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Abstract:  

In this paper, we have studied analytically the relationship between oscillatory free stream flow and two-

dimensional hydromagnetic oscillatory flows of a viscous, incompressible, and electrically conducting 

fluid past a porous, infinite limiting surface, as well as the temperature and magnetic fields that are 

associated with these flows. Both frequency-dependent effects and "long-time" effects, which call for 

impractically long channels to be observed in steady flow is studied with oscillating fluid. For many 

industrial processes, it is essential to comprehend the physics of oscillating flows of complex fluids in 

small channels. Many chemical and biochemical engineering operations depend on effective fluid mixing 

and efficient mass and energy transport. Our analysis was carried out using semi-analytical method in 

the neighborhood of epsilon. From the result obtained, we discovered that that variation of transient 

velocity are the same with those of the mean velocity. Also, the mean velocity increases when the limiting 

surface moves in the positive direction of the flow, whereas it decreases when it moves in the opposite 

direction and increase in magnetic parameter decreases the mean velocity and that the magnetic field is 

limited to only retardation. Other flow governing parameters were displayed using graphs and discussed 

accordingly. 

Keywords: Hydromagnetic, oscillation, limiting surface, magnetic field, suction, current density, porous, 

impulsively, electric current density 

NOMENCLATURE  
x, y spartial coordinate H1(y) mean induced magnetic 

U0 mean free-stream velocity 𝜃1(𝑦)  mean temperature field 

U1 velocity of the limiting surface  u2(y) mean oscillatory part of the velocity 

U(t) free-stream velocity H2(y) oscillatory part of the induced magnetic 

u, v velocity component in the 𝑥 and 𝑦 directions  𝜃2(𝑦)  temperature field respectively 

u (y,t) velocity field  𝜏   skin friction 

H(y,t )    induced magnetic field Z electric current density 

𝜃(𝑦, 𝑡)    temperature distribution Nu Nusselt number 

u(y) transient velocity, T fluid temperature     

𝐻(𝑦)  transient induced magnetic field  𝑇∞  free stream temperature    

𝜃(𝑦)  transient temperature. 𝑀  Hartmann number     

𝑡  time,  Q        heat generation oefficient 
𝜎  electrical conductivity of the fluid,  𝑐𝑝    specific heat at constant pressure 

𝜇0  magnetic permeability,  𝑇𝑤    surface temperature 
𝜐  kinematic coefficient of viscousity  Dimensionless Group 

𝑝  pressure  𝐺𝑟𝑡  thermal Grashof number 

𝜌  density. 𝑃𝑟  Prandtl number 

𝐻0  externally applied transverse magnetic field Greek Letters 

𝑣0  constant mean velocity,  𝜃  non - dimensional fluid temperature 

𝐴, 𝜖  small positive constants such that 𝜖𝐴 ≪ 1 𝛿  heat generation/absorption 

𝜔  frequency of free – stream oscillation. Subscripts 

𝑃𝑚  magnetic Prandtl number  𝑤  condition on the wall 

𝑢1(𝑦)  mean velocity ∞  ambient condition 
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1. Introduction 

For many industrial processes, it is essential to comprehend the physics of oscillating (or transient) flows of 

complex fluids in small channels. The quasi-periodic blood flow in the cardiovascular system can be described 

by the frequency components of the pressure and flow rate pulses, and many vascular diseases are associated with 

disturbances of the local flow conditions in the blood vessels. We find its application in a wide range of industrial 

applications, such as wastewater treatment, the production of biofuels and fine chemicals, and bioprocessing, 

fluttering airfoils, in the aerodynamics of a helicopter rotor, and the bioprocessing. A quick switch between "flow" 

and "no flow" of a non-Newtonian fluid is necessary in many technical applications, such as inkjet printing, and 

frequently very small channel geometries are involved. Particularly the typically low Reynolds numbers in such 

flows and the potential for equal-sized channels and macromolecules in the fluid can result in effects not seen in 

macroscopic systems. Oscillatory flow has applications in the production of biofuels, fine chemicals, waste water 

treatment, and other areas because it is useful wherever immiscible phases need to be mixed or slurries need to be 

managed. Many chemical and biochemical engineering operations depend on effective fluid mixing and efficient 

mass and energy transport. These conditions can be achieved by operating in a high-velocity turbulent flow regime 

in a tube or by applying mechanical agitation in a vessel. By superimposing oscillatory flow on the steady flow 

in a tube with periodic, sharp-edged baffles, an alternative technique for achieving good mixing within a tube can 

be used. Numerous specific process improvements, including improved mass transfer, improved heat transfer, and 

reduced residence time, are made possible by the mixing method. 

 

Both Stuart (1955) and Messiha (1966) studied this issue for constant suction, looking at the effects of free stream 

oscillation on the flow past an infinite porous limiting surface. The infinite limiting surface was assumed to be 

stationary in these investigations. Messiha's problem was expanded upon by Soundalgeker (1979), who 

investigated how the oscillatory free stream affected the flow past an infinite porous limiting surface that was 

moving impulsively at a constant speed and had variable suction. According to Cramer and Pai (1973), the topic 

of MHD has recently drawn a lot of academic attention due to both its own interest and its potential applications 

to astrophysics, geophysics, and engineering. According to Georgantopoulos et al. The Velocity field in 

Hydromagnetic Oscillatory flow past an Impulsively Started Porous Limiting Surface with Variable Suction was 

studied. For the magnetic Prandtl number Pm=1 and the magnetic parameter 𝑀 < 1, approximative solutions were 

found for the velocity field and expressions were given for the velocity, induced magnetic field, skin friction, and 

electric current density. The emerging flow parameters were examined and discussed when Shuja, Yilbas, and 

Rashid (2003) considered confined swirling jet impingement onto an adiabatic wall. Okedoye and Ayandokun 

(2013) recently considered the entropy generation caused by heat transfer and fluid friction on a porous plate for 

the conjugate problem of an electrically conducting fluid in the presence of a strong magnetic field. We looked 

into and talked about the effects of flow parameters on total entropy generation. Okedoye (2014a) investigated 

how temperature-dependent thermal conductivity affected MHD free convection flow along a vertical flat plate. 

Expression for entropy generation were obtained in their paper of Okedoye (2014b), Second Law Analysis of 

Mass Transfer Effect on Unsteady MHD Flow Past an Accelerated Vertical Porous Plate. According to their 

findings, entropy is significantly influenced by magnetic parameter, heat generation, reaction type, mass Grashof 

number, and permeability parameter. 

 

Heat and mass transfer on two-dimensional hydromagnetic oscillatory flow of a viscous, incompressible, and 

electrically conducting fluid past a porous, infinite limiting surface have not been included in any of the prior 

research in this field. Therefore, the goal of the current work is to analyze the relationship between oscillatory free 

stream flow and two-dimensional hydromagnetic oscillatory flows of a viscous, incompressible, and electrically 

conducting fluid past a porous, infinite limiting surface with variable suction, as well as the temperature and 

magnetic fields that are associated with these flows in the presence of a uniform transverse magnetic field. Both 

frequency-dependent effects and "long-time" effects, which call for impractically long channels to be observed in 

steady flow, can be studied with oscillating fluid. 

 

2. Formulation of the Problem 

Considered is the two-dimensional hydromagnetic oscillating flow of a viscous, incompressible, electrically 

conducting fluid past an infinitely porous limiting surface with variable suction, such as the surface of a star. The 

𝑥 -axis is chosen along the limiting surface in the direction of the flow and the 𝑦 -axis is taken normal to the 

limiting surface. In the presence of a transverse magnetic field, the fluid limiting surface moves impulsively, at a 

constant speed, either in the direction of the flow or in the opposite direction. Because the induced magnetic field 

in the region under consideration is not insignificant, 𝐻 = (𝐻𝑥 , 𝐻𝑦 , 0). Initially, the plate and the fluid are at same 

temperature 𝑇𝑤 in a stationary condition with velocity 𝑈0 at all points. At time t > 0 the plate starts oscillating in 
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its own plane with a velocity 𝑈1, Its temperature is raised to 𝑒𝑖𝜔𝑡. Within the framework of these assumptions 

using Boussinesq’s approximation, the hydromagnetic flow relevant to the problem in the neighborhood of the 

plate is governed by the set of equations: 
𝜕𝑣

𝜕𝑦
= 0                                                                                                                   (1) 

𝜕𝑢

𝜕𝑡
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜐

𝜕2𝑢

𝜕𝑦2
+ 𝑔𝛽𝑇(𝑇 − 𝑇∞) +

𝜇0
𝜌
𝐻𝑦
𝜕𝐻𝑥
𝜕𝑦

                                 (2) 

𝜕𝐻𝑥
𝜕𝑡

+ 𝑣
𝜕𝐻𝑥
𝜕𝑦

=
1

𝜎𝜇0 

𝜕2𝐻𝑥
𝜕𝑦2

+ 𝐻𝑦
𝜕𝑢

𝜕𝑦
                                                                                 (3) 

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑣

𝜕𝑇

𝜕𝑦
) = 𝑘

𝜕2𝑇

𝜕𝑦2
+ 𝑄(𝑇 − 𝑇∞)                                                                                 (4) 

The initial and boundary conditions are equally given by: 

𝑢 = 𝑈0, 𝑣 = 𝑣𝑤(𝑡), 𝑇 = 𝑇𝑤 , 𝑓𝑜𝑟𝑎𝑙𝑙𝑦, 𝑡 ≤ 0
𝑢 = 𝑈1, 𝐻𝑥 = 0,𝐻𝑥 = 0, 𝑇 = 𝑇∞ + 𝐴, 𝑦 = 0, 𝑡 > 0

𝑢 → 𝑈(𝑡), 𝐻𝑥 = 0, 𝑇 = 𝑇∞, 𝑎𝑠𝑦 → ∞, 𝑡 > 0
}                    (5) 

where all the parameter has their usual meaning as detailed in the nomenclature.  

In accordance with Messiha (1966), Equation (1) should integrate to: 

𝑣 = −𝑣0(1 + 𝜖𝐴𝑒
𝑖𝜔𝑡)                                                                                                              (6) 

𝐴 and 𝜖 are small positive constants such that 𝜖𝐴 ≪ 1. 

In the free stream, 𝑢 = 𝑈(𝑡), thus Equation (2) becomes  

−
1

𝜌

𝜕𝑝

𝜕𝑥
=
𝜕𝑈

𝜕𝑡
                                                                                                                           (7) 

Also from Maxwell’s equations the component of the electric current density are given by 

𝜉𝑥 = 0,   𝜉𝑦 = 0 

and 

𝜉𝑧 = −(
𝜕𝐻𝑥
𝜕𝑦

)                                                                                                                                    (8) 

And the divergence equation for the magnetic field gives 

𝐻𝑦 = 𝐻0 = constant                                                                                                            (9) 

Let us introduce the non-dimensional variables: 

  

𝑦′ =
𝑦𝑣0

𝑣
, 𝑢′ =

𝑢

𝑈0

𝑡′ =
𝑡𝑣0
2

4𝑣
, 𝑈′ =

𝑈

𝑈0

𝜔′ =
4𝜔𝑣

𝑣0
2 , 𝑉 =

𝑈1

𝑈0

𝐻 = (
𝜇0

𝜌
)1/2

𝐻𝑥

𝑈0
, 𝜃 =

𝑇−𝑇∞

𝑇𝑤−𝑇∞

𝑀 = (
𝜇0

𝜌
)1/2

𝐻0

𝑣0
𝑃𝑚 = 𝜎𝜇0𝑣

                                                                      

}
 
 
 
 

 
 
 
 

(10) 

Using the non-dimensional quantities (10) and equations (6 )–(9), then equations (1) – (5) becomes 

    
1

4

𝜕𝑢

𝜕𝑡
− (1 + 𝜀𝐴𝑒𝑖𝜔𝑡)

𝜕𝑢

𝜕𝑦
= 𝜀

𝑖𝜔

4
𝑒𝑖𝜔𝑡 +

𝜕2𝑢

𝜕𝑦2
+ 𝐺𝑟𝑡𝜃 +𝑀

𝜕𝐻

𝜕𝑦
                                           (11) 

   
1

4

𝜕𝐻

𝜕𝑡
− (1 + 𝜀𝐴𝑒𝑖𝜔𝑡)

𝜕𝐻

𝜕𝑦
=
1

𝑃𝑚

𝜕2𝐻

𝜕𝑦2
+𝑀

𝜕𝑢

𝜕𝑦
                                                                          (12) 

   
1

4

𝜕𝜃

𝜕𝑡
− (1 + 𝜀𝐴𝑒𝑖𝜔𝑡)

𝜕𝜃

𝜕𝑦
=
1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2
+ 𝛿𝜃                                                                                  (13) 

And the corresponding initial-boundary condition becomes 
𝑦 = 0: 𝑢 = 𝑉,𝐻 = 0, 𝜃 = 1   
𝑦 → ∞: 𝑢 → 𝑈,𝐻 → 0, 𝜃 → 0 

}                                                                                       (14) 

where 

𝑃𝑟 =
𝜇𝑐𝑝

𝑘
, 𝛿 =

𝑄𝜐

𝑣0
2𝜌𝑐𝑝

, 𝑃𝑚 = 𝜎𝜇0𝜐,𝑀 = (
𝜇0
𝜌
)

1
2𝐻0
𝑣0
 , 𝐺𝑟𝑡 =

𝜐𝑔𝛽𝜏(𝑇𝑤 − 𝑇∞)

𝑈0𝑣0
2  
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3. Method of Solution 
To solve Equations (11) – (13) with the initial boundary conditions (14), we use perturbation in the neighborhood 

of the limiting surface, similar to the one used by Lighthill (1954). The Velocity, induced magnetic and 

temperature fields are given by the expressions 

𝑢(𝑦, 𝑡) = 𝑢1(𝑦) + 𝜀𝐴𝑒
𝑖𝜔𝑡𝑢2(𝑦)                                                                                                            (15) 

𝐻(𝑦, 𝑡) = 𝐻1(𝑦) + 𝜀𝐴𝑒
𝑖𝜔𝑡𝐻2(𝑦)                                                                                                           (16) 

𝜃(𝑦, 𝑡) = 𝜃1(𝑦) + 𝜀𝐴𝑒
𝑖𝜔𝑡𝜃2(𝑦)                                                                                                           (17) 

The stream velocity is given by  

𝑈(𝑡) = 1 + 𝜀𝑒𝑖𝜔𝑡                                                                                                           (18) 
Substituting Equations (15-17) into Equations (11-13) together with Equation (18) respectively, separating the 

harmonic and non-harmonic terms and neglecting the coefficient of 𝜀2, we then obtain 

𝑢1
′′ + 𝑢1

′ +𝑀𝐻1
′ = −𝐺𝑟𝑡𝜃1                                                                                                           (19) 

1

𝑃𝑚
𝐻1
′′ + 𝐻1

′ +𝑀𝑢1
′ = 0                                                                                                                       (20) 

1

𝑃𝑟
𝜃1
′′ + 𝜃1

′ + 𝛿𝜃1 = 0                                                                                                                       (21) 

𝑢2
′′ + 𝑢2

′ −
𝑖𝜔

4
𝑢2 = −

𝑖𝜔

4
− 𝐴𝑢1

′ −𝑀𝐻2
′ − 𝐺𝑟𝑡𝜃2                                                                  (22) 

1

𝑃𝑚
𝐻2
′′ + 𝐻2

′ −
𝑖𝜔

4
𝐻2 +𝑀𝑢2

′ = 𝐴𝐻1
′                                                                                           (23) 

1

𝑃𝑟
𝜃2
′′ + 𝜃2

′ + (𝛿 − 𝑖𝜔)𝜃2 = −𝜃1
′                                                                                           (24) 

Also the corresponding initial-boundary conditions are given by the expressions: 
𝑦 = 0: 𝑢1 = 𝑉, 𝑢2 = 0, 𝐻1 = 0,𝐻2 = 0, 𝜃1 = 1, 𝜃2 = 0
𝑦 → 0: 𝑢1 → 1, 𝑢2 → 1, 𝐻1 → 0,𝐻2 → 0, 𝜃1 → 0, 𝜃2 → 0

}                                                                (25) 

Without loss of generality, we choose magnetic Prandtl number to be 1. 

The solutions of Equations 19 – 24 under the boundary conditions (25) when 𝑣 = 𝛼 and magnetic parameter 

𝑀 < 1 are  

𝜃1(𝑦) = 𝑒−𝑚𝑦                                                                                                                                                     (26) 

𝐻1(𝑦) = 𝑎2𝑒
−𝛼𝑦 + 𝑎3𝑒

−𝛽𝑦 + 𝑎4𝑒
−𝑚𝑦                                                                                                           (27) 

𝑢1(𝑦) = 1 + 𝑎2𝑒
−𝛼𝑦 − 𝑎3𝑒

−𝛽𝑦 + 𝑎5𝑒
−𝑚𝑦                                                                                                  (28) 

𝜃2(𝑦) = 𝑒
−𝑚𝑦 + 𝑖𝑎1(𝑒

−𝑚𝑦 − 𝑒−𝑚1𝑦)                                                                                                          (29) 

𝐻2(𝑦) =
1

2
[𝑎6𝑒

−𝑐𝑦 + 𝑎7𝑒
−𝑑𝑦 + 𝑖(𝑎8𝑒

−𝛼𝑦 + 𝑎11𝑒
−𝛽𝑦) + (𝑎9 + 𝑎12)𝑒

−𝑚𝑦 + (𝑎10 + 𝑎13)𝑒
−𝑚1𝑦]            (30) 

𝑢2(𝑦) = 1 +
1

2
[𝑎6𝑒

−𝑐𝑦 − 𝑎7𝑒
−𝑑𝑦 + 𝑖(𝑎8𝑒

−𝛼𝑦 + 𝑎11𝑒
−𝛽𝑦) + (𝑎9 − 𝑎12)𝑒

−𝑚𝑦 + (𝑎10 − 𝑎13)𝑒
−𝑚1𝑦]    (31) 

We now substitute Equations (26)-(31) into Equations (19)-(21) respectively, we obtain the expression for the 

velocity, induced magnetic field and temperature distribution as  

    𝑢(𝑦, 𝑡) = 1 +
𝑉 − 1

2
(𝑒−𝛼𝑦 − 𝑒−𝛽𝑦) +

𝐺𝑟𝑡

2𝑚
(
𝑒−𝛼𝑦

𝑚 − 𝛼
+
𝑒−𝛽𝑦

𝑚 − 𝛽
−

2𝑀𝑒−𝑚𝑦

(𝑚 − 𝛼)(𝑚 − 𝛽)
) 

  +
𝜀

2
𝑒𝑖𝜔𝑡(2 + (𝑎6𝑒

−𝑐𝑦 − 𝑎7𝑒
−𝑑𝑦 + 𝑖(𝑎8𝑒

−𝛼𝑦 − 𝑎11𝑒
−𝛽𝑦) + (𝑎14 + 𝑖𝑎15)𝑒

−𝑚𝑦                        

+ (𝑎10 − 𝑎13)𝑒
−𝑚1𝑦)                                                                                                                 (32) 

 

      𝐻(𝑦, 𝑡) =
𝑉 − 1

2
(𝑒−𝛼𝑦 − 𝑒−𝛽𝑦) +

𝐺𝑟𝑡

2𝑚
(
𝑒−𝛼𝑦

𝑚 − 𝛼
−
𝑒−𝛽𝑦

𝑚− 𝛽
−

2𝑀𝑒−𝑚𝑦

(𝑚 − 𝛼)(𝑚 − 𝛽)
) 

+
𝜀

2
𝑒𝑖𝜔𝑡(𝑎6𝑒

−𝑐𝑦 + 𝑎6𝑒
−𝑑𝑦 + 𝑖(𝑎8𝑒

−𝛼𝑦 + 𝑎11𝑒
−𝛽𝑦) + (𝑎9 + 𝑖𝑎12)𝑒

−𝑚𝑦                                

+ (𝑎10 + 𝑎13)𝑒
−𝑚1𝑦)                                                                                                                 (33) 

 

𝜃(𝑦, 𝑡) = 𝑒−𝑚𝑦 + 𝑖𝜀𝑎1𝑒
𝑖𝜔𝑡(𝑒−𝑚𝑦 − 𝑒−𝑚1𝑦)                                                                                              (34) 

 

Equations (32), (33) and (34) are split into pairs of real and imaginary parts. 

From equation (32), the real part of the velocity can be written in terms of the fluctuating parts as 
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ℜ(𝑢(𝑦, 𝑡)) = 1 +
𝑉 − 1

2
(𝑒−𝛼𝑦 − 𝑒−𝛽𝑦) +

𝐺𝑟𝑡

2𝑚
(
𝑒−𝛼𝑦

𝑚− 𝛼
+
𝑒−𝛽𝑦

𝑚 − 𝛽
−

2𝑀𝑒−𝑚𝑦

(𝑚 − 𝛼)(𝑚 − 𝛽)
)                        

+ 𝜀(𝑢1 cos𝜔𝑡 + 𝑢2 sin𝜔𝑡)                                                                                                       (35) 
Or 

ℜ(𝑢(𝑦, 𝑡)) = 1 +
𝑉 − 1

2
(𝑒−𝛼𝑦 − 𝑒−𝛽𝑦) +

𝐺𝑟𝑡

2𝑚
(
𝑒−𝛼𝑦

𝑚 − 𝛼
+
𝑒−𝛽𝑦

𝑚− 𝛽
−

2𝑀𝑒−𝑚𝑦

(𝑚 − 𝛼)(𝑚 − 𝛽)
) + 𝜀|𝑢12| cos(𝜔𝑡 − 𝛼3)   

Also from equation (33), the real part of the induced magnetic field can be written as  

ℜ(𝐻(𝑦, 𝑡)) =
𝑉 − 1

2
(𝑒−𝛼𝑦 − 𝑒−𝛽𝑦) +

𝐺𝑟𝑡

2𝑚
(
𝑒−𝛼𝑦

𝑚− 𝛼
−
𝑒−𝛽𝑦

𝑚 − 𝛽
−

2𝑀𝑒−𝑚𝑦

(𝑚 − 𝛼)(𝑚 − 𝛽)
)

+𝜀(𝐻1 cos𝜔𝑡 − 𝐻2 sin𝜔𝑡)      

   (36) 

or 

ℜ(𝐻(𝑦, 𝑡)) =
𝑉 − 1

2
(𝑒−𝛼𝑦 − 𝑒−𝛽𝑦) +

𝐺𝑟𝑡

2𝑚
(
𝑒−𝛼𝑦

𝑚 − 𝛼
−
𝑒−𝛽𝑦

𝑚− 𝛽
−

2𝑀𝑒−𝑚𝑦

(𝑚 − 𝛼)(𝑚 − 𝛽)
) + 𝜀|𝐻12| cos(𝜔𝑡 + 𝛼2)  

And from (34) we obtain the expression for temperature field as 

ℜ(𝜃(𝑦, 𝑡)) = 𝑒−𝑚𝑦 + 𝜀(𝑡1 cos𝜔𝑡 − 𝑡2 sin𝜔𝑡)                                                                      (37) 

Or ℜ(𝜃(𝑦, 𝑡)) = 𝑒−𝑚𝑦 + 𝜀|𝑡12| cos(𝜔𝑡 − 𝛼1)  

 

From Equations (35), (36) and (37) we obtain the expression for the transient velocity, transient induced magnetic 

field and transient temperature respectively, when 𝜔𝑡 = 𝜋 2⁄ , as 

ℜ(𝑢(𝑦, 𝑡)) = 1 +
𝑉 − 1

2
(𝑒−𝛼𝑦 − 𝑒−𝛽𝑦) +

𝐺𝑟𝑡

2𝑚
(
𝑒−𝛼𝑦

𝑚− 𝛼
+
𝑒−𝛽𝑦

𝑚 − 𝛽
−

2𝑀𝑒−𝑚𝑦

(𝑚 − 𝛼)(𝑚 − 𝛽)
) + 𝜀𝑢2 

ℜ(𝐻(𝑦, 𝑡)) =
𝑉 − 1

2
(𝑒−𝛼𝑦 − 𝑒−𝛽𝑦) +

𝐺𝑟𝑡

2𝑚
(
𝑒−𝛼𝑦

𝑚 − 𝛼
−
𝑒−𝛽𝑦

𝑚− 𝛽
−

2𝑀𝑒−𝑚𝑦

(𝑚 − 𝛼)(𝑚 − 𝛽)
) − 𝜀𝐻2 

ℜ(𝜃(𝑦, 𝑡)) = 𝑒−𝑚𝑦 − 𝜀𝑡2 

Since we know the velocity distribution, we then calculate the wall temperature (skin friction) as 

𝜏 =
𝜏′

𝜌𝑈0
′𝑣0
′ =

𝜕𝑢

𝜕𝑦
|
𝑦=0

 

= −𝑎2𝛼 + 𝑎3𝛽 − 𝑚𝑎5 −
𝜀

2
𝑒𝑖𝜔𝑡(−𝑎6𝑐 + 𝑎7𝑑 + 𝑖(−𝑎8𝛼 + 𝑎11𝛽) −𝑚(𝑎14 + 𝑖𝑎15) − 𝑚1(𝑎10 − 𝑎13)) 

In terms of amplitude and phase of the skin friction, we have  

ℜ(𝜏) = −𝑎2𝛼 + 𝑎3𝛽 − 𝑚𝑎5 − 𝜀(𝜏1 cos𝜔𝑡 + 𝜏2 sin𝜔𝑡) 
Or 

ℜ(𝜏) = −𝑎2𝛼 + 𝑎3𝛽 − 𝑚𝑎5 − 𝜀|𝜏12| cos(𝜔𝑡 − 𝛼4) 

𝜏1 = −
1

2
[𝑏11𝑐1 − 𝑎21𝑐2 − 𝑏13𝑑1 + 𝑎22𝑑2 −𝑚𝑎14 − 𝑛1𝑎18 + 𝑛2𝑎19] 

𝜏2 = −
1

2
[𝑎21𝑐1 − 𝑎22𝑑1 − 𝑏13𝑑1 − 𝑛2𝑎18 − 𝑛1𝑎19 + 𝑎11𝛽 + 𝑐2𝑏11 − 𝑑2𝑏13 −𝑚𝑎15 − 𝑎8𝛼] 

|𝜏12| = (𝜏1
2 + 𝜏2

2)
1
2, tan 𝛼4 =

𝜏2
𝜏1

 

Also since we know the induced magnetic distribution, we then calculate the electric current density as 

𝑍 =
𝜐𝜉𝑍′

𝑈0
′𝑣0
′ (
𝜇0
𝜌
)

1
2
=
𝜕𝐻

𝜕𝑦
= 𝑎2𝛼𝑒

−𝛼𝑦 + 𝑎3𝛽𝑒
−𝛽𝑦 +𝑚𝑎4𝑒

−𝑚𝑦 +
𝜀

2
𝑒𝑖𝜔𝑡(𝑎6𝑐𝑒

−𝑐𝑦 − 𝑎7𝑑𝑒
−𝑑𝑦

+𝑖(𝑎8𝛼𝑒
−𝛼𝑦 + 𝑎11𝛽𝑒

−𝛽𝑦) − 𝑚(𝑎14 + 𝑖𝑎15)𝑒
−𝑚𝑦−𝑚1(𝑎10 − 𝑎13)𝑒

−𝑚1𝑦)

 

And in terms of amplitude and phase of electric current density, we have  

ℜ(𝑍) = 𝑎2𝛼𝑒
−𝛼𝑦 + 𝑎3𝛽𝑒

−𝛽𝑦 +𝑚𝑎4𝑒
−𝑚𝑦 − 𝜀(𝑍1 cos𝜔𝑡 − 𝑍2 sin𝜔𝑡) 

Or 

ℜ(𝑍) = 𝑎2𝛼𝑒
−𝛼𝑦 + 𝑎3𝛽𝑒

−𝛽𝑦 +𝑚𝑎4𝑒
−𝑚𝑦 + 𝜀|𝑍12| cos(𝜔𝑡 + 𝛼5) 

𝑍1 = −
1

2
[(𝑏11𝑐1 − 𝑎21𝑐2) cos 𝑐2𝑦 𝑒

−𝑐1𝑦 + (𝑎21𝑐1 + 𝑏11𝑐2) sin 𝑐2𝑦 𝑒
−𝑐1𝑦 + (𝑏13𝑑1 − 𝑎22𝑑2)𝑒

−𝑑1𝑦 cos 𝑑2𝑦

+ (𝑎22𝑑1 − 𝑏13𝑑1) sin 𝑑2𝑦 𝑒
−𝑑1𝑦] 
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𝑍2 = −
1

2
[(𝑎21𝑐1 + 𝑏11𝑐2) cos 𝑐2𝑦 𝑒

−𝑐1𝑦 − (𝑏11𝑐1 − 𝑎21𝑐2) sin 𝑐2𝑦 𝑒
−𝑐1𝑦

+ ((𝑎22𝑑1 + 𝑏13𝑑2) cos 𝑑2𝑦 − (𝑏11𝑐1 − 𝑎21𝑐2) sin 𝑐2𝑦)𝑒
−𝑑1𝑦

+ ((𝑎17𝑛1 + 𝑎16𝑛2) cos 𝑛2𝑦 + (𝑎16𝑛1 − 𝑎17𝑛2) sin 𝑛2𝑦)𝑒
−𝑛1𝑦

− (𝑎8𝛼𝑒
−𝛼𝑦 + 𝑎11𝛽𝑒

−𝛽𝑦 +𝑚𝑎12𝑒
−𝑚𝑦)] 

|𝑍12| = (𝑍1
2 + 𝑍2

2)
1
2, tan 𝛼5 =

𝑍2
𝑍1

 

Finally, expression for Nusselt number is written as 

𝑁𝑢 =
𝜕𝜃

𝜕𝑦
|
𝑦=0

= 𝑚 − 𝑖𝜀𝑎1𝑒
𝑖𝜔𝑡(−𝑚 + 𝑛1 + 𝑖𝑛2) 

In terms of amplitude and phase of the skin friction, we have  

ℜ(𝑁𝑢) = 𝑚 + 𝜀(𝑎1𝑛2 cos𝜔𝑡 + 𝑎1(−𝑚 + 𝑛1) sin𝜔𝑡) 
or 

ℜ(𝑁𝑢) = 𝑚 + 𝜀|𝑁𝑢12| cos(𝜔𝑡 − 𝛼6) 
𝑁𝑢1 = 𝑎1𝑛2, 𝑁𝑢2 = 𝑎1(−𝑚 + 𝑛1) 

|𝑁𝑢12| = (𝑁𝑢1
2 + 𝑁𝑢2

2)
1
2, tan 𝛼6 =

𝑁𝑢2
𝑁𝑢1

 

4. Results and Discussion 
The analytical simulations presented in this work has been conducted in order to study the effects free stream 

oscillation 𝜔 for suction parameter 𝐴, hartmann number 𝑀, thermal Grashof number 𝐺𝑟𝑡 and limiting surface 

velocity 𝑉. We set out the discussion of this work for velocity, magnetic and temperature fields for various flow 

governing parameters viz: 𝑉,𝑀, 𝐴, 𝛿, 𝐺𝑟𝑡 and 𝜔. The parameters such as 𝑎𝑖 , 𝑏𝑖 etc are as defined in Appendix. 

4.1 Velocity field 

The mean velocity profiles 𝑓1 are shown in Figures 1.1 – 1.3 for different values of heat parameter 𝛿, limiting 

surface velocity 𝑉, Thermal Grashof number  𝐺𝑟𝑡 and magnetic parameter 𝑀. It worth nothing that variation of 

transient with velocity 𝛿, 𝑉 and 𝐺𝑟𝑡 are the same with those of the mean velocity. We observe that heat generation 

increases the mean velocity while heat absorption reduces the velocity as could be seen from Figure 1.1. From 

Figure 1.2, we see that the mean velocity increases when the limiting surface moves in the positive direction of 

the flow, whereas it decreases when it moves in the opposite direction. The effect of Thermal Grashof number 

was shown in Figure 1.3, from the Figure, we see that the velocity increases with increase in Thermal Grashof 

number for heating of the plate (𝐺𝑟𝑡 > 0), while for cooling of the plate (𝐺𝑟𝑡 < 0) resulted in reversed type of 

flow with velocity decreases as cooling of the plate increases.  

  

 
Figure 1.1: Mean velocity profiles (𝑓1) for various 𝛿 

 

 
Figure 1.2: Mean velocity profiles (𝑓1) for various 𝑉 
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Figure 1.3: Mean velocity profiles (𝑓1) for various 𝐺𝑟𝑡 

 

 
 

 

Figure 1.4: Fluctuating part of velocity profiles (𝑢1) 
for various 𝜔 

 

The variations of fluctuating parts of the velocity profiles 𝑢1 and 𝑢2 are displayed in Figures 1.4 – 1.9. From 

Figure 1.4 we see that for all chosen values of parameters, there is a reverse type of flow when limiting surface 

moves in the direction opposite to that of the flow, and as 𝜔 increases, the fluctuating part 𝑢1 the reversibility 

reduces until a steady state is reached where oscillation is less significant.  In Figure 1.5 we see that 𝑢1 increases 

with an increase in 𝐴. Maximum in 𝑢1 occurs when 𝐴 > 0.2. We have from 1.6, the effect of Thermal Grashof 

number variation on fluctuating parts 𝑢1 and 𝑢2 respectively. It could be seen that the flow pattern in both cases 

is the same but the point of reversibility in 𝑢1 is closer to the surface than that of 𝑢2. In both 𝑢1 and 𝑢2, velocity 

increases positively for an increase in thermal Grashof number in cooling of the plate and increases negatively for 

heating of the plate.  
 

 

 

 
Figure 1.5: Fluctuating part of velocity profiles 

(𝑢1) for various 𝐴 

 
Figure 1.6: Fluctuating part of velocity profiles (𝑢2) 
for various 𝐺𝑟𝑡 

 
Figure 1.7: Fluctuating part of velocity profiles 

(𝑢2) for various 𝜔 

 
Figure 1.8: Fluctuating part of velocity profiles (𝑢2) 
profiles (𝑢1) for various 𝛿 
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Increase in free stream oscillation frequency reduces the fluctuating part 𝑢2 as could be seen in Figure 1.7. We 

observe a shift in maximum with increase in 𝛿 for fluctuating part 𝑢2 as seen in Figure 1.8. The maximum shift 

away from the surface with a reverse flow occurring for higher values of 𝛿. Also from Figure 1.9 an increase in 

limiting surface velocity positive values of V is seen to brings about decrease in fluctuating part 𝑢2, whereas an 

increase in V in the reverse direction leads to an increase 𝑢2.  

 

 

 
Figure 1.9: Fluctuating part of velocity profiles 

(𝑢1) for various 𝑉 

 
Figure 1.10: Amplitude of velocity profiles (|𝑢12|) for 

various 𝐴 

 

 
Figure 1.11: Phase of velocity (tanΩ3) profiles 

for various 𝜔 

 
Figure 1.12: Phase of velocity (tanΩ3) profiles various 

𝛿 
 

The amplitude of the velocity profiles |𝑢12| are shown in Figures 1.10, in which we observe from the figure that 

as the suction parameter A increases, |𝑢12| increase and maximum amplitude occurs when 𝐴 ≥ 0.1. The variation 

of amplitude |𝑢12| with thermal Grashof number 𝐺𝑟𝑡 is observed to increase with positive increase in Thermal 

Grashof number for cooling of the plate (𝐺𝑟𝑡 < 0), while for heating of the plate (𝐺𝑟𝑡 > 0) resulted in reversed 

type of flow with velocity decreases as cooling of the plate increases. 

 

The variation of phase angle tanΩ3 is shown in Figure 1.11 and Figure 1.12. We see that as frequency 𝜔 increases 

phase angle decreases while heat generation 𝛿 increase to spatial point 𝑦 > 1.5 when increase in 𝛿  decreases the 

phase angle. 

 

4.2 Magnetic field 

Figures 2.1 and 2.2 display the mean induced magnetic field, 𝑔1. It is seen that as 𝑀 increases, and for negative 

values of 𝑉, 𝑔1 increases. For heating of the plate (𝐺𝑟𝑡 > 0), the mean induced magnetic induction decreases as 

𝐺𝑟𝑡 increases, while for cooling of the plate (𝐺𝑟𝑡 < 0), the mean induced magnetic field increases. The variation 

of transient induced magnetic field H are shown in Figures 2.3 for various values of suction parameter. It is 

observed that as 𝑀 or 𝜔 increases and for negative values of 𝑉 leads to an increase in 𝐻. Also as 𝐴 increases, the 

transient induced magnetic field decreases as shown in Figure 2.3. 

 



 

 

 

A. M. Okedoye. / Journal of Naval Architecture and Marine Engineering, 22(2025) 183-197 

Heat transfer in hydromagnetic oscillatory flow past an impulsively started porous limiting surface 
 

191 

    
Figure 2.1: Mean induced magnetic field (𝑔1) for 

various 𝑀     

 
Figure 2.2: Mean induced magnetic field (𝑔1) for 

various 𝐺𝑟𝑡 
 

  
Figure 2.3: Transcient induced magnetic field (𝐻) 
for various 𝐴 

 
Figure 2.4: Fluctuating part of induced magnetic field 

(𝐻1) for various 𝐺𝑟𝑡 
 

The variations of the fluctuating parts H1 and H2 of the induced magnetic field are shown in Figures 2.4 – 2.10. 

From Figure 2.4, it is observed that as Grt  (for heating of the plate) increases, H1 also increases, while for cooling 

of the plate, increase in Grt leads to increase in H1 and H2, as increase in ω reduces the fluctuation while increase 

in ω reduces the fluctuation as seen in Figure 2.5. The amplitude |H12| of induced magnetic field is shown in 

Figure 2.6, it could be seen that the amplitude of induced magnetic field decreases with increase in heat absorption 

for δ < −1and increase with with heat absorption for δ > −1,  while in Figures 2.7, we see that as frequency ω 

increase, fluctuating parts H2 increases. Figure 2.8 shows that amplitude of induced magnetic field increase with 

an increase in thermal Grashof number for heating of the plate. 
 

    
Figure 2.5: Fluctuating part of induced magnetic field 

(𝐻1) for various 𝜔 

 
Figure 2.6: Amplitude of induced magnetic field 

(|𝐻12|) for various 𝛿 
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Figure 2.7: Fluctuating part of induced magnetic field 

(𝐻2) for various 𝜔 

 

 
Figure 2.8: Amplitude of induced magnetic (|𝐻12|) 
for various 𝐺𝑟𝑡 

 

The phase of induced magnetic field is plotted for various values of frequency of the free stream oscillation ω, 

heat generation/absorption, suction parameter A and Hartmann number as shown in Figures 2.9 and 2.10. It could 

be deduced from the Figures that increase in A or M reduces the phase angle for reverse flow. It is also observed 

that phase change occurs at y → 2, and when this happens the direction induced magnetic phase changes. 

 

 
Figure 2.9: Phase of induced magnetic field (tanΩ2) 
for various 𝛿 

 
Figure 2.10: Phase of induced magnetic field 

(tanΩ2) for various 𝐴 
 

4.3 Temperature field 

Figure 3.1 displays the transient temperature field with various values of 𝛿. It is observed that temperature 

boundary layer decreases as the fluid moves away from the plate which asymptotically approaches zero far away 

from the plate and temperature increases as the fluid heat absorption increases. Thus, the higher boundary layer 

occurs as heat generated to the surrounding reduces. 
 

 
Figure 3.1: Transcient temperature field (𝜃) for 

various 𝛿 

 

 
Figure 3.2: Amplitude of temperature field (|θ12|)for 

various 𝛿 
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The amplitude of temperature field |θ12| is shown in Figure 3.2, fluctuation due to θ2 is seen to dominate. 

Amplitude of the temperature increases with an increase in heat generation up to around 𝑦 = 1.2 after which it 

revserses. The effect of Hartmann number on Phase of temperature field for various 𝐴 (tanΩ1) for various 𝛿 is 

shown in Figure 3.3. We observed that the phase angle also increases with increase heat generation, which also 

increses the interval of complete oscillations. 

 

 

 
Figure 3.3: Phase angle for temperature field (tanΩ1) 
for various 𝛿 

  
Figure 4.1 Variation of skin friction (𝜏) for various 

𝐴 

 

4.4 Skin Friction 

The Skin Friction 𝜏 is plotted for against free stream oscillation 𝜔 for suction parameter 𝐴, Hartmann number 𝑀, 

thermal Grashof number 𝐺𝑟𝑡 and limiting surface velocity 𝑉 in Figures 4.1 to 4.5 respectively. It is observed that 

𝜏 decreases as A increase, whereas it increases as M increases, and also an increase in Grt increases 𝜏. Also, 𝜏 
decrease when limiting surface moves in the same direction as that of the flow and increase when the limiting 

surface moves in the direction opposite to that of the flow. The amplitude of the skin friction |𝜏12| is shown in 

Figure 4.4. We observed that amplitude increase with an increase in Grt and A. The amplitude of the skin friction 

is highest close to the surface as against the surface. Also the amplitude is also higher when the plate moves in 

the opposite direction of the flow as compared to the amplitude when the plate moves in the same direction as the 

flow. The phase of the skin friction is shown in Figure 4.5 and 4.6 respectively. From this Figures, we observe 

that of the skin friction decreases when the limitin surface moves in the direction of the flow and increase when 

it moves in the opposite direction of the flow, while increase in M or 𝜔 reduces the phase of the skin friction. 

 

  
Figure 4.2: Variation of skin friction (𝜏) for various 

𝐺𝑟𝑡 

 
Figure 4.3: Variation of skin friction (𝜏) for various 

𝑉 

 

4.5 Electric Current Density 

The variation of the electric current density 𝑍, the fluctuation part 𝑍1, 𝑍2 the amplitude, |𝑍12| and the pahse, tan 𝛼5  

of the electric current density are displayed in Figures 5.1 to 5.7. From these Figures, we see that increase in heat 

absorption increases Z while increase in heat generation reduces the electric current density for 𝑦 < 2.5, when 

𝑦 > 2.5, the phenomenon reverses. For heating of the plate, increase in Grt decreases Z while for cooling of the 

plate, increase in Grt increases Z. The electric current density flows in the positive direction when 0.5 < 𝑦 < 1.5 
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for heating of the plate and vice versa for cooling of the plate. It is also seen that as free stream oscillation 

frequency increase, the electric current density decreases. Close to the plate, the electric current density flow in 

the negative direction and as M increase Z decreases for 𝑦 < 3 and reverses when 𝑦 > 3. Z is seen to increase as 

A increase with Z in negative direction when 𝐴 < 0.2 with 0 < 𝑦 < 2. The fluctuation part 𝑍2 increase with 

increase in heating of the plate and decreases with cooling of the plate. The amplitude decrease with increase in 

Grt or 𝜔. The phase of the current density increase with heat generation but reverses as y increases with negative 

phase angle. The phase of current density decreases with increase in free stream oscillation. We also observe that 

the point of asymptotes increases as y becomes large with negative phase. 

 

 
Figure 4.4: Amplitude of the skin friction (|𝜏12|) for 

various 𝐺𝑟𝑡 

 

 
Figure 4.5: Phase of the skin friction (tanΩ4) for 

various 𝑉 

 
Figure 4.6: Phase of the skin friction (tanΩ4) as 

function of 𝑀 and 𝜔 

 
Figure 5.1: Electric current density (𝑍) for various 𝛿 

 
Figure 5.2: Electric current density (𝑍) for various 𝜔 

 
Figure 5.3: Electric current density (𝑍) for various 𝐴 
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Figure 5.4: Fluctuation part of the electric current 

density (𝑍2) for various 𝐺𝑟𝑡 

 
Figure 5.5: Amplitude of the electric current 

density (|𝑍12|) for various 𝜔 

 
Figure 5.6: Phase of the electric current density (tanΩ5) 
for various 𝛿 

 
Figure 5.7: Phase of the electric current density 

(tanΩ5) for various 𝜔 

 
Figure 6.1: Variation of transcient Nusselt (𝑁𝑢) for 

various 𝛿 

 
Figure 6.2: Phase of Nusselt number (tan 𝛼6) for 

various 𝛿 

 

4.6 Nusselt number 

The variation of rate of heat transfer at the wall 𝑁𝑢, its amplitude |𝑁12| and phase tan 𝛼6 are plotted in Figures 

6.1 and 6.2 respectively. It is seen that increase in heat generation leads to increase in 𝑁𝑢 and its amplitude. 

While the pahse of Nusselt number decreases as heat generation increases. 

 

5. Conclusions  
In this paper we have studied analytically heat transfer in Hydromagnetic oscillatory flow past an impulsively 

started porous limiting surface and the corresponding effect of oscillatory free stream flow on two dimensional 

hydromagnetic oscillatory flows of a viscous, incompressible and electrically conducting fluid, past a porous, 

infinite limiting surface with variable suction and its associated temperature and magnetic fields in the presence 

uniform transverse magnetic field. The fluid limiting surface is moved impulsively, with a constant velocity, either 
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in the direction of the flow or in the opposite direction, in the presence of a transverse magnetic field. With 

oscillating fluid flow, we can study both frequency-dependent effects and “long-time” effects that would require 

non-practically long channels to be observed in steady flow. 

 

We explore mathematically important aspects of reaction engineering in oscillatory flow, especially residence 

time flow behaviour, scale-up and scale-down procedures. Oscillatory Flow Mixing can be applied to both batch 

and continuous processing, such as in chemical, biochemical and process engineering. 

 

The method of mixing provides a range of specific process enhancements, such as improved mass transfer, heat 

transfer, and narrow residence time, Significant enhancement of heat and mass transfer rates, Control of 

droplets/bubble size and size distribution, Control of the Residence Time Distribution (RTD), Suspension of 

particles. Fine-tuned mixing and shear rates where mixing is controlled entirely by the oscillations and not by the 

throughput. 

 

From the present study the following conclusions can be drawn: 

 that variation of transient with velocity 𝛿, 𝑉 and 𝐺𝑟𝑡 are the same with those of the mean velocity.  

 that the mean velocity increases when the limiting surface moves in the positive direction of the flow, 

whereas it decreases when it moves in the opposite direction.  

 that increase in magnetic parameter M decreases the mean velocity and that the magnetic field is limited to 

only retardation, as normal. 

 that 𝜏 decrease when limiting surface moves in the same direction as that of the flow and increase when the 

limiting surface moves in the direction opposite to that of the flow.  

 that amplitude of the skin friction is highest close to the surface as against the surface.  

 that increase in heat absorption increases Z while increase in heat generation reduces the electric current 

density.  

 that increase in heat generation leads to increase in 𝑁𝑢 and its amplitude. While the pahse of Nusselt 

number decreases as heat generation increases. 
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Appendix 
 

A1: Parameters Definition/Expression 

𝑚 =
Pr + √Pr2 − 4Prδ

2
,𝑚1 =

Pr + √Pr2 − 4(δ − 𝑖𝜔)

2
, 𝑐 =

𝛼 + √𝛼2 + 𝑖𝜔

2
, 𝑑 =

𝛽 + √𝛽2 + 𝑖𝜔

2
 

1 +𝑀 = 𝛼, 1 − 𝑀 =  𝛽,𝑚1 = 𝑛1 + 𝑖𝑛2, 𝑐 = 𝑐1 + 𝑖𝑐2, 𝑑 = 𝑑1 + 𝑖𝑑2, 𝑎1 =
𝑚

𝜔Pr
,  

 𝑎2 =
𝑉 − 1

2
+

𝐺𝑟𝑡

2𝑚(𝑚 − 𝛼)
, 𝑎3 = −(

𝑉 − 1

2
+

𝐺𝑟𝑡

2𝑚(𝑚 − 𝛽)
) , 𝑎4 = −

𝑀𝐺𝑟𝑡

𝑚(𝑚 − 𝛼)(𝑚 − 𝛽)
,  

𝑎5 =
(1 −𝑚)𝐺𝑟𝑡

𝑚(𝑚 − 𝛼)(𝑚 − 𝛽)
, 𝑎8 =

8𝐴𝛼𝑎2
𝜔

, 𝑎9 =
𝐴𝑚(𝑎4 + 𝑎5) + 𝐺𝑟𝑡𝑎1

𝑚2 − 𝛼𝑚 −
𝑖𝜔
4

, 𝑎10 =
−𝑎1𝐺𝑟𝑡

𝑚1
2 − 𝛼𝑚1 −

𝑖𝜔
4

 

𝑎11 =
8𝐴𝛽𝑎3
𝜔

, 𝑎12 =
𝐴𝑚(𝑎4 − 𝑎5) − 𝐺𝑟𝑡𝑎1

𝑚2 − 𝛽𝑚 −
𝑖𝜔
4

, 𝑎13 =
𝑎1𝐺𝑟𝑡

𝑚1
2 −𝑚1𝛽 −

𝑖𝜔
4

,                                      

𝑢1 = 1 −
1

2
[𝑎14𝑒

−𝑚𝑦 − (𝑏11 cos 𝑐2𝑦 + 𝑎21 sin 𝑐2𝑦)𝑒
−𝑐1𝑦 + (𝑏13 cos 𝑑2𝑦 + 𝑎22 sin 𝑑2𝑦)𝑒

−𝑑1𝑦 + (𝑎18 cos 𝑛2𝑦

+ 𝑎19 sin 𝑛2𝑦)𝑒
−𝑛1𝑦]                                                                                          

       𝑢2 = −
1

2
[𝑎8𝑒

−𝛼𝑦 − 𝑎11𝑒
−𝛽𝑦 + 𝑎15𝑒

−𝑚𝑦 + (𝑏11 sin 𝑐2𝑦 − 𝑎21 cos 𝑐2𝑦)𝑒
−𝑐1𝑦                       

+ (𝑎22 cos 𝑑2𝑦 − 𝑏13 sin 𝑑2𝑦)𝑒
−𝑑1𝑦 + (𝑎19 cos 𝑛2𝑦 − 𝑎18 sin 𝑛2𝑦)𝑒

−𝑛1𝑦] 

|𝑢12| = (𝑢1
2 + 𝑢2

2)
1
2, tan 𝛼3 =

𝑢2
𝑢1

 

𝐻1 = [
𝑎9𝑒

−𝑚𝑦 + (𝑎16 cos 𝑛2𝑦 + 𝑎17 sin 𝑛2𝑦)𝑒
−𝑛1𝑦 − (𝑏11 cos 𝑐2𝑦 + 𝑎21 sin 𝑐2𝑦)𝑒

−𝑐1𝑦

−(𝑏13 cos 𝑑2𝑦 + 𝑎22 sin 𝑑2𝑦)𝑒
−𝑑1𝑦

] 

𝐻2 =
1

2
[𝑎8𝑒

−𝛼𝑦 + 𝑎11𝑒
−𝛽𝑦 + 𝑎21𝑒

−𝑚𝑦 + (𝑎17 cos 𝑛2𝑦 − 𝑎16 sin 𝑛2𝑦)𝑒
−𝑛1𝑦

+ (𝑎11 sin 𝑐2𝑦 − 𝑎21 cos 𝑐2𝑦)𝑒
−𝑐1𝑦 + (𝑏13 sin 𝑑2𝑦 − 𝑎22 cos 𝑑2𝑦)𝑒

−𝑐1𝑦] 

|𝐻12| = (𝐻1
2 + 𝐻2

2)
1
2, tan 𝛼2 =

𝐻2
𝐻1
                                                                                              

𝑛1 =
1

2
𝑃𝑟 + 𝑛2, 𝑛2 =

1

4
√2(𝑃𝑟2 − 4𝑃𝑟𝛿)2 + 16𝜔2𝑃𝑟2 + 2𝑃𝑟2 − 8𝑃𝑟𝛿  

𝑎14 =
𝑏1𝑏2

𝑏2
2 + 𝜔2

−
𝑏3𝑏4

𝑏4
2 + 𝜔2

, 𝑎15 = 𝜔(
𝑏1

𝑏2
2 + 𝜔2

−
𝑏3

𝑏4
2 + 𝜔2

),  

𝑏1 = 4𝐺𝑟𝑡 (
𝐴

𝛼 − 𝑚
+ 𝑎1) , 𝑏2 = 4(𝑚 − 𝛼), 𝑏3 = −4𝐺𝑟𝑡 (

𝐴

𝛽 − 𝑚
+ 𝑎1),  

𝑏4 = 4(𝑚 − 𝛽), 𝑏5 = 𝑛1
2 − 𝑛2

2 − 𝛼𝑛1, 𝑏6 = 2𝑛1𝑛2 − 𝛼𝑛2 −
𝑖𝜔

4
, 𝑏7 = 𝑛1

2 − 𝑛2
2 − 𝛽𝑛1,  

𝑏8 = 2𝑛1𝑛2 − 𝛽𝑛2 −
𝑖𝜔

4
, 𝑏11 =

𝑏1𝑏2

𝑏2
2 + 𝜔2

−
𝑎1𝑏5𝐺𝑟𝑡

𝑏5
2 + 𝑏6

2 , 𝑏12 =
𝑏1𝜔

𝑏2
2 +𝜔2

−
𝑎1𝑏6𝐺𝑟𝑡

𝑏4
2 + 𝑏6

,  

𝑏13 =
𝑏3𝑏4

𝑏4
2 + 𝜔2

+
𝑎1𝑏7𝐺𝑟𝑡

𝑏7
2 + 𝑏8

2 , 𝑏14 =
𝑏3𝜔

𝑏4
2 + 𝜔2

−
𝑎1𝑏8𝐺𝑟𝑡

𝑏7
2 + 𝑏8

2 

𝑡1 = 𝑎1 sin 𝑛2𝑦 𝑒
−𝑛1𝑦 , 𝑡1 = 𝑎1(𝑒

−𝑚𝑦 − cos𝑛2𝑦 𝑒
−𝑛1𝑦) 

|𝑡12| = (𝑡1
2 + 𝑡2

2)
1
2, tan 𝛼1 =

𝑡2
𝑡1
                                                       

 


