In vitro Antimicrobial Activity of Some Synthetic Isoindolinone and Isoquinolinone Derivatives

A. F. G. Masud Reza¹, Md. Wahab Khan², Mohammad S. Rahman³, Chowdhury M. Hasan³ and Mohammad A. Rashid³,⁴

¹Department of Chemistry, National University, Gazipur-1704, Bangladesh
²Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
³Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh
⁴Centre for Biomedical Research, University of Dhaka, Dhaka-1000, Bangladesh

ABSTRACT: A total of six N-substituted benzamides, eight isoindolinone derivatives and six isoquinolinone analogs have been screened against five Gram positive and twelve Gram negative bacteria as well as four human fungal pathogens. From the antimicrobial screening, it is evident that 2-iodo-N-substituted tetrahydro-1-oxo isoquinoline-3-carboxylic acids showed very prominent activity at a concentration 200 µg/disc, while the N-substituted-3-alkyl isoindolin-1-one acetates showed weak to moderate activity. At the same time, 2-iodo-N-substituted benzamides revealed very poor activity.

Key words: 2-iodo-N-substituted benzamide, Isoindolinone, Isoquinolinone, Antimicrobial assay, Disc diffusion.

INTRODUCTION

Most antibiotics are costly and not affordable to the majority of the patients in developing countries. Antibiotic resistance further compromises with the effectiveness of treatment. Many bacteria including those producing common infections of throat, lungs, skin and urinary tract are becoming resistant to the commonly available antibiotics, leading to increasing treatment failures, sufferings and death.¹⁻⁷ In this regard, development of new synthetic antimicrobial agents is a pressing need of the time.

Isoindolinone ¹, Isoquinolinone ² and their derivatives are found to have antileukemic, antiinflammatory, antipsychotic and antiulcerent properties.⁸⁻¹⁸ In this investigation, some of these derivatives were screened against some pathogenic microorganisms for antimicrobial activity.

![Structure of Isoindolinone and Isoquinolinone](image)

The aim of the present study was both to explore their effect on the tested pathogens and to find lead compounds having potent antimicrobial activity.

MATERIALS AND METHODS

General experimental procedure. Melting points were determined in open capillary tubes on Gallenkamp (England) melting point. IR spectra were recorded on a Shimadzu FTIR spectrophotometer and...
UV spectra were recorded in dry EtOH with a Shimadzu visible spectrophotometer. 1H NMR and 13C NMR spectra were recorded on a Bruker DPX-400 spectrophotometer (400 MHz) using tetramethylsilane as internal reference. Analytical thin-layer chromatography (TLC) was performed on precoated silica gel 60F-254 (E. Merck) and the spots were visualized with UV light. Column chromatography was performed on silica gel (60-120 mesh). Elemental analyses (C, H, N) were carried out on a Perkin-Elmer 240C Analyser. Bis(triphenylphosphine)palladium(II) chloride, acrylic esters and other reagents were purchased from E. merck (Germany) and Fluka (Switzerland).

Synthesis of Isoindoline and isoidolinoine derivatives. The compounds used in the present study were synthesized according to the following procedures. 18

Synthesis of 2-iodo-N-substituted benzamides (10-15). 2-iodo-N-substituted benzamides (10-15) were prepared from 2-iodobenzoic acids obtained through Sandmeyer reaction of anthranilic acid. 19 2-iodobenzoic acid was converted to 2-iodobenzoyl chloride by heating with PCl3 at 80°C for 2 hr. 2-iodobenzoyl chloride (3.0 g) was dissolved in dry benzene (20 mL) under nitrogen atmosphere and cooled in ice bath. To the resulting mixture, a solution of primary amine (2.0 equiv) in dry benzene (10 mL) was added slowly with stirring. The residue obtained by filtration was washed with dilute HCl (3 x 50 mL), saturated NaHCO3 solution (3 x 50 mL) and distilled water (3 x 50 mL) and finally the residue was washed with ether (2 x 25 mL). The crystallization was done from ethanol to yield 2-iodo-N-substituted benzenes 10-15 (scheme-1).

2-iodo-N-p-chlorobenzyl benzamide 11. Colourless needle; m.p. 164–165°C; IR: νmax (KBr) 3276.8, 3059.9, 3029.0, 2921.0, 2845, 1647.1, 1584.4, 1488.9 cm⁻¹; UV (EtOH): λmax 326.4, 305.2, 275.4, 227.6 and 208.0 nm; 1H NMR (400 MHz, CDCl3): δ 4.58 (d, 2H, J=4.08 Hz, -CH2), 6.16 (br. s, 1H–NH), 7.10 (d, 1H, J=7.09 Hz, Ar-H), 7.26–7.37 (m, 6H, Ar-H) and 7.85 (d, 1H, J=7.49 Hz, Ar-H). Anal. Calcd for C14H11NOCl: C, 45.25; H, 2.98; N, 3.76. Found: C, 45.01; H, 3.12; N, 3.95.

Synthesis of N-substituted-3-alkyl isoidolinoine esters (22-29). A mixture of 2-iodo-N-substituted benzamides 10-15 (0.5 g, 1.55 mmol), bis(triphenyl phosphine)palladium(II) chloride (0.038 g, 3.5 mol%) and triethylamine (0.625 g, 4 equiv) were stirred in dimethyl formamide (10 mL) under nitrogen atmosphere for 1 h. Then alkyl acrylates (16–19) (0.57 g, 3 equiv) was added to the reaction mixture. The solution was heated at 80°C for 23 hr. The progress of the reaction was monitored by TLC over F254 silica gel (n-hexane-chloroform 1:1). After completion of the reaction, the mixture was then evaporated to dryness under reduced pressure and the residue was extracted with chloroform (3 x 50 mL). The combined chloroform extracts was washed with distilled water (3 x 50 mL), dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure to obtain reddish gum. The latter was purified by chromatography on a column of silica gel (60-120 mesh) with n-hexane-chloroform 1 : 3 and chloroform (100%). N-substituted-3-alkyl isoidolinoine esters (22-29) and small amount of deiodinated products 36-41 were obtained.

N-p-methyl phenyl-3-methyl isoidolino-1-one acetate 28. Light yellow liquid; IR: νmax (CCl4) 1739.7, 1707.8, 1550.7, 1515.9 and 1380.9 cm⁻¹; UV (EtOH): λmax 245.80 (log ε 3.771) and 206.20 (log ε 3.631) nm; 1H NMR (400 MHz, CDCl3): δ 2.35 (s, 3H, Ar-CH3), 2.50 (dd, 1H, J=8.52, 16.06 Hz, H-2'), 2.92 (dd, 1H, J=4.1, 16.14 Hz, H-2'), 3.60 (s, 3H, OCH3), 5.52 (dd, 1H, J=4.02, 8.4 Hz, H-3), 7.22 (d, 2H, J=8.9 Hz, Ar-H), 7.40 (d, 2H, J=8.16 Hz, Ar-H), 7.47–7.58 (m, 3H, Ar-H) and 7.91 (d, 1H, J=7.45 Hz, Ar-H). Anal. Calcd for C13H17NO: C, 73.21; H, 5.80; N, 4.74. Found: C, 73.50; H, 5.65; N, 4.88.

Synthesis of N-substituted-1,2,3,4-tetrahydro-1-oxoisquinolino-3-carboxylic acids (30-35). The mixture of N-substituted-3-alkyl isoidolino-1-one acetate 22-29 (200 mg) and NaOH (1.5 equiv) in MeOH (10 mL) was heated under refluxing condition for 1.5 hr. After removal of solvent from the mixture, the residue was diluted with water (25 mL) and
filtered. The filtrate upon neutralization with dilute HCl acid was extracted with chloroform (3x50 mL) and dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Crystallization from n-hexane/ethyl acetate mixture afforded colourless solid compounds 30-35.

N-phenyl-1,2,3,4-tetrahydro-1-oxoisoquinoline-3-carboxylic acid 30. Colourless solid; m.p. 184–185°C; IR: νₘₐₓ (KBr) 1730, 1650, 1600, 1500 and 1420 cm⁻¹; UV (EtOH): λₘₐₓ 274.8 (log ε 4.01) and 228.6 (log ε 4.12) nm; ¹H NMR (400 MHz, d₆-DMSO): 2.60 (dd, 1H, J=8.00, 16.00 Hz, H-4 ax), 2.92 (dd, 1H, J=4.00, 16.00 Hz, H-4 eq), 5.72 (dd, 1H, J=4, 8 Hz, H-3), 7.16–8.12 (m, 9H, Ar-H) and 12.40 (br s, 1H, CO₂H); ¹³C NMR (100 MHz, d₆-DMSO): 36.82 (C-4), 57.91 (C-3), 123.79, 124.08, 124.76, 126.32, 129.42, 129.79, 132.55, 133.13, 137.50, 145.57 (Ar-C), 167.01, (CON) and 171.82 (CO₂H). Anal. Calcd for C₁₆H₁₃NO₃: C, 71.90; H, 4.90; N, 5.24. Found: C, 71.77; H, 5.03; N, 5.36.

Scheme-1:

Antimicrobial screening. The antimicrobial activity of the test compounds was determined by the disc diffusion method. The samples were dissolved separately in chloroform and applied to sterile filter paper discs at a concentration of 200 µg/disc. The standard test microorganisms were collected from the Microbiology Laboratory of the Institute of Nutrition and Food Sciences (INFS), University of Dhaka, Bangladesh.
In the screening, the growth of B. megaterium and B. cereus was strongly inhibited by the compound 32. It also showed moderate activity against B. subtilis, S. paratyphi C, S. paratyphi A and S. aureus. In case of fungi, it showed weak to moderate activity having average zone size 7-12 mm.

At the same time, compound 35 exhibited strong inhibition of growth of B. cereus and B. megaterium having the same zone size of 14 mm. The growth of S. aureus, S. paratyphi A and B. subtilis was moderately inhibited. In case of fungi, it showed weak to moderate activity having zone of inhibition 9-12 mm.
On the other hand, the growth of B. cereus, B. megaterium and B. subtilis was moderately inhibited by compound 33. The average zone inhibition was 9-12 mm for this compound.

The growth of B. cereus was strongly inhibited by compound 31 having the zone size 14 mm. It also showed moderate activity against S. paratyphi C. In case of fungi, it demonstrated weak to moderate activity having average zone size, 7-10 mm.

However, the compound 30 showed weak to moderate activity against S. paratyphi C, V. mimicus, B. cereus and B. megaterium. It showed very poor activity against the growth of fungi.

The growth of S. paratyphi C and V. mimicus was moderately inhibited by compound 34. Besides, compound 28 showed moderate inhibition of growth of S. paratyphi C and S. sonnei. Compound 24 also showed moderate activity against B. cereus, B. subtilis, S. boydii and V. mimicus. In case of fungi, the growth of C. albicans was moderately inhibited by the compound 15. C. albicans was also inhibited moderately by the compounds 10 and 13 revealed moderate growth inhibitory activity of C. albicans.

REFERENCES