Endovascular Recanalization by Mechanical Thrombectomy in Tandem Extracranial and Intracranial Occlusive Lesion in Acute Ischemic Stroke is Still a Therapeutic Challenge: A Case Report

Sirajee Shafiqul Islam1, Kazi Mohibur Rahman2, Sharif Uddin Khan1, Dewan Md. Elyas4, Khairul Kabir Patwary3, Muhammad Abdul Momen Khan3, Md. Amir Hossain7, ATM Hasibul Hasan1

1Associate Professor, Department of Interventional Neurology, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh; 2Associate Professor, Department of Interventional Neurology, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh; 3Assistant Professor, Department of Interventional Neurology, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh; 4Associate Professor, Department of Interventional Neurology, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh; 5Associate Professor, Department of Interventional Neurology, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh; 6Assistant Professor, Department of Interventional Neurology, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh; 7Assistant Professor, Department of Interventional Neurology, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh; 8Registrar, Department of Interventional Neurology, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh

[Received: 12 August 2019; Accepted: 20 October 2019; Published: 1 January 2019]

Abstract

A 55-year-old male presented with complete left-sided weakness of the body with a National Institutes of Health Stroke Scale (NIHSS) 15 and Alberta Stroke Program Early Computed Tomography (ASPECT) score 8 and occlusion of the right middle cerebral artery (MCA) in the M1 segment on Computed Tomography Angiography (CTA). Intravenous thrombolysis (IVT) was not performed as symptoms developed at sleep. Mechanical Thrombectomy was performed after 4.5 hours of the symptom onset with recanalization of Thrombolysis in Cerebral Infarction (TICI classification 2b). [Journal of National Institute of Neurosciences Bangladesh, 2019;5(2): 90-94]

Keywords: Acute Ischemic stroke, mechanical thrombectomy, tandem lesion, stent retriever

Introduction

In acute ischemic stroke IVT has been the most important therapy since last two decades1. The range of efficacy is limited in IVT due to a narrow time window of 4.5 hours after symptom onset and also for contraindications like oral anticoagulation, recent surgery etc. Furthermore, recanalization rates and outcome in patients with large clots and proximal vessel occlusion are poor after IVT2.

Currently, a review of published data from several randomized clinical trials demonstrated superiority of endovascular treatment over IVT in patients with acute ischemic stroke caused by a proximal vessel occlusion in the anterior circulation1. Selection of patients based on imaging-especially targeting for diffusion/perfusion mismatch and excluding patients with a large infarct core-has been shown to successfully avoid futile interventions in all these trials3.

Currently the time window for favorable outcome after endovascular treatment is not well defined. Endovascular treatment with stent retriever thrombectomy is recommended up to 8 hours after symptom onset1. Acute tandem occlusions of the cervical internal carotid artery and an intracranial large vessel present treatment...
challenges. In this case we have shown that distal lesion recanalization first then proximal lesion stent angioplasty also could be an option.

Case Presentation

A 54-year old, right-handed male admitted in the National Institute of Neurosciences and Hospital with the history of waked from sleep with abnormal sound by mouth, semi-consciousness and complete weakness in the left side of the body. The patient also experienced Ischemic stroke with mild left sided weakness about two months back was noticed by the patient’s attendance. On admission his NISSH was 15. Computed tomography (Figure A) showed Alberta Stroke Program Early Computed Tomography (ASPECT) score 8 and Computed tomography angiography (CTA) showed stenosis (90%) at the proximal C1 segment (Figure B) of right Internal carotid artery (ICA) and total occlusion of M1 segment (Figure C) of the right middle cerebral artery (MCA). After taking consent from the family patient was shifted to DSA cathlab. With all aseptic precaution a 6F guiding catheter was introduced through right femoral puncture and placed in right CCA. Balloon Angioplasty was done by balloon (3mm x 20mm) at the proximal RICA. Then the guiding was advanced over guiding wire (terumo,”035”) up to the petrous segment. M1 segment of right MCA was gently catheterized with a Rebar18 catheter. After removal of the microguidewire, a self-expanding Solitaire stent (4mm diameter, 40mm length) was inserted under continuous slow flush with saline solution to the distal end of the microcatheter and was deployed by slowly pulling back the microcatheter. Correct deployment of the Solitaire stent over the whole length of the thrombus was observed under continuous fluoroscopy. Stent was incubated for several minutes for encasement of the clot by stent. Another 6F guiding catheter was introduced through left femoral puncture up to the right Common carotid artery through which a balloon (4mm x 20mm) was placed at the C2 segment. After several minutes of incubation and with the rotating hemostatic valve tightly closed, the balloon was, a 50 ml Luer lock syringe was used for high volume aspiration through the right femoral 6 F guiding catheter during withdrawal of the open Solitaire stent and the microcatheter into the guide catheter. Thrombus (Figure E) was captured by the Solitaire stent. Angiography after withdrawal of Solitaire showed a complete recanalization (Figure D) of the previously occluded right MCA (TICI classification 2b). Finally a Carotid Stent Protas (6-8mm x 40mm) was deployed at C1 segment and proximal right ICA recanalized (Figure F) done. Patient was shifted to the ICU. Aspirin 300mg was administered by nasogastric tube, CT scan of head was done after one hour and observed no intra cranial hemorrhage. Patient was given...

![CT scan of head](image1.png)

![Proximal stenosis](image2.png)
physiotherapy in recovery ward and was discharged after 30 days with mild weakness (M-4/5) in the left side of the body.

(C) Right MCA M1 occlusion

(D) Recanalization by stent retriever

(E) Clot within Stent

(F) Stenting in Cervical Stenosis

Discussion

In acute stroke patients with occlusion of large vessels in the anterior circulation, mechanical thrombectomy improves functional outcome⁶. Recanalization is
associated with better outcome and recanalization rates with mechanical techniques have been shown to be superior to pharmacological treatment only\(^4\). Patients with mild or rapidly improving symptoms, but proximal vessel occlusions have a poor outcome when left untreated\(^5\). In an earlier study especially proximal vessel occlusion and NIHSS ≥ 10 were predictors of poor outcome patients with stroke\(^7\). Therefore, rapid identification and treatment of these patients with large vessel occlusion and low NIHSS with decision against treatment in the acute phase, transferal to a stroke center with endovascular treatment facilities for further monitoring is highly recommended.

However, the time window for favorable outcome after endovascular treatment is not well defined. Only very recently first results of the DAWN study-presented on the 3\(^{rd}\) European Stroke Organisation Conference in Prague-showed that removal of a clot by endovascular thrombectomy within up to 24 hours after onset of signs and symptoms reduced the disability in selected stroke patients, such as wake-up strokes\(^8\). As demonstrated by Flint et al. and confirmed by Jovin et al. earlier, endovascular treatment with stent retriever thrombectomy within 8 hours after symptom onset is safe and reduces the severity of poststroke disability\(^9\). Tandem extra and intracranial lesions of the anterior circulation, i.e., the simultaneous occurrence of an intracranial large vessel occlusion and a high-grade stenosis or occlusion of the ipsilateral proximal internal carotid artery (ICA), account for 10-20% of large vessel strokes\(^10,11\). This pathology is particularly challenging as response rates to intravenous thrombolysis are low and the prognosis is often poor\(^10,12\).

Nonetheless, it has yet to be established how the proximal ICA lesion should be approached during MT. There are several possibilities, i.e., stenting, percutaneous transluminal angioplasty (PTA) alone or no treatment of the lesion; yet, all approaches present advantages and drawbacks. Stenting in the acute phase offers a definitive treatment in one step, but necessitates antplatelet therapy-often in conjunction with intravenous thrombolysis-putting the patient at potentially elevated risk of intracranial hemorrhage or reperfusion injury\(^13-16\). While simple PTA of the carotid lesion obviates acute antplatelet therapy, a risk of reperfusion injury persists and the rate of significant restenosis is high\(^17\). However, delayed treatment of the lesion by endarterectomy or stenting can be utilized in patients with favorable clinical outcomes, which may also help to reduce the number of unnecessary procedures\(^18\). Not treating the cervical lesion at all has similar potential advantages and in addition may be faster, while eliminating the risk of reperfusion injury. Nevertheless, this strategy must be balanced against the drawback of a potential risk of recurrent cerebral embolism\(^19\).

Current meta-analyses did not find significant differences in clinical outcomes between patients treated with stenting and patients treated with PTA alone in the acute phase\(^20,21\). Wilson et al\(^21\) concluded that most studies “have entirely or partly treated extracranial occlusion with stenting during initial treatment” and that very few focus on angioplastyonly approaches.

Conclusion

Tandem occlusion in the setting of acute ischemic stroke remains a therapeutic challenge. However, high recanalization rate is possible using acute intracranial thrombectomy by stent retriever in distal occlusion and carotid artery stenting in proximal stenosis, with acceptable morbidity and mortality rates.

References

8. Jovin TG, Nogueira for the DAWN investigators R. G. Dawn in
full daylight (DWI or CTP Assessment with clinical mismatch in
the triage of wake up and late presenting strokes undergoing
neurointervention) 2017
9. Flint AC, Duckwiler GR, Budzik RF, Liebeskind DS, Smith WS.
Mechanical thrombectomy of intracranial internal carotid
occlusion: pooled results of the MERCI and Multi MERCI Part I
10. Rubiera M, Ribo M, Delgado-Mederos R, Santamarina E,
internal carotid artery/middle cerebral artery occlusion: an
independent predictor of poor outcome after systemic
Neumaier S, Glahn J, Brandt T, Hacke W, Diener HC. Risk factors,
outcome, and treatment in subtypes of ischemic stroke: the
Early recanalization rates and clinical outcomes in patients
with tandem internal carotid artery/middle cerebral artery occlusion and
Maurer CJ, Joachimski F, Liman J, Wasser K, Kabbasch C, Berlis
A. Emergency stenting of the extracranial internal carotid artery in
combination with anterior circulation thrombectomy in acute
ischemic stroke: a retrospective multicenter study. American
14. Zinkstok SM, Roos YB. Early administration of aspirin in
patients treated with alteplase for acute ischaemic stroke: a
randomised controlled trial. Lancet 2012;380:731–737
15. Mpotsaris A, Kabbasch C, Borggrefe J, Gontu V, Soderman M.
Stenting of the cervical internal carotid artery in acute stroke
management: the karolinska experience. Interv Neuroradiol
2017;23:159–65
outcome of neurointerventional emergency treatment of extra-
or intracranial tandem occlusions in acute major stroke: antegrade
approach with wallstent and solitaire stent retriever.
ClnNeuroradiol 2013;23:207–15
17. McCabe DJH, Pereira AC, Cliffton A, Bland JM, Brown MM,
CAVATAS Investigators. Restenosis after carotid angioplasty,
stenting, or endarterectomy in the Carotid and Vertebral Artery
18. Akpinar CK, Gürkaş E, Aytaç E. Carotid angioplasty-assisted
mechanical thrombectomy without urgent stenting may be a better
option in acute tandem occlusions. Interventional Neuroradiology.
2017;23(4):405-11.
Nighoghossian N, et al. . Repeated Solitaire mechanical
thrombectomy in an acute anterior stroke patient. Rev. Neurol
(Paris). 2015;171:682–4
20. Wilson MP, Murad MH, Kring T, Pereira VM, O’Kelly C,
ischemic stroke – intracranial versus extracranial first and
extracranial stenting versus angioplasty alone: a systematic review
R, Coelho N, Canedo A. Overview of evidence on emergency
carotid stenting in patients with acute ischemic stroke due to
tandem occlusions: a systematic review and meta-analysis. The