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Abstract:  
The objective of this investigation is to study the influence of thermal radiation and magnetic Prandtl 
number on the steady MHD heat and mass transfer by mixed convection flow of a viscous, 
incompressible, electrically-conducting, Newtonian fluid which is an optically thin gray gas over a 
vertical porous plate taking into account the induced magnetic field. The similarity solutions of the 
transformed dimensionless governing equations are obtained by series solution. It is found that, 
velocity is reduced considerably with a rise in conduction-radiation parameter ሺࡾሻ or Hartmann 
number ሺࡹሻ whereas the skin friction is found to be markedly boosted with an increase in ࡹ or 
Magnetic Prandtl number (࢓࢘ࡼ). An increase in magnetic body parameter (M) or Magnetic Prandtl 
number (࢓࢘ࡼ) is found to escalate induced magnetic field whereas an increase in ࡾ is shown to exert 
the opposite effect. The acquired knowledge in our study can be used by designers to control 
Magnetohydrodynamic (MHD) flow as suitable for a certain application. Applications of the study 
include laminar magneto-aerodynamics, materials processing and MHD propulsion thermo-fluid 
dynamics.  

Keywords: Thermal Radiation, Magnetic materials processing, Mixed Convection, Thermal plasma reactors, 
MHD induction heating, Boundary layers and Magnetic Prandtl number. 

NOMENCLATURE 
 

 ,ሬሬԦ  The fluid velocity vectorࢗ
 ,ሬሬሬԦ The magnetic induction vectorࡴ
 ,଴ Externally applied transverse magnetic fieldܪ
 ,௫ Induced magnetic field along x-directionܪ
 ,Species concentration (kg. m) ܥ
  ,௉ Specific heat at constant pressure (J. kg-1. K)ܥ
 ,Species concentration in the free stream (kg. m-3)    ∞ܥ
 ,௪   Species concentration at the surface (kg. m-3)ܥ
 ,Chemical molecular diffusivity (m2. s-1)  ܦ
݃  Acceleration due to gravity (m. s-2), 
 ,Thermal Grashof number ݎܩ
 ,Mass Grashof number ݉ܩ
  ,Hartmann number/Magnetic parameter ܯ
ܽ         Absorption coefficient, 
 ,௠ Magnetic Prandtl numberݎܲ
 ,Prandtl number ݎܲ
 ,Stefan-Boltzmann constant        ߪ
ܵܿ Schmidt number, 
ܶ Temperature (K), 
ܶ௪ Fluid temperature at the surface (K), 
ܶ∞ Fluid temperature in the free stream (K), 
 Velocity component in x-direction (m. s-1)   ݑ
ܷ଴   Dimensionless free stream velocity (m. s-), 

 ,଴ Suction velocity (m. s-)ݒ
 ,Ԧ  Current density (m-2. s. A)ࡶ
 ,௥ Radiative heat fluxݍ
 

Greek symbols 
 

 Coefficient of volume expansion for heat ߚ
transfer (K-), 

 Coefficient of volume expansion for mass   ߚ
transfer (K-1), 

 ,Magnetic diffusivity ߟ
 ,௘ Magnetic permeabilityߤ
 ,Viscosity of fluid ߤ
 ,Dimensionless fluid temperature   ߠ
 ,Thermal conductivity (W. m-. K-) ߢ
  ,Kinematic viscosity (m2.s-) ߥ
ߩ   Density (kg. m), 
 ,Electrical conductivity ߪ
߬ Shearing stress (N. m-2),  
߶ Dimensionless species concentration, 
 

Subscripts 
 

w Conditions on the wall 
  Free stream conditions 
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1. Introduction 

In the present report, the specific problem selected for study is mixed convection flow involving coupled heat 
and mass transfer in an electrically conducting fluid adjacent to an isothermal porous plate, with radiation heat 
transfer effects accounted for. There is an interesting aspect involving MHD effects in forced convection 
boundary layers; induced magnetic forces modify the free stream flow and this, in turn, affects the external 
pressure gradient or the free stream velocity that is imposed in the boundary layer. Thus, a complete boundary 
layer solution would involve a MHD solution for the inviscid free stream. As a consequence, the forced 
convection problem is more complicated than free convection. 

Magneto-hydrodynamics (MHD) is the branch of continuum mechanics which deals with the flow of electrically 
conducting fluids in electric and magnetic fields. Many natural phenomena and engineering problems are worth 
being subjected to an MHD analysis. Magneto-hydrodynamic equations are ordinary electromagnetic and 
hydrodynamic equations modified to take into account the interaction between the motion of the fluid and the 
electromagnetic field. The formulation of the electromagnetic theory in a mathematical form is known as 
Maxwell’s equation. The effect of the gravity field is always present in forced flow heat transfer as a result of 
the buoyancy forces connected with the temperature differences. Usually they are of a small order of magnitude 
so that the external forces may be neglected. There has recently been a considerable interest in the effect of body 
forces on forced convection phenomena. In certain engineering problems, however, they cannot be left out of 
consideration. It is important to realize that the heat transfer in mixed convection can be significantly different 
from that both in pure natural convection and in pure forced convection. The study of forced and free convection 
flow and heat transfer for electrically conducting fluids past a semi-infinite porous plate under the influence of a 
magnetic field has attracted the interest of many investigators in view of its applications in many engineering 
problems such as geophysics, astrophysics, boundary layer control in the field of aerodynamics. Engineers 
employ MHD principle, in the design of heat exchangers pumps and flow meters, in space vehicle propulsion, 
thermal protection, braking, control and re-entry, in creating novel power generating systems etc. 

The radiation effects have important applications in physics and engineering, particularly in space technology 
and high temperature processes. But very little is known about the effects of radiation on the boundary layer. 
Thermal radiation effects on the boundary layer may play important role in controlling heat transfer in polymer 
processing industry where the quality of the final product depends on the heat controlling factors to some extent. 
High temperature plasmas, cooling of nuclear reactors, liquid metal fluids, power generation systems are some 
important applications of radiative heat transfer. Actually, many processes in new engineering areas occur at 
high temperatures and knowledge of radiation heat transfer beside the convective heat transfer becomes very 
important for the design of the pertinent equipment. Nuclear power plants, gas turbines and the various 
propulsion devices for aircraft, missiles, satellites and space vehicles are examples of such engineering areas. 
Moreover, when radiative heat transfer takes place, the fluid involved can be electrically conducting since it is 
ionized due to the high operating temperature. Accordingly, it is of interest to examine the effect of the magnetic 
field on the flow. Studying such effect has great importance in the application fields where thermal radiation and 
MHD are correlative. In all these applications understanding the behaviour of MHD free and forced convective 
flow and the various problem parameters that influence is a very important asset to designers developing 
applications that aim to control this flow. For example, the process of fusing of metals in an electrical furnace by 
applying a magnetic field and the process of cooling of the first wall inside a nuclear reactor containment vessel 
where the hot plasma is isolated from the wall by applying a magnetic field. 

Over the past years, this problem attracted the attention of several researchers. However, none of them included 
all relevant aspects that influence the flow behaviour. A summary of researcher’s efforts is as follows: Merkin 
(1969) investigated the mixed convection boundary layer flow on a semi-infinite vertical flat plate when the 
buoyancy forces aid and oppose the development of boundary layer. Watanabe (1991) presented a laminar 
forced and free mixed convection flow on a flat plate with uniform suction or injection was theoretically 
investigated. Non-similar partial differential equations are transformed into non-similar ordinary ones by means 
of difference-differential method. Kafousias et al. (1979) considered the effects of free convection currents on 
the flow field of an incompressible viscous fluid past an impulsively started infinite vertical porous limiting 
surface when the fluid is subjected to suction with uniform velocity using the Laplace transform technique. 
Recently, the study of heat and mass transfer on the free convective flow of a viscous incompressible fluid past 
an infinite vertical porous plate in presence of transverse sinusoidal suction velocity and a constant free stream 
velocity was presented by Ahmed (2009). Also, Ahmed and Liu (2010) analyzed the effects of mixed 
convection and mass transfer of three-dimensional oscillatory flow of a viscous incompressible fluid past an 
infinite vertical porous plate in presence of transverse sinusoidal suction velocity oscillating with time and a 
constant free stream velocity. The non-linear coupled equations of the works (2009, 2010) were solved 
analytically by employing perturbation technique. 
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Soundalgekar (1965) investigated the Hydromagnetic flow of a viscous incompressible fluid due to uniformly 
accelerated motion of an infinite flat plate in the presence of a magnetic field fixed relative to the plate and he 
found that velocity at any point and at any instant decreases when the strength of the magnetic field is increased. 
Kafousias and Georgantopoulos (1982) studied the transverse magnetic effects on the free convective flow of an 
incompressible, electrically conducting fluid past a non-conducting and non-magnetic, vertical limiting surface, 
the governing equations were solved by the usual Laplace transform technique. Raptis and Soundalgekar (1984) 
determined the effects of mass transfer on the flow of an electrically conducting fluid past a steadily moving 
infinite vertical porous plate under the action of a transverse magnetic field. Hussain et al. (2000) considered the 
problem of natural convection boundary layer flow, induced by the combined buoyancy forces from mass and 
thermal diffusion from a permeable vertical flat surface with non-uniform surface temperature and concentration 
but a uniform rate of suction of fluid through the permeable surface. Abdelkhalek (2009) presented for heat and 
mass transfer effect on hydromagnetic flow of a moving permeable vertical surface. The non-linear coupled 
boundary layer equations were transformed and the resulting ordinary differential equations were solved by 
perturbation technique. 

The above studies have generally been confined to very small magnetic Reynolds numbers, allowing magnetic 
induction effects to be neglected. Such effects must be considered for relatively large values of the magnetic 
Reynolds number. Glauert (1962) presented a seminal analysis for hydromagnetic flat plate boundary layers 
along a magnetized plate with uniform magnetic field in the stream direction at the plate. He obtained series 
expansion solutions (for both large and small values of the electrical conductivity parameter) for the velocity 
and magnetic fields, indicating that for a critical value of applied magnetic field, boundary-layer separation 
arise. Raptis and Soundalgekar (1982) considered the problem of flow of an electrically conducting fluid past a 
steadily moving vertical infinite plate in presence of constant heat flux and constant suction at the plate and 
induced magnetic field is also taken into account. Recently, Bég et al. (2009) obtained local non-similarity 
numerical solutions for the velocity, temperature and induced magnetic field distributions in forced convection 
hydromagnetic boundary layers, over an extensive range of magnetic Prandtl numbers and Hartmann numbers. 
Alom et al. (2008) investigated the steady MHD heat and mass transfer by mixed convection flow from a 
moving vertical porous plate with induced magnetic, thermal diffusion, constant heat and mass fluxes and the 
non-linear coupled equations are solved by shooting iteration technique.  

England and Emery (1969) have studied the radiation effects of an optically thin gray gas bounded by a 
stationary plate. Raptis and Massalas (1998) investigated the effects of radiation on the oscillatory flow of a 
gray gas, absorbing-emitting in presence induced magnetic field and analytical solutions were obtained with 
help of perturbation technique. They found out that the mean velocity decreases with the Hartmann number, 
while the mean temperature decreases as the radiation increases. The hydrodynamic free convective flow of an 
optically thin gray gas in the presence of radiation, when the induced magnetic field is taken into account was 
studied by Raptis et al. (2003) using perturbation technique. They concluded that the velocity and induced 
magnetic field increase as the radiation increases. Hossain et al. (1999) determined the effect of radiation on the 
natural convection flow of an optically dense incompressible fluid along a uniformly heated vertical plate with a 
uniform suction. The governing non-similar boundary-layer equations are analyzed using (i) a series solution; 
(ii) an asymptotic solution; and (iii) a full numerical solution. Magnetohydrodynamic mixed free–forced heat 
and mass convective steady incompressible laminar boundary layer flow of a gray optically thick electrically 
conducting viscous fluid past a semi-infinite vertical plate for high temperature and concentration differences 
have studied by Emad and Gamal (2005). Orhan and Kaya (2008) investigated the mixed convection heat 
transfer about a permeable vertical plate in the presence of magneto and thermal radiation effects using the 
Keller box scheme, an efficient and accurate finite-difference scheme. They concluded that, an increase in the 
radiation parameter decreases the local skin friction parameter and increases the local heat transfer parameter. 
Ghosh et al. (2009) considered an exact solution for the hydromagnetic natural convection boundary layer flow 
past an infinite vertical flat plate under the influence of a transverse magnetic field with magnetic induction 
effects and the transformed ordinary differential equations are solved exactly. 

As the importance of radiation in the fields of aerodynamics as well as space science technology, the present 
study is motivated towards this direction. The main objective of the present investigation will, therefore, be to 
study the effects of radiation and magnetic Prandtl number on the steady mixed convective heat and mass 
transfer flow of an optically thin gray gas over an infinite vertical porous plate with constant suction in presence 
of transverse magnetic field, by means of analytical solutions. These analytical approximate solutions under 
perturbation technique give a wider applicability in understanding the basic physics and chemistry of the 
problem, which are particularly important in industrial and technological fields. The present analysis is valid for 
the case of a permeable vertical wall. 
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2. Mathematical Model 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Physical configuration and coordinate system 

The two-dimensional steady magnetohydrodynamic mixed convective heat and mass transfer flow of a 
Newtonian, electrically-conducting and viscous incompressible fluid over a porous vertical infinite plate with 
induced magnetic field and conduction-radiation has been considered in Figure 1. Exact solutions of equations 
are obtained by perturbation technique. The following assumptions are implicit in our analysis: 

 All the fluid properties except the density in the buoyancy force term are constant; 
 The Eckert number, ܿܧ, is small, as appropriate for viscous incompressible regimes; 
 The plate is subjected to a constant suction velocity; 
 The plate is non-conducting and the applied magnetic field is of uniform strength ሺܪ଴ሻ  and applied 

transversely to the direction of the main stream taking into account the induced magnetic field; 
 The magnetic Reynolds number of the flow is not taken to be small enough so that the induced magnetic 

field is not negligible; 
 The concentration of the diffusing species in the binary mixture is assumed to be very small in comparison 

with the other chemical species, which are present, and hence the Soret and Dufour effects are negligible; 
 The equation of conservation of electric charge is ׏. ܬ ൌ 0, where ܬ ൌ ൫ܬ௫ , , ௬ܬ   . ௭൯ܬ
 The direction of propagation is considered only along the y-axis and does not have any variation along the 

y-axis and so 
డ௃೤

డ௬
ൌ 0 , which gives ܬ௬ ൌ ݐ݊ܽݐݏ݊݋ܿ . Since the plate is electrically non-conducting, this 

constant is zero and hence ܬ௬ ൌ 0 everywhere in the flow, following Sutton and Sherman (1965). 

 The wall is maintained at constant temperature ܶ௪  and concentration ܥ௪  higher than the ambient 
temperature ܶஶ and concentration ܥஶ  respectively. 

 The fluid is non-magnetic, neglecting the thermoelectric effect as well as viscous and electrical dissipation 
together with the short circuit condition. 

Let ࢗሬሬԦ ൌ ሺ࢛ഥሺ࢟ሻ, ,ഥ࢜ ૙ሻ be the fluid velocity and ࡴሬሬሬԦ ൌ ሺࡴഥ ,ሻ࢟ሺ࢞ ഥࡴ ,࢟ ૙ሻ be the magnetic induction vector at a point 
ሺ࢞ഥ, ,ഥ࢟  ഥ-axis is normal to the plate࢟ ,ഥ-axis is taken along the plate in the upward direction࢞ തሻ in the fluid. Theࢠ
into the fluid region. Since the plate is infinite in length in ࢞ഥ-direction, therefore all the physical quantities 
except possibly the pressure are assumed to be independent of ࢞ഥ. 

For a steady-state incompressible magnetohydrodynamic mixed convection flow and mass transfer with 
radiation, given by Sherman and Sutton (1965), and Maxwell's equations, the fundamental equations are: 

ሬሬԦࢗ ݒ݅݀ ൌ 0 ,  ሺ1ሻ                                                                                                                                  ,ݏݏܽܯ ݂݋ ݊݋݅ݐܽݒݎ݁ݏ݊݋ܥ

ሬሬሬԦࡴ ݒ݅݀ ൌ 0,  ሺ2ሻ                                                                                                                         ,݉ݏ݅ݐ݁݊݃ܽ݉ ݂݋ ݓ݈ܽ ݏ’ݏݏݑܽܩ

 ௫ଓ̂ܪ
 ҧݔ

ܶஶ ݑ 

ݒ ൌ െݒ଴ 

 ஶ ܶ௪ܥ ௬ଔ̂ܪ
 ݒ

ܶ 
 ௪ܥ

଴ܪ ݃ ଔ ̂

 ܥ

 ത 0ݕ

 ௥ݍ

ܷ଴ 
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.ሬሬԦࢗሺߩ સሻࢗሬሬԦ ൌ െસ݌ ൅ ሬሬԦࢗસଶߤ ൅ ሬሬሬԦ൯ࡴԦܺࡶ௘൫ߤ ൅ ,ሬሬԦࢍߩ  ሺ3ሻ                                                         ,݉ݑݐ݊݁݉݋ܯ ݂݋ ݊݋݅ݐܽݒݎ݁ݏ݊݋ܥ

ሺࢗሬሬԦ. સሻܶ ൌ
1

௉ܥߩ
൬ߢ સଶܶ െ

௥ݍ߲

ݕ߲
൰ ,  ሺ4ሻ                                                                                        , ݕ݃ݎ݁݊ܧ ݂݋ ݊݋݅ݐܽݒݎ݁ݏ݊݋ܥ

સܺ൫ࢗሬሬԦܺࡴሬሬሬԦ൯ ൅ ሬሬሬԦࡴસଶ ߟ ൌ 0 ,  ሺ5ሻ                                                                          ,݊݋݅ݐܿݑ݀݊ܫ ܿ݅ݐ݁݊݃ܽܯ ݂݋ ݊݋݅ݐܽݒݎ݁ݏ݊݋ܥ

ሺࢗሬሬԦ. સሻܥ ൌ , ܥસଶܦ  ሺ6ሻ                                                                                                                  ,ݏ݁݅ܿ݁݌ݏ ݂݋ ݊݋݅ݐܽݒݎ݁ݏ݊݋ܥ

ሬሬሬԦࡴ ܺ׏ ൌ  Ԧ                                                                                                                                                                                    ሺ7ሻࡶ

All the physical quantities are defined in the Nomenclature. 

With the foregoing assumptions and under the usual boundary layer and Boussinesq approximations, Equations 
(1) to (6) reduce to: 

ݒ߲
ݕ߲

ൌ 0 which is satisfied with ݒ ൌ െݒ଴ ൌ a constant.                                                                                                ሺ8ሻ 

௬ܪ߲

ݕ߲
ൌ 0 which holds for ܪ௬ ൌ ଴ܪ ൌ a constant ൌ strength from applied magnetic field                              ሺ9ሻ 

ݒߩ
ݑ߲
ݕ߲

ൌ െ
݌߲
ݔ∂

െ ݃ߩ ൅ ߤ
߲ଶݑ

ଶݕ߲ ൅ ଴ܪ௘ߤ  
௫ܪ߲

ݕ߲
                                                                                                                    ሺ10ሻ 

ݒ
߲ܶ
ݕ߲

ൌ
ߢ

௉ܥߩ

߲ଶܶ

ଶݕ߲ െ
1

௉ܥߩ

௥ݍ߲

ݕ߲
                                                                                                                                               ሺ11ሻ 

ݒ
௫ܪ߲

ݕ߲
ൌ

1
௘ߤߪ

߲ଶܪ௫

ଶݕ߲ ൅ ଴ܪ
ݑ߲
ݕ߲

                                                                                                                                              ሺ12ሻ 

ݒ
ܥ߲
ݕ߲

ൌ ܦ
߲ଶܥ

ଶݕ߲                                                                                                                                                                        ሺ13ሻ 

Since there is no large velocity gradient here, the viscous term in Equation (10) vanishes for small  and hence 
for the outer flow, beside there is no induced magnetic field along x-direction gradient, so we have 

0 ൌ െ
݌߲
ݔ߲

െ  ஶ݃                                                                                                                                                                    ሺ14ሻߩ

By eliminating the pressure term from Equations (10) and (14), we obtain 

ݒߩ
ݑ߲
ݕ߲

ൌ ሺߩஶ െ ሻ݃ߩ ൅ ߤ
߲ଶݑ

ଶݕ߲ ൅ ଴ܪ௘ߤ  
௫ܪ߲

ݕ߲
                                                                                                                    ሺ15ሻ 

The Boussinesq approximation gives 

ஶߩ െ ߩ ൌ ൫ܶߚஶߩ െ ܶஶ൯ ൅ ܥ൫ߚஶߩ െ  ஶ൯                                                                                                                     ሺ16ሻܥ

On using (16) in the equation (15) and noting that ߩஶ is approximately equal to 1, the momentum equation 
reduces to 

െݒ଴
ݑ߲
ݕ߲

ൌ ൫ܶߚ݃ െ ܶஶ൯ ൅ ܥ൫ߚ݃ െ ஶ൯ܥ ൅ ߥ
߲ଶݑ

ଶݕ߲ ൅
଴ܪ௘ߤ

ߩ 
 
ܾ݀௫

ݕ݀
                                                                                 ሺ17ሻ 

The boundary conditions are: 

ݕ ൌ ݑ  :0 ൌ ݒ   , 0 ൌ െݒ଴ ,    ܶ ൌ ܶ௪ ,   ܪ௫ ൌ ܥ   , 0 ൌ  ௪ܥ

ݕ ՜ ݑ  :∞ ՜ ଴ܷ ,    ܶ ՜  ܶஶ ,   ܪ௫ ՜ ܥ   , 0 ՜  ஶ                                                                                                       ሺ18ሻܥ

The non-dimensional quantities are: 
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ݕ ൌ ௩బ௬

ఔ
ݑ   ,  ൌ ௨

௎బ
ߠ   ,  ൌ  ்ି ்ಮ

்ೢି ்ಮ
 ,   ߶ ൌ  ஼ି ஼ಮ

஼ೢି ஼ಮ
 ,   ܵܿ ൌ ఔ

஽
ݎܲ   ,  ൌ ఘఔ஼ು

఑
 ,  

ݎܩ ൌ
ሺ ܶ௪ߚ݃ߥ െ  ܶஶሻ

ܷ଴ݒ଴
ଶ ݉ܩ   ,  ൌ

௪ܥ ሺߚ݃ߥ െ ஶሻܥ 
ܷ଴ݒ଴

ଶ ௠ݎܲ   ,  ൌ       , ௘ߤߥߪ

ܯ ൌ ඨ
௘ߤ

ߩ
଴ܪ

଴ݒ
ܤ   ,  ൌ ඨ

௘ߤ

ߩ
௫ܪ

ܷ଴
 ,   ܴ ൌ

ஶܶ ߪ ߥ ܽ 64
ଷ

଴ݒߩ
ଶܥ௉

                                                                                                        ሺ19ሻ 

For the case of an optically thin gray gas, the local radiant absorption is expressed as (2003): 

௥ݍ߲

ݕ߲
ൌ െ4ܽߪሺܶஶ

ସ
െ ܶ

ସ
ሻ                                                                                                                                                       ሺ20ሻ 

where ԢܽԢ  is the mean absorption coefficient and ߪ is the Stefan-Boltzmann constant. It is assumed that the 

temperature differences within the flow are sufficiently small such that ܶ
ସ
 may be expressed as linear function 

of the temperature  ܶ. This is accomplished by expanding ܶ
ସ
 in Taylor series about  ܶஶ and neglecting higher-

order terms (2003, 2000), thus 

ܶ
ସ

؆ 4ܶஶ
ଷ

ܶ െ 3ܶஶ
ସ

                                                                                                                                                                ሺ21ሻ 

Using the transformations (19) and with help of (20) and (21), the non-dimensional forms of (11), (12), (13) and 
(17) are 

݀ଶݑ
ଶݕ݀ ൅

ݑ݀
ݕ݀

൅ ܯ
ܤ݀
ݕ݀

൅ ߠݎܩ ൅ ߶݉ܩ ൌ 0                                                                                                                            ሺ22ሻ 

݀ଶߠ
ଶݕ݀ ൅ ݎܲ

ߠ݀
ݕ݀

൅
ܴݎܲ

4
ߠ ൌ 0                                                                                                                                                  ሺ23ሻ 

݀ଶܤ
ଶݕ݀ ൅ ௠ݎܲܯ

ݑ݀
ݕ݀

൅ ௠ݎܲ
ܤ݀
ݕ݀

ൌ 0                                                                                                                                         ሺ24ሻ 

݀ଶ߶
ଶݕ݀ ൅ ܵܿ

݀߶
ݕ݀

ൌ 0                                                                                                                                                                  ሺ25ሻ 

The corresponding boundary conditions are: 

ݕ ൌ ݑ  :0 ൌ ߠ   , 0 ൌ ܤ   , 1 ൌ 0 ,   ߶ ൌ 1 

ݕ ՜ ݑ  :∞ ՜ ߠ   , 1 ՜ ܤ   , 0 ՜ 0 ,   ߶ ՜ 0                                                                                                                     ሺ26ሻ 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2: Flowcharts of the proposed work 

Governing equations in vector Conversion in non-dimensional 

Eliminate 
డ௣

డ௫
 form Eq. (10) Substitute with (16) in (15) 

Substitute with (20) in (21) in Non-dimensionalize (11)-(13) & 

Solve (22) & (24) subject to Substitute with (28) in (22) & 

Equate harmonic and non-harmonic 

Substitute with (27), in (29)- Solve (29)-(32) subject to 
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3. Method of Solution 

Perturbation theory leads to an expression for the desired solution in terms of a power series in some "small" 
parameter that quantifies the deviation from the exactly solvable problem. The leading term in this power series 
is the solution of the exactly solvable problem, while further terms describe the deviation in the solution, due to 
the deviation from the initial problem. Perturbation theory is applicable if the problem at hand can be formulated 
by adding a "small" term (Eckert number in this work) to the mathematical description of the exactly solvable 
problem. 

The solutions of the equations (23) and (25) subject to the boundary condition (26) are 

ߠ ൌ ݁ିక௬ ,   ߶ ൌ ݁ିௌ௖ ௬                                                                                                                                                         ሺ27ሻ 

where ߦ ൌ
ݎܲൣ ൅ ଶݎܲ√ ൅ ൧ݎܴܲ

2
 . 

Now, in order to solve the equations (22) and (24) under the boundary condition (26), we note that ܿܧ ا 1 
(Eckert number) for all the incompressible fluids and it is assumed the solutions of the equations to be of the 
form 

Ըሺݕሻ ൌ Ը଴ሺݕሻ ൅ ሻݕԸଵሺܿܧ ൅ ܱሺܿܧଶሻ,                                                                                                                             ሺ28ሻ 

In which Ը stands for ݑ or ܤ, and Ը଴ is the mean part and Ըଵ is the perturbed part. Substituting (28) into the 
equations (22) and (24) and equating the coefficients of the same degree terms and neglecting terms of 
൅ܱሺܿܧଶሻ, the following ordinary differential equations are obtained, in which ሺሻᇱ designates ݀/݀ݕ: 

଴ݑ
ᇱᇱ ൅ ଴ݑ

ᇱ ൌ െߠݎܩ െ ߶݉ܩ െ ଴ܤܯ
ᇱ                                                                                                                                       ሺ29ሻ 

ଵݑ
ᇱᇱ ൅ ଵݑ

ᇱ ൌ െܤܯଵ
ᇱ                                                                                                                                                                   ሺ30ሻ  

଴ܤ
ᇱᇱ ൅ ଴ܤ௠ݎܲ

ᇱ ൌ െݎܲܯ௠ ݑ଴
ᇱ                                                                                                                                                   ሺ31ሻ 

ଵܤ
ᇱᇱ ൅ ଵܤ௠ݎܲ

ᇱ ൌ െݎܲܯ௠ ݑଵ
ᇱ                                                                                                                                                   ሺ32ሻ 

The boundary conditions (26) reduce to 

ݕ ൌ ଴ݑ  :0 ൌ 0 , ଵݑ  ൌ ଴ܤ   , 0 ൌ ଵܤ   , 0 ൌ 0 

ݕ ՜ ଴ݑ  :∞ ՜ ଵݑ   , 1 ՜ ଴ܤ     , 0 ՜ ଵܤ   , 0 ՜ 0                                                                                                            ሺ33ሻ 

The solutions of the velocity and induced magnetic field subject to the boundary conditions (33) are: 

ሻݕሺݑ ൌ 1 ൅ ሻݕߦଵexp ሺെܣ ൅ ሻݕଶexp ሺെܵܿܣ ൅  ሻ                                                                                     ሺ34ሻݕߣଷexp ሺെܣ

ሻݕሺܤ ൌ ସܣ expሺെݕߦሻ ൅ ହܣ expሺെܵܿݕሻ ൅ ଺ܣ expሺെݕߣሻ ൅ ଻ܣ expሺെܲݎ௠ݕሻ                                                          ሺ35ሻ 

where 

ߣ ൌ
ൣ1 ൅ ௠ݎܲ ൅ ඥሺ1 െ ௠ሻଶݎܲ ൅ ௠൧ݎଶܲܯ4

2
ଵܣ   ,  ൌ

ߦሺݎܩ െ ௠ሻݎܲ
െߦଷ ൅ ሺ1 ൅ ଶߦ௠ሻݎܲ ൅ ଶܯሺߦ െ 1ሻܲݎ௠

 , 

ଶܣ ൌ
ߟሺ݉ܩ െ ௠ሻݎܲ

െܵܿଷ ൅ ሺ1 ൅ ௠ሻܵܿଶݎܲ ൅ ܵܿሺܯଶ െ 1ሻܲݎ௠
ଷܣ   ,  ൌ െሺ1 ൅ ଵܣ ൅ ସܣ   ,ଶሻܣ ൌ

௠ݎଵܲܣܯ

ߦ െ ௠ݎܲ
 , 

ହܣ  ൌ
௠ݎଶܲܣܯ

ܵܿ െ ௠ݎܲ
 , ଺ܣ ൌ

௠ݎଷܲܣܯ

ߣ െ ௠ݎܲ
଻ܣ   ,  ൌ െሺܣସ ൅ ହܣ ൅  .଺ሻܣ

4. Skin-Friction 

The boundary layer produces a drag on the plate due to the viscous stresses which are developed at the wall. The 
viscous stress at the surface of the plate is given by 

߬ ൌ ൬
ݑ߲
ݕ߲

൰
௬ୀ଴

ൌ െߦAଵ െ ܵܿAଶ െ  ଷ                                                                                                                              ሺ36ሻܣߣ

5. Results and discussion 

To assess the effects of the dimensionless thermophysical parameters on the regime, we have carried out the 
calculations for the velocity field, induced magnetic field and electric current density at the plate. The results are 
presented graphically in figures 3 to 10. All data is provided in each figure. 
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Figure 3 illustrate the velocity response for magnetic field ሺܯሻ and Prandtl number ሺܲݎሻ due to cooling of the 
plate ሺݎܩ ൐ 0ሻ i.e. free convection currents convey heat away from the plate in to the boundary layer. With an 
increase in M from the non-conducting i.e. purely hydrodynamic case ሺܯ ൌ  0ሻ through 0.50 to 0.75, there is a 
strong deceleration in the flow is achieved. The presence of a magnetic field in an electrically-conducting fluid 
introduces a force called Lorentz force which acts against the flow if the magnetic field is applied in the normal 
direction as considered in the present problem. This type of resistive force tends to slow down the flow field. 
Since the magnetic field has a stabilizing effect, the maximum velocity overshoot is observed for the conducting 
air, while minimum overshoot takes place for the water. Moreover, there is clear decrease in velocity values at 
the wall accompanying a rise in ܲݎ from 0.71 (conducting air) to 7.0 (water) i.e. the flow is decelerated. Higher 
Pr fluids will therefore posses higher viscosities (and lower thermal conductivities) implying that such fluids 
will flow slower than lower Pr fluids. As a result the velocity will be decreased substantially with increasing 
Prandtl number. 

               

        Fig. 3: Velocity distribution for M and Pr                              Fig. 4: Velocity distribution for R and ܲݎ௠ 

Fig. 4 shows the influence of the radiation parameter ሺܴሻ and magnetic Prandtl number ሺܲݎ௠ሻ on the velocity 
field ሺݑሻ in presence of conducting air ሺܲݎ ൌ  0.71ሻ and weak magnetohydrodynamic flow ሺܯ ൌ 0.25ሻ. The 
velocity remains positive for all values of R and ܲݎ௠ i.e. there is no flow reversal within the boundary layer. 
With an increase in ܴ  from 0.0 (non-radiating) through 0.3 to 0.7 (thermal conduction is dominant over 
radiation), there is a clear decrease in velocity i.e. the flow is decelerated. This may be attributed to the fact that 
the increase in ܴ implies less interaction of radiation with the momentum boundary layer. Moreover, a rise in 
 ௠ value from 0.1 through 0.5 to 0.6 (in all these cases magnetic diffusion rate exceeds the viscous diffusionݎܲ
rate) causes a noticeable decreasing in the flow velocity, in particular at short distance from the wall. 

The effects of Hartmann number ሺܯሻ and Prandtl number ሺܲݎሻ on the induced magnetic field,  ܤ  has been 
presented in Figure 5 in presence of weak magnetohydrodynamic flow (M = 0.25) and Oxygen (ܵܿ ൌ  0.60, 
diffusing in air, ܲݎ ൌ  0.71). For all combinations of ܯ and ܲݎ, values of ܪ  are remains negative i.e. induced 
magnetic flux reversal arises for all distances into the boundary layer, transverse to the plate. In all the cases, ܪ 
values peak a short distance from the plate; profiles thereafter decay to the zero value in the free stream. For Pr 
= 0.71, the H values become increasingly negative i.e. greater flux reversal arises in the boundary layer 
when ܯ ൌ  0.75; but for ܲݎ ൌ 7.0, the induced magnetic is found to less negative when  ܯ ൌ  0.25. Therefore, 
when ܲݎ increases from 0.71 to 7.0, the induced magnetic field is found to decrease absolutely. Moreover, a rise 
in ܯ from 0.25 through 0.50 to 0.75 serves to elevated the induced magnetic field magnitudes throughout the 
regime for both cases of ܲݎ ൌ  0.71 and ܲݎ ൌ  7.0. 
 

The effects of radiation parameter ሺܴሻ and magnetic Prandtl number ሺܲݎ௠ሻ on the induced magnetic field ሺܤሻ 
are presented in the respective Figures 6 and 7. In this figure magnetic Prandtl number, ܲݎ௠ is set as less than 
unity, which implies that the magnetic diffusion rate exceeds the viscous diffusion rate. As such ܲ݉ increases, 
momentum diffusivity will be increased. Therefore, when ܲݎ௠ increases from 0.1 to 0.4, the induced magnetic 
field is found to increase absolutely in the boundary layer  0 ൑ ݕ ൏ 6 , but this trend is opposite for the 
region 6 ൏ ݕ ൑ 10. Greater flux reversal arises in the boundary layer region  ݕ א ሾ0, 6ሾ and for ܲݎ௠ ൌ  0.4  
(magnetic diffusion rate exceeds the viscous diffusion rate); but this trend is reversed for the region  ݕ ,ሿ6א 10ሿ. 
However, a rise in ܴ  from 0.0 through 0.3, 0.9 to 1.5 depresses the induced magnetic field magnitudes 
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           Fig. 9: Velocity field for Sc                                                      Fig. 10: Skin friction for M and ܲݎ௠ 

The method is validated by directly comparing its results with those of Raptis et al. (2003) with ܯ ൌ
0.25, ݉ܩ ൌ 0.0, ݎܩ ൌ 5 as shown in Table 1 and 2, where ܲ݉ ൌ 0.1 ൏ 1which implies that magnetic diffusion 
rate is dominant over the viscous diffusion rate. From Tables 1 and 2, it is seen that both the results for flow 
velocity and induced magnetic field are in excellent agreement. Therefore, this leads to confidence in the 
numerical results. In Table 1, it is observed that the flow velocity is decelerated when conduction-radiation 
increases from 0.1 through 0.8 to 1.0. In Table 2, a rise in ܴ from 0.1 through 0.8 to 1.0 serves to depress the 
induced magnetic field magnitudes throughout the regime. These results are similar to the results in Figs. 3 and 
5. 
 

Table 1: Comparison of values of the flow velocity ሺݑሻ with those obtained by Raptis et al. (2003) for ܲ݉ ൌ
0.1 ൏ ܯ ൌ 0.25, ݉ܩ ൌ 0.0 and ݎܩ ൌ 5: 

 Raptis et al. (2003) Present work 

y R = 0.1 R = 0.8 R = 1.0 R = 0.1 R = 0.8 R = 1.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 

2.0 3.39344 2.83302 2.77543 3.35839 2.70542 2.68540 

4.0 1.88766 1.57742 1.53862 1.85232 1.51786 1.46272 

6.0 1.24757 1.13381 1.11986 1.24063 1.12212 1.10496 

8.0 1.06255 1.02759 1.02367 1.06134 1.02555 1.02107 

10.0 1.01511 1.00536 1.00439 1.01492 1.00503 1.00396 
 

Table 2: Comparison of values of the induced magnetic field ሺܤሻ with those obtained by Raptis et al. (2003) 
for ܲ݉ ൌ 0.1 ൏ ܯ ൌ 0.25, ݉ܩ ൌ 0.0 and ݎܩ ൌ 5: 

 Raptis et al. (2003) Present work 

y R = 0.1 R = 0.8 R = 1.0 R = 0.1 R = 0.8 R = 1.0 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 

2.0 -0.09437 -0.07526 -0.07392 -0.08750 -0.06367 -0.05916 

4.0 -0.14786 -0.11214 -0.10870 -0.13880 -0.09687 -0.08914 

6.0 -0.14358 -0.10543 -0.10150 -.013538 -0.09161 -0.08389 

8.0 -0.12354 -0.08931 -0.08594 -0.11669 -0.07775 -0.07101 

10.0 -0.10263 -0.7472 -0.07070 -0.09699 -0.06421 -0.05859 
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6. Conclusion: 

This study presents a theoretical treatment of steady magnetohydrodynamic boundary layer flow and combined 
heat and mass transfer of an incompressible, electrically-conducting and radiating fluid over an infinite vertical 
permeable plate, taking into account the magnetic Prandtl number. The observations are: 

 An increase in radiation parameter/Hartmann number leads to decelerate the flow velocity, while 
increasing Hartmann number elevated the Induced magnetic field.  

 Increasing conduction-radiation acts to depress flow velocity and induced magnetic field.  

 It was also observed that increasing magnetic Prandtl number effects elevated the induced magnetic field 
near the plate, while this trend is reversed away from the plate.  

 Velocity is reduced considerably with a rise in Schmidt number or Prandtl number.  

 Temperature is reduced by the increase of radiation. 

 Skin friction is strongly elevated by the increase of Hartmann number or magnetic Prandtl number.  

 Using magnetic field we can control the flow characteristics and heat transfer. 

 Radiation has significant effects on the velocity as well as temperature distributions. 

The present study has been confined to Newtonian viscous model. Future investigations will consider 
viscoelastic and power-law rheological fluid models and will be communicated in the near future.  
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