Behavior of Non-Hybrid and Hybrid Forms of Fibro-Osseous Lesions in The Craniomaxillofacial Region of Patients Attending at The Tertiary Hospital at Dhaka City

Abu Mohammad Shahed¹, Mohiuddin Ahmed², Motiur Rahman Molla³, Md. Rezaul Huq⁴, Bilquis Ara Begum⁵

¹Assistant Professor & Head, Department of Oral & Maxillofacial Surgery, Dhaka Medical College & Hospital, Dhaka, Bangladesh; ²Professor Department of Oral & Maxillofacial Surgery, Sapporo Dental College, Dhaka, Bangladesh; ³Ex. Professor & Chairman, Department of Oral & Maxillofacial Surgery, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh; ⁴Professor & Former Head, Department of Oral & Maxillofacial Surgery, Principal of Pioneer Dental College. Dhaka, Bangladesh; ⁵Ex. Associate Professor, Department of Biochemistry, Dhaka Medical College, Dhaka, Bangladesh

Abstract

Background: Fibro-osseous lesions of the craniofacial complex are represented by a variety of disease processes that are characterized by the nature of ossifications and calcifications. Objective: The purpose of the present study was to see the behavior of non-hybrid and hybrid forms of fibro-osseous lesions. Methodology: This was a cross-sectional study at the Department of Oral & Maxillofacial Surgery of Dhaka Dental College & Hospital, Dhaka (DDCH), Shaheed Suhrawardi Hospital, Dhaka (SSH) and Bangabandhu Sheikh Mujib Medical University (BSMMU) from January 2004 to December 2005. Participants were selected for the study who attended into outpatient and inpatient departments with fibro-osseous lesions during study period, irrespective of age & sex. patients were included who gave informed consent, patients attended with jaw swellings, and radiologically suspecting as fibro-osseous lesions, Biopsy proven fibro-osseous lesions. All patients were advised initially for radiological examination which includes orthopantomogram (OPG), postero-anterior (P/A) view of skull with mandible, lateral view of skull with mandible. After taking informed consent, biopsy was done. The diagnosis was established initially in all cases preoperatively on the basis of an incision biopsy. As soon as tissue was removed, it was then immersed into a preservative considering 10% neutral buffer formalin as ideal for 24 to 48 hours. Before immersing in a preservative solution, the specimen was rinsed in normal saline to remove excess blood. Postoperatively every surgical specimen was examined carefully and sectioned to examine the nature of tissue within the tumour and examination of the expansion and perforation of the bone was performed. Then histologic examination was done for re-evaluation. Results: A total number of 40 patients were included, in Hybrid form, the growth pattern of majority of swellings were slow at first but later rapid (66.7%) while in Non-hybrid form, it was slow always (61.8%). Maximum site of involvement was in mandible (66.7%) in Hybrid form whereas both mandible and maxilla were equally involved in Non-hybrid form. Hybrid form has significantly higher probability of tenderness in comparison with Non-hybrid form (p <0.001). Tenderness was found in all cases of hybrid form (100%) whereas in Non-hybrid form it was 17.6%. Most of size of Non-hybrid swellings were less than 35 sq. cm but for Hybrid form the size were comparatively bigger. In Non-hybrid form, only 2.9% of swellings were hard and egg shell cracking but it was 33.3% for Hybrid form and the difference was significant. Conclusion: In conclusion the behavior of non-hybrid and hybrid forms of fibro-osseous lesions is varied from each other. [Journal of National Institute of Neurosciences Bangladesh, July 2023;9(2):136-140]

Keywords: Hybrid forms; Fibro-osseous lesion; Non-Hybrid forms; Fibro-osseous lesion; ossifying fibroma; cementifying fibroma and cemento-ossifying fibroma

Introduction

 Fibro-osseous lesions characteristically demonstrate replacement of normal bone architecture by a benign fibrous tissue containing varying amount of mineralized material such as cementum, osteoid and woven. It has been suggested by Hammer et al. that fibro-osseous lesions other than fibrous dysplasia arise from multipotential mesenchymal blast cells situated in the
periodontal membrane that have the capacity to produce cementum, bone and fibrous tissue. Fibrous dysplasia, ossifying fibroma, cemento-ossifying fibroma all have microscopically identical areas of fibro-osseous proliferation. In addition to fibro-osseous zones, the cemento-ossifying fibroma has a large component of basophilic spherules that traditionally have been interpreted as cementum and this lesion becomes a distinctive pathologic entity than any other fibro-osseous condition. There is special variety named “Hybrid” type which is a combination of aneurysmal bone cyst with one or more fibro-osseous lesions. In 1983, Kramer stated that the occurrence of hybrid fibro-osseous lesions, exemplifying the histological heterogeneity of the group, has become increasingly recognized though to date infrequently documented. Adekeye et al. have cited the combination of aneurysmal bone cyst with the early active phase of fibrous dysplasia in producing an aggressive dysplastic rather frankly neoplastic tumor. There may be another form of hybrid lesion within the fibro-osseous spectrum demonstrating the different histological features of aneurysmal bone cyst, ossifying fibroma and cementifying fibroma. ABC is indicative of pathophysiological change rather than a true cyst or aneurysm. It is a benign nonneoplastic bone lesion characterized by the presence of numerous blood-filled, usually nonendothelized cavities. ABC is considered to be a secondary vascular phenomenon superimposed as an existing pathological process of bone. A primary bone lesion initiates an osseous, arteriovenous fistula, which creates, via its haemodynamic forces, a secondary reactive lesion of bone, the ABC. Among the associated bone lesions are unicameral bone cysts, giant cell tumors, nonossifying fibroma and fibrous dysplasia. ABC arising from fibrous dysplasia have been reported as case reports but the frequency has not been reported in large series. The majority were presented as painful swelling over a short period and rarely spontaneous recurrent haemorrhage which may clinically simulate sarcomatous transformation of fibrous dysplasia. When fluid-fluid levels are demonstrated within fibrous dysplasia on CT and MRI, it may be associated with sarcomatous transformation of fibrous dysplasia, simple cystic degeneration of fibrous dysplasia, secondary midphase ABC or a combination of these processes.

The clinical course of fibrous dysplasia is unpredictable, although most of the lesions tend to stabilize with the onset of puberty, others may undergo secondary ABC development from being static fibrous dysplasia for a long time or malignant transformation with the frequency of 0.5% of patients with monostotic fibrous dysplasia and 4% of patients with polyostotic fibrous dysplasia or McCune-Albright syndrome and involves transformation into osteosarcoma, fibrosarcoma or chondrosarcoma.

ABC itself can completely alter the morphology of the preexisting bone tumor, with clinical manifestations simulating malignant change. This process may be aggressive and can change remarkably and quickly. Occasionally cemento-ossifying and ossifying fibroma may occur in gigantic form and there is high prevalence of ABC formation in these lesions exhibiting aggressive nature although none have been known to metastasize. The formation of ABC in giant lesions is probably due to prominent fibrous component which contains more loose edematous areas than in smaller ossifying fibromas. Hamner et al. defined giant lesions as those exceeding 2x2 cm in size or involving the space occupied by two or more teeth. The giant lesion is related to rural character of population where proper diagnosis and treatment are often misleading and delayed due to poor socio-economic status, lack of awareness and poor referral system. Van Heeden et al. reported 8 giant lesions exhibiting focal areas of ABC formation. Struthers and Shear found this change in only 4% of their ossifying fibromas and Eversole et al. In 3 out of 64 cases.

Methodology

Study Settings and Population: It was Cross-sectional observational type of study at the Department of Oral & Maxillofacial Surgery of Dhaka Dental College & Hospital, Dhaka (DDCH), Shaheed Suhrawardi Hospital, Dhaka (SSH). And Bangabandhu Sheikh Mujib Medical University (BSMMU) from January 2004 to December 2005. A total 40 participants were selected for the study who attended outpatient and inpatient departments with fibro-osseous lesions during study period, irrespective of age & sex. Patients were included who gave informed consent, patients attended with jaw swellings, and radiologically suspecting as fibro-osseous lesions, Biopsy proven fibro-osseous lesions. Patients were excluded who had not been clinically or radiologically susceptible for fibro-osseous lesions, Psychotic patients and Pregnant women.

Study Procedure: A standardized structured data collection sheet was used to collect necessary information of the study history of the patients and clinical examination; radiology, histopathology and macroscopic findings of surgical specimen were recorded. All patients were advised initially for
radiological examination which includes orthopantomogram (OPG), postero-anterior (P/A) view of skull with mandible, lateral view of skull with mandible. After taking informed consent, biopsy was done. The diagnosis was established initially in all cases preoperatively on the basis of an incision biopsy. The tissue was processed for preparation of slide and stain with haematoxylin and eosin to study under a light microscope. After incision and reflection of mucoperiosteum, bony window was made by rongeurs, drill bur or chisel according to need. As soon as tissue was removed, it was then immersed into a preservative considering 10% neutral buffer formalin as ideal for 24 to 48 hours. Before immersing in a preservative solution, the specimen was rinsed in normal saline to remove excess blood. Postoperatively every surgical specimen was examined carefully and sectioned to examine the nature of tissue within the tumour and examination of the expansion and perforation of the bone was performed. Then histologic examination was done for re-evaluation.

Data Analysis: All the data were analyzed after thorough checking, cleaning, editing and compiling by the software SPSS.window V-11.6. Descriptive statistics were followed first and then appropriate statistical tests were performed to find out the association between different variables when and where necessary.

Results

During the period of January 2004 to December 2005 a total number of 40 consecutive patients were studied, those were attending in outpatient and inpatient department of DDCH, SSH and BSMMU based on inclusion and exclusion criteria. Among the studied population 34 were non-hybrid and rest 6 (15%) were hybrid form.

In Hybrid form, the growth pattern of majority of swellings were slow at first but later rapid (66.7%) while in Non-hybrid form, it was slow always (61.8%). This pattern of growth differs significantly ($\chi^2 = 12.5$, $p < .01$) (Figure I).

Duration of onset of swelling was from 6-12 months (66.7%) in Hybrid form, whereas in Non-hybrid form it was comparatively long duration. The figure shows the percentage of patients suffering from fibro-osseous lesions with different duration (Figure II).

![Figure-2 Duration of onset](image)

Figure II: Duration of onset of Fibro-osseous lesion

Maximum site of involvement was in mandible (66.7%) in Hybrid form whereas both mandible and maxilla were equally involved in Non-hybrid form (47.1%) (Figure III).

![Figure-3 Site of involvement](image)

Figure III: Site of Involvement of Fibro-Osseous Lesion

Most of size of Non-hybrid swellings were less than 35 sq. cm but for Hybrid form the size were comparatively bigger (Table I).

Hybrid form has significantly higher probability of tenderness in comparison with Non-hybrid form ($p < 0.001$). Tenderness was found in all cases of hybrid form (100%) whereas in Non-hybrid form it was 17.6% (Table 2).
Table 1: Distribution of Swellings by Size

<table>
<thead>
<tr>
<th>Size</th>
<th>Non-hybrid</th>
<th>Hybrid</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-15 sq cm</td>
<td>10 (29.4%)</td>
<td>0 (0%)</td>
<td>10 (25%)</td>
</tr>
<tr>
<td>16-35 sq cm</td>
<td>22 (64.7%)</td>
<td>3 (50%)</td>
<td>25 (62.5%)</td>
</tr>
<tr>
<td>>35 sq cm</td>
<td>2 (5.9%)</td>
<td>3 (50%)</td>
<td>5 (12.5%)</td>
</tr>
<tr>
<td>Total</td>
<td>34 (100%)</td>
<td>6 (100%)</td>
<td>40 (100%)</td>
</tr>
</tbody>
</table>

Table 2: Distribution of Swelling by Tenderness

<table>
<thead>
<tr>
<th>Tenderness</th>
<th>Tissue Consistency</th>
<th>Non-hybrid</th>
<th>Hybrid</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absent</td>
<td>Hard</td>
<td>28(82.4%)</td>
<td>0(0%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Present</td>
<td>Firm</td>
<td>6(17.6%)</td>
<td>6(100.0%)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>34 (100%)</td>
<td>6 (100%)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

In Non-hybrid form, only 2.9% of swellings were hard and egg shell crackling but it was 33.3% for Hybrid form and the difference was significant (p<0.01), p value is reached from unpaired student’s t test (Table 3)

Table 3: Distribution of swellings by consistency

<table>
<thead>
<tr>
<th>Consistency</th>
<th>Non-hybrid</th>
<th>Hybrid</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard</td>
<td>32 (94.1%)</td>
<td>3 (50%)</td>
<td></td>
</tr>
<tr>
<td>Firm</td>
<td>0 (0%)</td>
<td>1 (16.7%)</td>
<td></td>
</tr>
<tr>
<td>Hard and egg shell crackling</td>
<td>1 (2.9%)</td>
<td>2 (33.3%)</td>
<td><0.01</td>
</tr>
<tr>
<td>Firm and egg shell crackling</td>
<td>1 (2.9%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>34 (100%)</td>
<td>6 (100%)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Recurrent bleeding from the swellings was noted in few cases of hybrid form (33.3%) but it was noted in minority of non-hybrid form (5.9%) (Table 4).

Table 4: Status of Types of Bleeding

<table>
<thead>
<tr>
<th>Recurrent bleeding</th>
<th>Tissue Consistency</th>
<th>Non-hybrid</th>
<th>Hybrid</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Hard</td>
<td>2 (5.9%)</td>
<td>2 (33.3%)</td>
<td><0.05</td>
</tr>
<tr>
<td>No</td>
<td>Firm</td>
<td>32 (94.1%)</td>
<td>4 (66.7%)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>34 (100%)</td>
<td>6 (100%)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Discussion

During the period of January 2004 to 2005 a total number of 40 consecutive patients were studied those were attending outpatient and inpatients of Oral and Maxillofacial Surgery department at DDCH, SSH and BSMMU. The study population were clinically and radiologically suspected and confirmed histologically fibro-osseous lesions of the jaws based on inclusion and exclusion criteria. Among the studied population, 34 patients were non-hybrid and the rest 6 were hybrid form and were diagnosed by proper imaging and histological examination.

In our study, the growth pattern of the hybrid type was “slow at first but later rapid” (66.7%) while in non-hybrid it was “slow always” (61.8%) which differed significantly between the two forms ($\chi^2=12.5$, p<.01). Posnick JC et al a more aggressive, non-disabling approach to these benign yet deforming fibro-osseous growths is possible. Hybrid form lesions had significantly higher prevalence of tenderness in comparison with non-hybrid form (p<0.001). Tenderness were found in all cases (100%) whereas it was 17.6% in non-hybrid lesions.

Consistency of swelling of fibro-osseous lesions are from firm to hard. When fibrous dysplasia is matured, it becomes completely hard. But, the ossifying fibroma, is initially hard but gradual progressive expansile growth may ultimately produce expansion and thinning of cortex resembling egg-shell cracking sensation. Crusoe-Rebello I et al12 had similar findings of our study. In our study, only 2.9% of swelling of non-hybrid form exhibited hard and egg-shell cracking consistency whereas it was 33.3% for hybrid form and this difference was significant (p<0.01).

Normally no bleeding is encountered in fibro-osseous like benign lesions. But, whenever, there is secondary ABC formation within primary fibro-osseous lesion, majority of hybrid form present as acute onset of pain with rapid exacerbation over a short period of time with occasional presentation of spontaneous recurrent haemorrhage around the lesion9.

In this study, recurrent haemorrhage from hybrid form was noted in a few cases (33.3%) whereas minority of non-hybrid form (5.9%) presented with this complication. Odds ratio was 8 which indicated that hybrid form had 8 times higher risk of recurrent haemorrhage compare to non-hybrid form (p<0.05).

Conclusion

In conclusion, it can be predicted that whenever there is secondary ABC transformation within pre-existing fibro-osseous lesion, its clinical behaviour Egg-shell cracking sensation and loosening of tooth were detected clinically and becomes quite different from the previous ones and manifest aggressiveness in the form of acute onset of pain with rapid exacerbation over a short period of time with occasion recurrent bleeding.

Acknowledgements

None

Conflict of interest

There is no conflict of interest relevant to this paper to disclose.
Replacement of normal bone architecture by a benign fibro-osseous lesion characteristically demonstrates fibrous dysplasia. Other than fibrous dysplasia, lesions other than fibrous dysplasia arise from tumors, nonossifying fibroma and fibrous dysplasia. The pathophysiological change rather than a true cyst or secondary ABC transformation within pre-existing fibro-osseous lesion, Biopsy proven fibro-osseous growths is possible. Hybrid form has significantly higher probability of cystic degeneration of fibrous dysplasia, secondary ABC formation within primary fibro-osseous lesion, ABC transformation within pre-existing fibro-osseous lesions, CT and MR findings. Bisphosphonates have significantly higher prevalence of tenderness in fibro-osseous growths is possible. Hybrid form lesions had significantly higher prevalence of tenderness in non-hybrid swellings. The duration of onset of swelling was from 6-12 months and 4% of patients with polyostotic fibrous dysplasia or of 0.5% of patients with monostotic fibrous dysplasia had significantly higher prevalence of tenderness in non-disabling approach to these benign yet deforming conditions. The maximum site of involvement was in mandible (66.7%).

Conclusion

We conclude that the occurrence of hybrid fibro-osseous lesions, may occur in gigantic form and there is high prevalence that the occurrence of hybrid fibro-osseous lesions, Biopsy proven fibro-osseous growths is possible. Hybrid form lesions had significantly higher prevalence of tenderness in non-hybrid swellings. The duration of onset of swelling was from 6-12 months and 4% of patients with polyostotic fibrous dysplasia or of 0.5% of patients with monostotic fibrous dysplasia had significantly higher prevalence of tenderness in non-disabling approach to these benign yet deforming conditions. The maximum site of involvement was in mandible (66.7%).

Acknowledgements

Motiur Rahman Molla: https://orcid.org/0000-0002-7812-2425
Abu Mohammad Shahed: https://orcid.org/0009-0007-1551-6826

ORCID:

Abu Mohammad Shahed: https://orcid.org/0000-0007-1551-6826
Mohiuddin Ahmed: https://orcid.org/0009-0007-1560-1326
Mutiar Rahman Molla: https://orcid.org/0000-0002-7812-2425
Md. Rezaul Huq: https://orcid.org/0000-0003-8234-2783
Bilquis Ara Begum: https://orcid.org/0000-0002-7812-2425

References