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Abstract 
 

This paper concerns the effects of conduction and viscous dissipation on natural convection flow of an 
incompressible, viscous and electrically conducting fluid in the presence of transverse magnetic field. 
Numerical solutions for the governing momentum and energy equations are given. A discussion has 
been provided for the effects of magnetic parameter, Prandtl number, conjugate conduction 
parameter and viscous dissipation parameter on two-dimensional flow. Results for the details of the 
velocity, temperature distributions as well as the skin friction and the rate of heat transfer are shown 
graphically. Also the numerical values of the surface temperature distributions are presented in 
tabular form. 
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NOMENCLATURE 
 

b plate thickness Tf temperature of the fluid 

Cƒx local skin friction coefficient Ts solid temperature  
cp specific heat Τ∞ fluid asymptotic temperature  
f dimensionless stream function  vu ,  velocity components  
g  acceleration due to gravity  u, v  dimensionless velocity components 
h dimensionless temperature yx,  Cartesian coordinates  

Η0 strength of the magnetic field x,y dimensionless Cartesian coordinates 
Kf , Ks fluid and solid thermal conductivities, 

respectively 
β co-efficient of thermal expansion 

l length of the plate η dimensionless similarity variable 
M magnetic parameter θ dimensionless temperature  
N viscous dissipation parameter µ , ν dynamic and  kinematic viscosities, 

respectively
xNu  local Nusselt number ρ density of the fluid    

p conjugate conduction parameter  σ electrical conductivity  
Pr Prandtl number τw shearing stress 
qw heat flux ψ Stream function  
Tb temperature at outside surface of the plate   
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1. Introduction 
  

In previous investigations the wall conduction resistance in the case of convective heat transfer 
between a solid wall and a fluid flow is generally neglected i.e. the wall is assumed to be very thin. But  
in practical occurrences the neglecting of wall conduction resistance is not possible because of its 
significant affect in fluid flow and the heat transfer characteristics of the fluid in the vicinity of the 
wall. In order to take account of physical reality, there has been a proclivity to move away from 
considering idealized mathematical problems in which the bounding wall is considered to be 
infinitesimally thin. Thus the conduction in solid wall and the convection in the fluid should be 
determined simultaneously. This type of convective heat transfer is referred to a conjugate heat transfer 
(CHT) process and it arises due to the finite thickness of the wall. 
  

The early theoretical and experimental work of CHT problem for a viscous fluid has been reviewed by 
Gdalevich and Fertman (1977) and Miyamoto et al.(1980). Gdalevich and Fertman (1977) discussed 
the method, the specifics and the principal results in the previously obtained solutions of conjugate 
problems of free convection. They stated conclusively that the use of numerical methods for solving 
the initial system of governing partial differential equations, such as finite difference method, is 
evidently the most promising in studies of conjugate free convection. Miyamoto et al. (1980) have 
given an analysis of the relative importance of the parameters of the problem in particular with 
reference to coaxial heat conduction. Cheng Long Chang (2006) analyzed the conjugate heat transfer of 
a micropolar fluid for a vertical flat plate. The same problem over a vertical surface in absence of 
micropolar fluid was studied by Merkin and Pop (1996) and Pozzi and Lupo (1988). Pop et al. (1995) 
then extended the analysis to conjugate mixed convection on a vertical surface in porous medium. 
Moreover, the thermal interaction between laminar film condensation and forced convection along a 
conducting wall was investigated by Chen and Chang (1996). Shu and Pop (1999) analyzed the thermal 
interaction between free convection and forced convection along a vertical conducting wall.  Vynnycky 
and Kimura (1996) studied numerically the two dimensional conjugate free convection due to a vertical 
plate of finite extent adjacent to a semi-infinite porous medium using finite difference techniques. 
Hossain (1992) studied the effect of viscous and Joule heating on the flow of an electrically conducting 
fluid past a semi infinite plate of which temperature varies linearly with the distance from the leading 
edge and in the presence of uniformly transverse magnetic field. In his paper, using Keller box (1978) 
scheme the equations governing the flow were solved and the numerical solutions were obtained for 
small Prandtl numbers, appropriate for coolant liquid metal, in the presence of a large magnetic field. 
Amin (2003) investigated the effects of viscous dissipation on buoyancy-induced flow over a 
horizontal or a vertical flat plate embedded in a Non-Newtonian fluid saturated porous medium under 
the action of transverse magnetic field. He used the Ostwald-de Waele power-law model to 
characterize the non-Newtonian fluid behavior. Amin (2003) also analyzed the influences of both first- 
and second-order resistance, due to the solid matrix of non-darcy porous medium, Joule heating and 
viscous dissipation on forced convection flow from a horizontal circular cylinder under the action of 
transverse magnetic field. 
 

To our best knowledge, the effect of magnetic field and viscous dissipation on the coupling of 
conduction with laminar natural convection along a flat plate has not been studied yet and the present 
work demonstrates the issue. With a goal to attain similarity solutions of the problem posed, the 
developed equations are made dimensionless by using suitable transformations. The nondimensional 
equations are then transformed into non-linear equations by introducing a non- similarity 
transformation. The resulting non-linear equations together with their corresponding boundary 
conditions based on conduction and convection are solved numerically by using the finite difference 
method along with Newton’s linearization approximation. Here we have focused our attention on the 
evolution of the surface shear stress in terms of local skin friction and the rate of heat transfer in terms 
of local Nusselt number, velocity profiles as well as temperature profiles for different values of the 
parameters entering into the problem. 
 
2. Mathematical Model 
 
Let us consider a steady free convection flow of an electrically conducting, viscous and incompressible 
fluid adjacent to a vertical flat plate of length l and thickness b of ambient temperatureΤ∞ (Fig. 1). It is 
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assumed that heat is transferred from the outside surface of the plate, which is maintained at the 
constant temperature Τb where Τb > Τ∞ . A uniform magnetic field of strength Η0 is imposed along the 
y -axis.  
 

 

 

 

 

 

 

The energy equation in the solid plate is given by 
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and this equation is coupled to the energy equation in the fluid region by the condition that the 
temperature and the heat flux are continuous at the solid-fluid interface, namely 
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where Τs and Τf are the temperatures of the solid and fluid respectively and Κs and Κf are thermal 
conductivities of the solid and fluid respectively. 

Generally the axial heat conduction along the wall is negligible when compared with the normal 
conduction across the wall and this assumption is consistent with the boundary layer theory (1974, 
1996). Thus equation (1) reduces to  
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But the assumption of the neglection of the axial conduction of heat from equation (1) is only valid 
provided that the ratio of the wall thickness to the length of the plate is small. i.e. 1/ <<lb . Therefore 
applying the condition that Τs = Τb on y = - b in equation (1) we get  
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where )0,(xT is the unknown temperature at the solid-fluid interface and this is determined by the 
solution of the governing equations. Thus the condition (3) can be written as follows 
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 Thus the boundary layer equations governing the convective flow under these assumptions with the 
Boussinesq approximations can be written as  
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Fig.1: Physical model and coordinate system. 
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which have to be solved along with the following boundary conditions: 
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Introducing the following nondimensional quantities: 
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where l is the length of the plate, Gr is the Grashof number and θ is the non-dimensional temperature,  
the governing equations are obtained in the following  non dimensional form:  
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where 
k
cpµ

=Pr  is the prandtl number, 2/122
0 / GrlHM µσ=  is the magnetic parameter and 

( )∞−= TTclGrN bp
22 /ν  is  the viscous dissipation parameter  

The corresponding boundary conditions in a non dimensional form are given by 

y
pvu
∂
∂

=−==
θθ 1,0   on   0,0 >= xy  

0,0 →→ θu as  0, >∞→ xy  
(15) 

where ( )( ) 4/1// Grlbkkp sf= is   the conjugate conduction parameter. 

To solve the equations (13) and (14) subject to the boundary conditions (15), we assume the following 
variables 

( ) ( ) ( ) ( ) ( )ηθηηψ ,1,1,,1 5/15/120/15/120/15/4 xhxxxyxxfxx −−−− +=+=+=  (16) 



A Mamun, N Hosain, M A Azim and M A Maleque/ Journal of Naval Architecture and Marine Engineering 4(2007) 87-98 

 

Combined Effect of Conduction and Viscous Dissipation on Magnetohydrodynamic Free Convection Flow… 91

Here η is the similarity variable and ψ is the non-dimensional stream function which satisfies the 
equation of continuity and which is related to the velocity components in the usual way as 

xvyu ∂∂−=∂∂= /,/ ψψ  and h (x ‚η) is the dimensionless temperature. 

It may be continued to transform the momentum and energy equations (13) and (14) respectively into 
the new co-ordinate systems. In order to make easy the transformation, it is useful to enclose the 
velocity components unambiguously expressed in terms of the new variables. Hence we get 
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where primes denote differentiation with respect toη . 

The boundary conditions (15) then take the following form 

( ) ( ) 00,0, =′= xfxf , ( ) ( ) ( ) ( )0,110, 20/15/14/1 xhxxxxhp +++−=′  

( ) ( ) 0,,0, →∞→∞′ xhxf  
(19) 

The set of equations (17) and (18) together with the boundary conditions (19) are solved numerically 
by applying implicit finite difference method with Keller box [11] scheme. Since a good description of 
this method and its application to the boundary layer flow problems are given in the book by Cebeci 
and Bradshaw [17], the details of the method have not been presented in this paper. From the process 
of numerical computation, in practical point of view, it is important to calculate the values of the rate of 
heat transfer and surface shear stress in terms of Nusselt number and the skin friction coefficient 
respectively. These can be written in the non-dimensional form as  
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kq , Kf being the thermal conductivity of the fluid.  

Using the new variables described in (12), we have 

( ) ( )0,1 20/35/2 xfxxC fx ′′+= −  (21) 

( ) ( )0,1 4/1 xhxNux ′+−= −  (22) 

Also the numerical values of the surface temperature distribution are obtained from the relation  

( ) ( ) ( )0,10, 5/15/1 xhxxx −+=θ  (23) 

and for different values of the Prandtl number Pr and the conduction parameter p, the surface 
temperature distribution are displayed in tabular form. 

Moreover, we have discussed the velocity profiles and the temperature distributions for different values 
of magnetic parameter M, the viscous dissipation parameter N, the conjugate conduction parameter p 
and the Prandtl number Pr. 
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5. Results and Discussion 
 
The resulting solutions for the velocity and temperature functions are shown graphically in Figs. 2, 3, 4 
and 5. The values of Prandtl numbers are taken to be 1.74, 1.0, 0.90 and 0.733 which correspond to 
water, stem, ammonia and air, respectively. In fact, detailed numerical solutions have been obtained for 
a wide range of values of the viscous dissipation parameter N (= 1.0, 0.5, 0.2, 0.08, 0.05, 0.01), 
magnetic parameter M (= 1.0, 0.8, 0.5, 0.2) and conjugate conduction parameter p (= 1.0, 2.0, 2.5, 3.0). 
 

A comparison of the surface temperature and the local skin friction factor obtained in the present work 
with ξ=5/1x , M = 0, N = 0, and p = 1.0 and obtained by Pozzi and Lupo and Merkin and Pop (2001) 
have been shown in Table 1 and Table 2, respectively. It is clearly seen that there is an excellent 
agreement among the respective results. 
 
Table 1: Comparison of the present numerical results of surface temperature with Prandtl number  

Pr = 0.733 and M = 0, N = 0 and p = 1.0. 
θ (x,0)  

ξ=5/1x  Pozzi and Lupo (1988) Merkin and Pop      (1996) Present work 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

0.651 

0.684 

0.708 

0.717 

0.699 

0.640 

0.651 

0.686 

0.715 

0.741 

0.762 

0.781 

0.651 

0.687 

0.716 

0.741 

0.763 

0.781 
 
Table 2: Comparison of the present numerical results of skin friction coefficient with Prandtl number 
Pr = 0.733 and M = 0, N = 0 and p=1. 

Cfx  
ξ=5/1x  Pozzi and Lupo (1988) Merkin and Pop      (1996) Present work 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

0.430 

0.530 

0.635 

0.741 

0.829 

0.817 

0.430 

0.530 

0.635 

0.745 

0.859 

0.972 

0.424 

0.529 

0.635 

0.744 

0.860 

0.975 

 

Figures 2(a) and (b) illustrate the behavior of the velocity and the temperature profiles for different 
values of M with Pr = 0.733, p = 2.5 and N = 0.01. From Fig. 2(a), we may conclude that for increasing 
values in M; the Lorentz force, which opposes the flow, there is a fall in velocity maximum due to the 
retarding effect of the magnetic force in the region η∈[0, 10]. As a result the momentum boundary 
layer thickness becomes larger and the separation of the boundary layer will occur earlier. An opposite 
situation is observed from Fig. 2(b) in the case of temperature field. It implies that the magnetic field 
works to increase the values of the temperature in the flow region and then decreases the gradient at the 
wall and increases the thickness of the thermal boundary layer. Figures 3(a) and (b) represent the 
velocity and the temperature field, respectively for different values of Pr with M = 0.5, N = 0.01 and p 
= 2.5. Both velocity and temperature decrease as Pr increases. This is an agreement with the physical 
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fact that the thermal boundary layer thickness decreases with increasing Pr. Figures 4(a) and (b) depict 
the velocity and temperature profiles for different values of p in presence of magnetic field with 
viscous dissipation while Pr = 0.733. From Fig. 4(a), we may conclude that the velocity profile is 
influenced significantly and decreases when the value of p increases.  But it is seen that near the 
surface of the flat plate the velocity increases by a long way and become maximum and then decreases 
slowly and finally approaches zero. The maximum values of the velocity are 0.3017, 0.3175, 0.3360 
and 0.3865 for p = 3.0, 2.5, 2.0, 1.0, respectively which occur at η = 1.4975 for the first maximum 
value, η = 1.4741 for the second maximum value, η = 1.4508 for the third maximum value and at η = 
1.3938 for the last maximum value. Here it is found that the velocity profiles decrease by 21.94% while 
p increases from 1.0 to 3.0. On the other hand, in the case of temperature field, from Fig. 4(b), it can be 
observed that the temperature distribution over the whole boundary layer decreases when the values of 
the p increases. Here it is seen that the maximum values of the temperature profiles are 0.8762, 0.7187, 
0.6624 and 0.6157 for p = 1.0, 2.0, 2.5 and 3.0, respectively and each of which attains at the surface of 
the plate. Thus in this case temperature profiles decrease by 29.73% while p changes from 1.0 to 3.0. 
Figures 5(a) and (b) give a picture of velocity and temperature profiles for different values of N. We 
observe from Fig. 5(a) that an increase in the viscous dissipation parameter, N, is associated with a 
slight increase in velocity and a similar situation is observed from Fig. 5(b) in case of temperature field.  

The variation of reduced local skin friction coefficient Cfx and local rate of heat transfer xNu  with Pr 
=0.733, N = 0.01 and p = 2.5 for different values of M at different position of x are illustrated in Figs. 
6(a) and 6(b), respectively. From Fig. 6(a), it can be seen that the magnetic parameter M shrinks the 
wall shear stress. This means that the magnetic force retard the flow and work with the adverse 
pressure to resist the flow. From Fig. 6(b) it is observed that the local heat transfer rate decreases with 
increasing M. This is because the magnetic force works against the inertia force and as a result the 
values of the rate of heat transfer reduce. Figures 7(a) and (b) show the local skin friction coefficient 
and the rate of heat transfer, respectively with respect to the axial distance x for different values of Pr 
in presence of magnetic field with viscous dissipation while p =2.5.  From Fig. 7(a) it can be seen that 
an increase in the Pr is associated with a decrease in the skin friction and an opposite result is observed 
in the case of rate of heat transfer from Fig. 7(b).  Figures 8(a) and (b) represent the skin friction 
coefficient and the rate heat transfer for different values of p with M = 0.5, N = 0.01 and Pr = 0.733. It 
can be seen; from these two figures that, an increase in the conjugate conduction parameter p decreases 
both skin friction coefficient and the rate of heat transfer. Figures 9(a) and (b) deal with the effect of 
viscous dissipation parameter on the skin friction coefficient and the rate of heat transfer, respectively 
against x with M = 0.5, p = 2.5 and Pr = 0.733. Fig 9(a) shows that an increase with the viscous 
dissipation parameter, N, is associated with an increase in skin friction and from Fig. 9(b) it is seen that 
an increase in the parameter N is associated with a decrease in the rate of heat transfer.  
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Fig. 2(a) Variation of velocity profiles and (b) variation of temperature profiles against η for varying of  

with Pr =0.733, p = 2.5 and N = 0.01. 
 



A Mamun, N Hosain, M A Azim and M A Maleque/ Journal of Naval Architecture and Marine Engineering 4(2007) 87-98 

 

Combined Effect of Conduction and Viscous Dissipation on Magnetohydrodynamic Free Convection Flow… 94

Numerical values of the surface temperature distribution for different values of Pr with N = 0.01, M = 
0.5 and p = 2.5 are depicted in Table 3. From Table 3, we found that the values of the surface 
temperature distribution decrease at different position of x for Prandtl number Pr = 0.733, 0.90, 1.0 and 
1.74. Near the axial position x = 3.0, the rate of decrease of the surface temperature distribution is 
10.44% as Pr changes from 0.733 to 1.74. Furthermore, it is clear from Table 4 that the numerical 
values of the surface temperature distribution decrease for increasing values of the conjugate 
conduction parameter p and at the same axial position x = 3.0049, the rate of decrease of surface 
temperature distribution is 24.975% as the p changes from 1.0 to 3.0.  
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Fig. 3(a). Variation of velocity profiles and (b) variation of temperature profiles against η for varying of Pr 

with N = 0.01, M = 0.5 and p = 2.5 
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Fig. 4. (a) Variation of velocity profiles and (b) variation of temperature profiles against η for varying of    

p with N = 0.01, M = 0.5 and Pr = 0.733  
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Fig. 5. (a) Variation of velocity profiles and (b) variation of temperature profiles against η for varying of N   

with M = 0.5, Pr = 0.733 and p = 2.5 
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Fig. 6. (a) Variation of skin friction coefficients and (b) variation of rate of heat transfer against x for 

varying of M with Pr = 0.733, N = 0.01 and p = 2.5 
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Fig. 7. (a)Variation of skin friction coefficients and (b) variation of rate of heat transfer against x for 

varying of Pr with M = 0.5, N = 0.01 and p = 2.5. 
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Fig. 8. (a)Variation of skin friction coefficients and (b) variation of rate of heat transfer against x for 

varying of p with M = 0.5, N = 0.01 and Pr = 0.733. 
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Fig. 9. (a)Variation of skin friction coefficients and (b) variation of rate of heat transfer against x for 

varying of N with M = 0.5, Pr = 0.733 and p = 2.5. 
 

Table 3: Numerical values of surface temperature distribution against x for different values of Pr 
while M=0.5, N = 0.01 and p = 2.5. 

Pr = 0.733 Pr = 0.90 Pr = 1.0 P r= 1.74  
x θ (x,0) θ (x,0) θ (x,0) θ (x,0) 

0.0001 

0.5211 

1.0265 

1.5095 

2.0369 

3.0049 

4.0219 

5.0387 

0.1406 

0.5310 

0.5777 

0.6051 

0.6267 

0.6551 

0.6766 

0.6932 

0.1335 

0.5143 

0.5609 

0.5884 

0.6101 

0.6388 

0.6605 

0.6774 

0.1301 

0.5059 

0.5525 

0.5800 

0.6017 

0.6305 

0.6523 

0.6693 

0.1137 

0.4633 

0.5090 

0.5362 

0.5578 

0.5867 

0.6087 

0.6260 



A Mamun, N Hosain, M A Azim and M A Maleque/ Journal of Naval Architecture and Marine Engineering 4(2007) 87-98 

 

Combined Effect of Conduction and Viscous Dissipation on Magnetohydrodynamic Free Convection Flow… 97

6.0502 

7.1132 

8.0285 

0.7067 

0.7186 

0.7275 

0.6911 

0.7033 

0.7123 

0.6831 

0.6954 

0.7045 

0.6402 

0.6528 

0.6623 

 

Table 4: Numerical values of surface temperature distribution against x for different values of p 
while M=0.5, N = 0.01 and Pr = 0.733. 

p=1.0  p=2.0 p=2.5 p=3.0  
x θ (x,0) θ (x,0) θ (x,0) θ (x,0) 

0.0001 

0.5211 

1.0265 

1.5095 

2.0369 

3.0049 

4.0219 

5.0387 

6.0502 

7.1132 

8.0285 

0.2605 
 

0.7285 

0.7654 

0.7859 

0.8015 

0.8212 

0.8356 

0.8464 

0.8550 

0.8625 

0.8679  

0.1647 

0.5814 

0.6272 

0.6536 

0.6743 

0.7011 

0.7213 

0.7367 

0.7492 

0.7602 

0.7684 

0.1406 

0.5311 

0.5778 

0.6053 

0.6269 

0.6553 

0.6768 

0.6935 

0.7070 

0.7190 

0.7279 

0.1233 

0.4901 

0.5369 

0.5647 

0.5868 

0.6161 

0.6385 

0.6559 

0.6702 

0.6828 

0.6922 

 
6. Conclusion 
 
An MHD natural convection flow along a vertical flat plate of thickness b is investigated in the 
presence of viscous dissipation. The equations governing such flow are transformed to dimensionless 
form with the help of apposite transformations. The ultimate resulting equations obtained by using the 
stream function with similarity variable are solved numerically by means of finite difference method 
with Keller box scheme. The results are shown graphically for different values of the parameters 
considered in the analysis. The present investigation can be concluded as follows: 

 

1. The velocity of the fluid within the boundary layer decreases with the increasing magnetic 
parameter, Prandtl number and conjugate conduction parameter while it increases slightly for 
the increasing viscous dissipation parameter. 

2. The temperature of the fluid near the interface increases for the increasing magnetic 
parameter and dissipation parameter while it decreases for the increasing Prandtl number and 
conjugate conduction parameter. 

3. The shear stress coefficient at the interface increases for the decreasing magnetic parameter, 
the Prandtl number and conjugate conduction parameter and the increasing dissipation 
parameter. 

4. The rate of heat transfer from the plate to the surface increases for the decreasing magnetic 
parameter, conjugate conduction parameter, dissipation parameter and the increasing Prandtl 
number. 
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