristic	no. (%)	p- value	
Age (mean±SD)	38.2±14.6	-	
Sex - Male	78(65.0)	0.412	
Sex - Female	4235.0()		
Mechanism of injury			
Road traffic accident	72(60.0)		
Fall from height	28(23.3)		
Assault	12(10.0)	0.036	
Others	8(6.7)		
Comorbidities present	34(28.3)	0.021	
Time to hospital			
≤1hr	64(53.3)	0.045	
>1hr	56(46.7)		

Table-II: Types and distribution of injuries (N=120)

Type of injury	no. (%)	p- value
Skeletal injury		
Long bone fractures	62(51.7)	0.004
Pelvic fractures	18(15.0)	
Spinal fractures	22(18.3)	
Multiple skeletal injuries	36(30.0)	
Neurological injury type		
Traumatic brain injury (TBI)	56(46.7)	
Spinal cord injury (SCI)	24(20.0)	
Peripheral nerve injury	14(11.7)	0.028
GCS ≤8 (Severe TBI)	20(16.7)	
GCS 9–12 (Moderate TBI)	18(15.0)	
GCS 13–15 (Mild TBI)	18(15.0)	

Among 120 patients, long bone fractures were most common (51.7%, p=0.004), followed by spinal (18.3%) and pelvic fractures (15.0%). Additionally, 30% sustained multiple skeletal injuries, emphasizing the severity of trauma and the need for prompt orthopedic intervention in polytrauma care. Neurological injuries were common, with TBI affecting 46.7% of patients (p=0.028), followed by spinal cord injuries (20%) and peripheral nerve injuries (11.7%). By GCS, 16.7% had severe TBI, 15% moderate, and 15% mild, highlighting significant neurological compromise requiring prompt neurosurgical and critical care attention.

External fixation (35%) was the most frequent intervention, followed by ORIF (25%), spinal stabilization (15%), and decompressive craniectomy (10%). Multidisciplinary trauma teams managed 63.3% of patients, a highly significant factor (p<0.001), underscoring the importance of integrated, coordinated care in improving polytrauma outcomes (Table-III).

Table-III: Interventions and multidisciplinary management (N=120)

Intervention type	no. (%)	p-value
External fixation	42(35.0)	
ORIF (Open reduction)	30(25.0)	0.011
Spinal stabilization surgery	18(15.0)	
Decompressive craniectomy	12(10.0)	
Multidisciplinary team involved	76(63.3)	< 0.001

ICU care was required in 40% of patients (p=0.003). Complications included sepsis (8.3%), neurological decline (10%), and re-operations (5%). Overall mortality was 11.7% (p=0.019), underscoring the severity of polytrauma and the necessity of timely, multidisciplinary management to improve outcomes.

Table-IV: Complications and ICU admission (N=120)

(
Complication/Outcome	no. (%)	p-value
ICU admission required	48(40.0)	
Sepsis	10(8.3)	0.003
Re-operation	6(5.0)	
Neurological deterioration	12(10.0)	
Mortality	14(11.7)	0.019

At discharge, 48.3% of patients achieved good recovery (GOS 5), 23.3% had moderate disability, 15% severe disability, 5% remained in a vegetative state, and 8.3% died. Outcomes were statistically significant (p<0.001), with nearly three-quarters showing functional recovery and almost half attaining favorable results.

Table-V: Functional outcomes at discharge (N=120)

Outcome Score	no. (%)	p-value
Good recovery (GOS 5)	58(48.3%)	
Moderate disability (GOS 4)	28(23.3%)	
Severe disability (GOS 3)	18(15.0%)	<0.001
Persistent vegetative (GOS 2)	6(5.0%)	
Death (GOS 1)	10(8.3%)	

Cox regression showed that prior good clinical status increased recovery likelihood by 85% (HR=1.85, p=0.002), while age reduced by 3% per year (HR=0.97, p=0.018). Each point increase in GCS improved recovery by 12% (HR=1.12, p=0.007). Multidisciplinary care significantly enhanced recovery speed by 68% (HR=1.68, p=0.009).

Table-VI: Cox proportional hazards interpretation for time to recovery

Outcome score	Variable Hazard Ratio (HR	95% Confidence Interval	p-value	Interpretation
Previous good outcome	1.85	1.25 - 2.74	0.002	85% more likely to recover sooner
Age (per year)	0.97	0.95 - 0.99	0.018	3% slower recovery per year
GCS initial (per point)	1.12	1.03 - 1.21	0.007	12% faster recovery per GCS point
Multidisciplinary care	1.68	1.14 - 2.46	0.009	68% more likely to recover sooner

Discussion:

This study provided an in-depth evaluation of polytrauma patients in Bangladesh, emphasizing epidemiology, injury patterns, interventions, and predictors of outcome. The mean age of 38.2±14.6 years confirmed that trauma disproportionately affected economically active adults, consistent with global findings identifying trauma as a major burden among individuals aged 20–45 years. Although males represented 65% of the cohort, the gender difference was not statistically significant (p=0.412), aligning with reports that show male predominance but no consistent outcome disparities. ¹⁶

Road traffic accidents (RTAs) accounted for 60.0% of cases, followed by falls (23.3%), a statistically significant distribution (p=0.036). This reflected the dominance of vehicular trauma in LMICs, where infrastructural weaknesses and poor regulation drive injury patterns.¹⁷ Comorbidities were present in 28.3% of patients and significantly associated with presentation severity (p=0.021), echoing findings that pre-existing health conditions worsen trauma outcomes.18 Over half of patients (53.3%) presented within the first hour (p=0.045), supporting the "golden hour" as a critical determinant of survival and neurologic preservation.¹⁹ Skeletal injuries were dominated by long bone fractures (51.7%, p=0.004), followed by spinal fractures (18.3%) and pelvic injuries (15.0%), a distribution consistent with patterns observed in high-energy trauma.20 Neurologically, TBI was the most frequent injury (46.7%, p=0.028), with severity stratified as severe (16.7%), moderate (15.0%), and mild (15.0%), reflecting trends reported in comparable cohorts.^{21,22} Intervention data emphasized the surgical burden. External fixation was the most common procedure (35.0%, p=0.011), followed by ORIF (25.0%), spinal stabilization (15.0%), and decompressive craniectomy (10.0%), similar to

study conducted by sun X et al.²³ Multidisciplinary care was employed in 63.3% of cases (p<0.001), strongly reinforcing global evidence coordinated trauma teams improve outcomes.²⁴ ICU admission was required in 40.0% of patients, aligning with international data.²⁵ Complications included neurological deterioration (10.0%), (8.3%),sepsis and re-operation (5.0%),comparable to LMIC trauma cohorts.²⁴ Mortality 11.7% was (p=0.019),consistent international estimates of 10-15% in severe polytrauma. Functional outcomes showed nearly half of patients (48.3%) achieving good recovery, while 23.3% and 15.0% sustained moderate and severe disability, respectively, GOS-based models.26 Cox regression identified strong prognostic factors: prior good clinical trajectory improved recovery likelihood by 85% (HR=1.85; p=0.002); younger age and higher GCS scores predicted faster recovery (HR=0.97, p=0.018; HR=1.12, p=0.007); multidisciplinary care accelerated recovery by 68% (HR=1.68; p=0.009). These findings reaffirm international evidence underscoring the value of integrated trauma systems in improving outcomes. 24, 27, 28)

Limitations:

The study was conducted in a single hospital with a small sample size. So, the results may not represent the whole community.

Conclusion:

This study underscored the burden of polytrauma in Bangladesh, where RTAs predominantly affect young adults and lead to frequent long bone fractures and TBIs. Early hospital arrival and timely surgical intervention significantly improved outcomes, while multidisciplinary care was strongly linked with faster recovery and fewer complications. These findings highlight the urgent need for structured trauma teams, standardized

protocols, and adequately equipped centers. Strengthening prehospital care and developing scalable, resource-sensitive trauma models remain essential priorities for improving outcomes in lowand middle-income countries.

Conflict of interest: None declared

References:

- 1. Rubiano AM, Carney N, Chesnut R, Puyana JC. Global neurotrauma research challenges and opportunities. Nature. 2015 Nov 19;527(7578): S193-197. doi: 10.1038/nature16035
- Balogh ZJ, Reumann MK, Gruen RL, Mayer-Kuckuk P, Schuetz MA, Harris IA, et al. Advances and future directions for management of trauma patients with musculoskeletal injuries. The Lancet. 2012 Sep 22;380(9847):1109-19. doi: 10.1016/S 0140-6736(12)60991-X
- 3. Scherer J, Coimbra R, Mariani D, Leenen L, Komadina R, Peralta R, et al. Standards of fracture care in polytrauma: results of a Europe-wide survey by the ESTES polytrauma section. Eur J Trauma Emerg Surg. 2024 Jun;50(3):671–8. doi: 10.1007/s 00068-022-02126-3
- Mohamed YM, Khalifa AM, Eltaib FA. Impact of Nursing Intervention Protocol about Polytrauma Care during the Golden Hour on Nurses' Performance. Egyptian Journal of Health Care. 2020 Sep 1;11(3):292–309. doi:10.21608/znj. 2017.38321
- Mackenzie CF, Lippert FK. Emergency department management of trauma. Anesthesiology Clinics of North America. 1999 Mar 1;17(1):45-61. doi: 10.1016/S0889-8537(05)70078-X
- Bach JA, Leskovan JJ, Scharschmidt T, Boulger C, Papadimos TJ, Russell S, et al. The right team at the right time – Multidisciplinary approach to multi-trauma patient with orthopedic injuries. International Journal of Critical Illness and Injury Science . 2017 Mar;7(1):32. doi: 10.4103/IJCIIS. IJCIIS_5_17
- Picetti E, Demetriades AK, Catena F, Aarabi B, Abu-Zidan FM, Alves OL, et al. Early management of adult traumatic spinal cord injury in patients with polytrauma: a consensus and clinical recommendations jointly developed by the World Society of Emergency Surgery (WSES) & the European Association of Neurosurgical Societies (EANS). World J Emerg Surg. 2024 Jan 18;19(1):4. doi: 10.1186/s13017-023-00525-4
- 8. Jeong TS. A Multidisciplinary Approach to Polytrauma Management. Korean J Neurotrauma. 2024 Mar 8;20(1):1–2.doi: 10.13004/kjnt.2024. 20.e5
- 9. Islam BZ, Tune SNBK, Naher N, Ahmed SM. Trauma Care Scenarios Following Road Traffic

- Crashes in Bangladesh: A Scoping Review. Glob Health Sci Pract. 2023 Apr 28;11(2):e2200053. doi: 10.9745/GHSP-D-22-00053. Doi: 10.9745/GHSP-D-22-00053
- Rahman FN, Das S, Kader M, Mashreky SR. Epidemiology, outcomes, and risk factors of traumatic brain injury in Bangladesh: a prospective cohort study with a focus on road traffic injury-related vulnerability. Front Public Health. 2025 Feb 14;13. Doi: 10.3389/fpubh.2025. 1514011
- 11. Tupetz A, Strand E, Hoque KI, Sultana M, Vissoci JRN, Staton C, et al. Scarf Injury: a qualitative examination of the emergency response and acute care pathway from a unique mechanism of road traffic injury in Bangladesh. BMC Emergency Medicine. 2022 Aug 4;22(1):141. Doi: 10.1186/s 12873-022-00698-2
- Tasnim Z, Tune SNBK, Islam BZ, Naher N, Ahmed SM. Ambulance services for road traffic injury (RTI) victims in Bangladesh: a cross-sectional study on the ground realities and the way forward. Inj Prev. 2025 Mar 23;ip–2024–045302. doi: 10.1136/ip-2024-045302
- 13. Teasdale G, Jennett B. Assessment of coma and impaired consciousness: A Practical Scale. The Lancet. 1974 Jul 13;304(7872):81–4. doi:10.1016/S 0140-6736(74)91639-0
- Jennett B, Bond M. Assessment of outcome after severe brain damage: A Practical Scale. The Lancet. 1975 Mar 1;305(7905):480–4. doi: 10.1016/S 0140-6736(75)92830-5
- Brauckmann V, Enke SR, Dietrich AKIM, Neunaber C, Roth S, Wilhelmi M. Patterns of sex-specific outcomes and mortality in polytrauma: a demographic and epidemiologic analysis by injury severity score. Eur J Trauma Emerg Surg. 2025 Jul 7;51(1):250. doi: 10.1007/s00068-025-02930-7
- 16. Sheir SM, Bahnasawy MG, El-Afifi MA, El-Henidy MA, Nassar EH. Epidemiological study of injury patterns, mechanisms, and outcomes of polytrauma patients. Tanta Medical Journal. 2025;53(1): 55–61.doi: 10.4103/tmj.tmj_33_24
- 17. Almigdad A, Mustafa A, Alazaydeh S, Alshawish MM, Bani Mustafa M, Alfukaha H. Bone fracture patterns and distributions according to trauma energy. Advances in Orthopedics. 2022;2022(1): 8695916. doi: 10.1155/2022/8695916
- Fokkema AT, Johannesdottir BK, Wendt K, Haaverstad R, Reininga IHF, Geisner T. Comorbidities, injury severity and complications predict mortality in thoracic trauma. Eur J Trauma Emerg Surg. 2023 Apr 1;49(2):1131–43. doi: 10.1007/s00068-022-02177-6
- Khamajeet A, Diab DA, Keshaw DP, Sobnach DS, Nicol A, Navsaria PH. Train-Related Injuries in a

- Developing Country Setting: Epidemiology and Management. Rochester, NY: Social Science Research Network; 2024. doi: 10.1016/j.injury. 2025.112659
- 20. Slordal TJ, Brattebo G, Geisner T, Kristoffersen MH. Differences in characteristics between patients ≥65 and <65 years of age with orthopaedic injuries after severe trauma. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine. 2022 Sep 24;30(1):51. doi: 10.1186/s13049-022-01038-w
- 21. Teng J, Li J, Yang T, Cui J, Xia X, Chen G, et al. Long-term exposure to air pollution and lung function among children in China: Association and effect modification. Front Public Health. 2022 Dec 14;10. doi: 10.3389/fpubh.2022.988242
- 22. Rosenfeld JV, Maas Al, Bragge P, Morganti-Kossmann MC, Manley GT, Gruen RL. Early management of severe traumatic brain injury. Lancet. 2012 Sep 22;380(9847):1088-98. doi: 10.1016/S0140-6736(12)60864-2.
- 23. Sun X, Huang J, Wang W, Gan L, Cao L, Liu Y, et al. Analysis of factors influencing the surgical treatment outcomes of spinal injuries in polytrauma patients. Ann Med Surg (Lond). 2024 Oct 28;86(12):6960-6967. doi: 10.1097/MS9.00000 00000002704.
- 24. Messelu MA, Tilahun AD, Beko ZW, Endris H, Belayneh AG, Tesema GA. Incidence and predictors of mortality among adult trauma patients admitted to the intensive care units of comprehensive specialized hospitals in Northwest Ethiopia. European Journal of Medical Research. 2023 Mar 9;28(1):113.doi: 10.1186/s40001-023-01056-z
- van Breugel JMM, Niemeyer MJS, Houwert RM, Groenwold RHH, Leenen LPH, van Wessem KJP. Global changes in mortality rates in polytrauma patients admitted to the ICU—a systematic review. World Journal of Emergency Surgery. 2020 Sep 30;15(1):55. Doi: 10.1186/s13017-020-00330-3
- 26. Yue JK, Winkler EA, Rick JW, Deng H, Partow CP, Upadhyayula PS, et al. Update on critical care for acute spinal cord injury in the setting of polytrauma. Neurosurg Focus. 2017 Nov;43(5): E19.doi: 10.3171/2017.7.FOCUS17396
- El-Menyar A, Consunji R, Abdelrahman H, Latifi R, Wahlen BM, Al-Thani H. Predictors and Time-Based Hospital Mortality in Patients with Isolated and Polytrauma Brain Injuries. World Journal of Surgery [Internet]. 2018 [cited 2025 Jul 22];42(5): Doi: 1.10.1007/s00268-017-4310-2
- 28. Sori DA, Azale AW, Gemeda DH. Characteristics and repair outcome of patients with Vesicovaginal fistula managed in Jimma University teaching Hospital, Ethiopia. BMC Urology. 2016 Jul 12;16(1):41. Doi: 10.1186/s12894-016-0152-8