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Abstract:  
The effect of external Magnetohydrodynamic (MHD) field on the steady two-dimensional nonlinear 
flow through Convergent-Divergent Channels of a viscous incompressible electrically conducting 
fluid is investigated. We compute the critical behaviour of the solution govern by the equation. Our 
approach uses the power series in order to observe the instability of the problem. The series is then 
summed by using various generalizations of the Pade’-Hermite approximants. The critical values of 
various parameters and type of the principal singularity are found for different choice of MHD effect.  

Keywords: Magnetohydrodynamic, Critical behaviour, Convergent-Divergent channels, Bifurcation, 
                   Approximation method.  
 

e  Conductivity of the fluid  Kinematics viscosity coefficient 

c  Critical values of Channel angular width   Magnitude of channel  angle 

Rec Critical values of Reynolds number  Ha Magnetic parameter  

c  Critical exponent  
e  Magnetic permeability 

  Density of the fluid Q Rate of volumetric flow  
B0 Electromagnetic induction u Radial velocity component 
H0 Intensity of Magnetic field G Stream function
v  Tangential velocity component HODA High-order Differential Approximant 

1. Introduction 
 

The MHD flow of a viscous electrically conducting fluid through Convergent-Divergent Channels has 
remarkable assistance in developing the mathematical model of several industrial and biological systems. 
Various applications of this type of mathematical model are in understanding the flow of rivers and canals, and 
the blood flow in the human body. Meanwhile, practically the magnetic field has a significant effect in the fluid 
flow through Convergent-Divergent Channels. Jeffery and Hamel (1915-16) first studied the two-dimensional 
steady motion of a viscous fluid through Convergent-Divergent Channels which is called classical Jeffery-
Hamel flow in fluid dynamics. Fraenkel (1962) then investigated the laminar flow in symmetrical Channels with 
slightly curved walls. In his analysis the velocity field of the flow was obtained as a power series in small 
curvature parameter where the leading term is the Jeffery-Hamel solution. Sobey and Drazin (1986) studied 
some instabilities and bifurcations of two-dimensional Jeffery-Hamel flows using analytical, numerical and 
experimental methods. Banks et al. (1988) extended the analysis of perturbation theory of pitchfork bifurcation 
of the Jeffery-Hamel flows and used as a basis to investigate the spatial development of arbitrary small steady 
two-dimensional perturbations of Jeffery-Hamel flow both linearly and nonlinearly for nearly plane walls. They 
found that there is a strong communication between the disturbances up and downstream when the angle 
between the planes exceeds a critical value, which depends on the value of the Reynolds number. Moreover, the 
steady flow of a viscous incompressible fluid in a slightly asymmetrical channel was studied by Makinde 
(1997). He expanded the solution into a Taylor series with respect to the Reynolds number and performed a 
bifurcation study using Drazin-Tourigny method (Khan et al., 2003). Makinde (2006) investigated the 
Magnetohydrodynamic (MHD) flows in Convergent-Divergent Channels which was an extension of the 
classical Jeffery-Hamel flows to MHD. He interpreted that the effect of external magnetic field works as a 
parameter in solution of the MHD flows in Convergent-Divergent Channels. Therefore, a non-dimensional 
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magnetic parameter Ha was involved with the flow Reynolds number and the Channel angular width. A 

Perturbation series of twenty-four terms in powers of parameters Re, , and Ha was obtained by Makinde 

(2006) and showed how the flows change and bifurcate as the flow parameters vary by using algebraic 
approximate method.   
 
Kayvan et al. (2007) analysed the applicability of magnetic fields for controlling hydrodynamic separation in 
Jeffrey-Hamel flows of viscoelastic fluids. Assuming a purely symmetrical radial flow, they obtained a third-
order nonlinear ODE as the single equation governing the MHD flow of this particular fluid in flow through 
converging/diverging channels by similarity analysis. With three physical boundary conditions available, they 
used Chebyshev collocation-point method to solve this ODE numerically. The effect of magnetic field was 
found to be more striking in that it is predicted to force fluid elements near the wall to exceed centerline velocity 
in converging channels and to suppress separation in diverging channels. Interestingly, the effect of the 
magnetic field in delaying flow separation is predicted to become more pronounced the higher the fluid’s 
elasticity. 
 
However, a numerical investigation of the effect of arbitrary magnetic Reynolds number on steady flow of an 
incompressible conducting viscous liquid in convergent-divergent channels under MHD was presented in O.D. 
Makinde (2008). He solved the non-linear 2D Navier-Stokes equations modeling the flow field using a 
perturbation technique applying the special type of Pade’-Hermite approximation method implemented 
numerically on MAPLE and a bifurcation study was also performed. The increasing values of magnetic 
Reynolds number cause a general decrease in the fluid velocity around the central region of the channel. The 
flow reversal control is also observed by increasing magnetic field intensity. The bifurcation study reveals the 
solution branches and turning points. 
 
Our work illustrates the comparison with Makinde(2006) about the effect of magnetic field on two-dimensional, 
steady, nonlinear flow of a viscous incompressible conducting fluid in Convergent and Divergent Channels. The 
critical relationship among the flow parameters have not been studied yet, according to the author’s best 
knowledge. The non-dimensional equation considering magnetic intensity is solved into a series solution in 
terms of similarity parameters with the help of perturbation theory and MAPLE. The series is then analyzed to 
show the convergence of critical values and the change in bifurcation graph for Re and   by the positive effect 

of Ha with the help of Approximation method (Khan, 2002, Khan et al., 2003 and Rahman, 2004). In our 
analysis, it is found that the results are more accurate and uniform in comparison with Makinde (2006). The 
critical relationship among the parameters, an extension of Makinde (2006), is also shown graphically. 
 

2. Review of Pade-Hermite approximants 
 

In 1893, Pade and Hermite introduced Pade-Hermite class. All the one variable approximants that were used or 
discussed throughout this paper belong to the Pade-Hermite class. In its most general form, this class is 
concerned with the simultaneous approximation of several independent series.  

Let d  and let the 1d  power series       xUxUxU d,...,, 10  are given.  

Assume that the  1d  tuple of polynomials      d
NNN PPP ,...,, 10  

where                        ,deg...degdeg 10 NdPPP d
NNN                                                                     (1)

   
is a Pade-Hermite form of these series if  

        N
d

i
i

i
N xOxUxP 

0

 as .0x            (2) 

Here      xUxUxU d,...,, 10  may be independent series or different form of a unique series. We need to find 

the polynomials  i
NP  that satisfy the Equations (1) and (2). These polynomials are completely determined by 

their coefficients. So, the total number of unknowns in Equation (2) is  

   11deg
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0B (Magnetic field) 

Expanding the left hand side of Equation (2) in powers of x and equating the first N equations of the system 
equal to zero, we get a system of linear homogeneous equations. To calculate the coefficients of the Pade-
Hermite polynomials it require some sort of normalization, such as  

     10 i
NP  for some di 0           (4) 

It is important to emphasize that the only input required for the calculation of the Pade-Hermite polynomials are 

the first N coefficients of the series dUU ,...,0 . The equation (2.3) simply ensures that the coefficient matrix 

associated with the system is square. One way to construct the Pade-Hermite polynomials is to solve the system 
of linear equations by any standard method such as Gaussian elimination or Gauss-Jordan elimination. 
 
Drazin -Tourigney Approximants (2003) is a particular kind of algebraic approximants and Khan (2002) 
introduced High-order differential approximant as a special type of differential approximants. High-order partial 
differential approximants discussed in Rahman (2004) is a multivariable differential approximants. An algebraic 
programming language Maple available on www.maplesoft.com was used to compute the series coefficients of 
non-dimensional governing equation of the problem. 
  
3. Mathematical Formulation 
 

The time-independent two-dimensional flow from a source or sink at the intersection between two rigid plane 
walls of a viscous incompressible conducting fluid in presence of an external homogeneous magnetic field (Fig. 
1) is considered.  The small electrical conductivity of the fluid and the produced very small electromagnetic 
force are considered. Let ),( r  be polar coordinate with 0r  as the sink or source and   be the semi-angle 

where the domain of the flow be   .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Navier-Stokes equations in terms of the vorticity )(  and stream-function )( can be written as Makinde 

(2006)                            

                          
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with the boundary conditions 

                  ,0,
2







 Q

     at                                                                    (6) 

where the volumetric flow rate 



urdQ .  A purely symmetrical radial flow is considered in Makinde 

(2006) for which the tangential velocity 0v   

2  

Fig. 1:  Convergent-Divergent Channels 
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and the stream-function is defined by 
2

)( QG
 .  

The non-dimensional governing equation and boundary conditions are obtained as: 

           0)4(Re2
2

2
2

2

2

4

4








 d

Gd
Ha

d

Gd

d

dG

d

Gd                                                                          (7) 

with              ,0,1 
d

dG
G    at  1                                       (8) 

where, 

  , 


 2

0B
Ha  is the magnetic parameter and Re

2

Q
  is the flow Reynolds number. 

Since Eq (7) is non-linear for , a series is considered in the form 

                                i
i

i

GG  





0

)(                                                                                                     (9) 

We then find that )(G has a singularity at c  of the form 

                                                    c

cCG  ~)(  

with the critical exponent c . 
 

The non-dimensional governing equation is then solved in a series solution by substituting the Eq. (9) into 
Eq.(7) and equating the coefficients of  powers of  . With the help of MAPLE, we have computed the first 18 
coefficients for the series of the stream function G in terms of α, Re, Ha. The first few coefficients of the series 
for G are 

                                 ...................................)Ha4()1()1(
40
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             (10)                              

Although the computational complexity increases rapidly, we managed to compute the first 75 terms for G  in 
terms of single parameter  for Ha =0,1,.........5  at Re = 20.  
 

The first 75 terms for G in terms of single parameter Re for Ha = 4 at α = 0.1  is also computed. These series 
are then analyzed by differential and algebraic approximate methods to determine the critical values and 
bifurcation graphs of the channel angular width and flow Reynolds number for different values of magnetic 
parameter. The critical relationships among the parameters in the series are also shown graphically using partial 
differential approximate method. 

4. Results and Discussion 
 

The series in powers of α, Re and Ha  in the following functional form proportional to the velocity of the flow 
along the centre line is considered for the investigation:     
                                  )Re,,;0( HaG                                                                                                       (11) 

Applying the differential approximation method into the single series of   and the series (11), the convergence 

of the critical value C  with critical exponent c  for a wide range of magnetic parameter has been computed 

more significantly.  
 

Table 1-6 display the convergence of C  for different values of )5,4,3,2,1,0(Ha  with 20Re  . The 

critical values are determined using both the single series of   and the series described in (11). It is seen that 

the values of C converges up to 26 decimal places at 10d  using  75N  terms of the single series of 

. The values of C  obtained by single series of   and the series (11) involving three parameters are observed 

equal at 4d  with 18N . It can be also noted that the critical value C  increases uniformly for the 

increasing Hartman number. Moreover, in Table 1-6 the values of c  confirm that C  is a branch point. 
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Furthermore, Table.1 shows an excellent agreement at 4443520828466960.267960831C  with the 

classical Jeffery-Hamel flows in absence of magnetic field. Finally, Table 7 interprets the comparison of our 

results with Makinde (2006) remarking that the variation of C   due to the increase of magnetic parameter 

Ha  is more accurate and uniform than Makinde (2006). The single series of Re is used to show the 

convergence of critical value Rec with critical exponent c  for 4Ha at 1.0 . Table 8 estimates the 

convergence of 
cRe  up to 24 decimal places at 10d  using 75N .  Also, in Table 8 the values of c  

confirm that Rec is a branch point. 
 

Table 1: Estimates of critical angles C  and corresponding exponent c at 20Re  and 0Ha  using High-

order differential approximants (2002). 
 

d N 
C (single series) C [ series (7)]) c  

2 7 .2749980919548527561596138 .2749980919548527561596138 .10878684389230764954 

3 12 .2602059979752087905452916 .2602059979752087905452916 1.6592008206154575273 
4 18 .2679736610354297291067892 .2679736610354297291067892 .4953933331461112855 

5 25 .2679607925653470037213470 .5000238205405836379
6 33 .2679608309216671706497074   .5000002225349214361 
7 42 .2679608310828499910588531   .4999999999938879389 
8 52 .2679608310828466960601169  .4999999999999999565 
9 63 .2679608310828466960444344  .5000000000000000072 
10 75 .2679608310828466960444352   .5000000000000000002 

 

Table 2:  Estimates of critical angles C  and corresponding exponent c at 20Re  and 1Ha  using 

High-order differential approximants (2002). 
 

d N 
C (single series) C [ series (7)] c  

2 7 .27665112580188032650165569 .276651125801880326501655691 7.429197021826671482 
3 12 .27176980615626427060569929 .271769806156264270605699299 -.261785713430648567 
4 18 .26925148848575837254505344 .269251488485758372545053443 .4561906332084395651 
5 25 .26916241929088580028156064  .5000247289730165476 
6 33 .26916245977114395877256265  .4999999906897554027 
7 42 .26916245976318174485150479  .4999999999573921934 
8 52 .26916245976315907745130293  .4999999999999998382 
9 63 .26916245976315907739346092  .5000000000000000050 
10 75 .26916245976315907739346096  .4999999999999999923 

 

Table 3:  Estimates of critical angles C  and corresponding exponent c at 20Re  and 2Ha  using 

High-order differential approximants (2002). 
 

d N 
C (single series) C [ series (7)] c  

2 7 .27823197900192240193407708 .27823197900192240193407708 .5919848362542434934 
3 12 .27379563943913053775199571 .27379563943913053775199571 .5448269070920006607 
4 18 .27037606595782002309656470 .27037606595782002309656470 .5033015308595404481 
5 25 .27038644263339964600928911  .5000555023997966286 
6 33 .27038655906469678677030278  .4999999902052514669 
7 42 .27038655905619460460995491  .4999999999975450022 
8 52 .27038655905619320425304318  .4999999999999999820 
9 63 .27038655905619320424824461  .4999999999999999990 

10 75 .27038655905619320424824455  .5000000000000000029 
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Table 4: Estimates of critical angles C  and corresponding exponent c at 20Re  and 3Ha using High-

order differential approximants (2002). 
 

d N 
C (single series) C [ series (7)] c  

2 7 .279762036762114265515350954 .279762036762114265515350954 .5322217290273408261 
3 12 .269213999914381062053064886 .269213999914381062053064886 .4914784750977411087 
4 18 .271630281415858951935860527 .271630281415858951935860527 .5011909765497291434 
5 25 .271633941351507479960053773  .4999952474512750814 
6 33 .271633934182549283009691130  .4999999973031274357 
7 42 .271633934180195495771995551  .5000000000038244847 
8 52 .271633934180197600883162104  .5000000000000000062 
9 63 .271633934180197600883506790  .4999999999999999971 

10 75 .271633934180197600883506774  .4999999999999999913 
 

Table 5: Estimates of critical angles C  and corresponding exponent c at 20Re  and 4Ha using 

High-order differential approximants (2002). 
 

d N 
C (single series) C [ series (7)] c  

2 7 .28125951132635432681080696 .2812595113263543268108069639  .533349118995105506 
3 12 .27226274077853037159610100 .2722627407785303715961010067  .498228540542405286 
4 18 .27290283574099710569184306 .2729028357409971056918430660  .500847691647703434 
5 25 .27290544292488388754260176   .499994428166863026 
6 33 .27290543430380172571596594   .500000001972260338 
7 42 .27290543430555951905919161  .5000000000001361310 
8 52 .27290543430555959319476103 .499999999999999997
9 63 .27290543430555959319333598  .5000000000000000115 

10 75 .27290543430555959319333598  .5000000000000000100 
 

Table 6: Estimates of critical angles C  and corresponding exponent c at 20Re  and  5Ha using 

High-order differential approximants (2002). 
 

d N 
C (single series) C [ series (7)] c  

2 7 .282740455470542194962772877 .28274045547054219496277 .5316268843464719954 
3 12 .273920667962368822833379792 .27392066796236882283337 .4997345430256748736 
4 18 .274199503848608338641744612 .27419950384860833864174 .5007915959995632061 
5 25 .274201956842852361389389378  .4999993169363610355 
6 33 .274201955830691574449370731  .5000000014203295731 
7 42 .274201955831973233791395193  .4999999999998953730 
8 52 .274201955831973177295547888  .5000000000000000020 
9 63 .274201955831973177293986707  .4999999999999999943 

10 75 .274201955831973177293986712  .4999999999999999865 
 
The positive change in Rec with the increasing intensity of Ha is shown in Table 9 more accurately and 
significantly in comparison with Makinde (2006). As the Jeffery-Hamel flow (absence of magnetic field) 

866719680611119186354.5810868Re c
 is obtained that is consistent with Fraenkel’s (1962) asymptotic 

result, 

461.5

~Rec
 as 0 , when 0Ha . However, the calculation by Khan (2002) shows that 


1119186384581086861.5

~Re c
 as 0 . 
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Table 7: Comparisons of critical angles C  and corresponding critical exponent c  at 20Re  using  

 High-order differential approximants (2002). The result is comparable with the result of Makinde (2006). 
 

HODA 

75

10




N

d

 

Ha  0 1 2 3 4 5 

C  .267960831
0828466960

444352 

.26916245
97631590
77393460

96 

.270386559
0561932042

4824455 

.271633934
1801976008
83506774 

.2729054343
05559593193

33598 

.274201955
8319731772
93986712 

c  .500000000
0000000002 

.49999999
99999999

92 

.500000000
0000000029 

.499999999
9999999913 

.5000000000
000000100 

.499999999
9999999865 

Makind
e 

(2006) 

 Ha  0 1 2 3 4 5 

C  0.267960 0.269162 0.272906 0.279878 0.290431 0.307406 

c  0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 

 

Table 8: Estimates of critical Reynolds numbers Rec and corresponding exponent c at 1.0 and 4Ha
using High-order differential approximants (2002). 
 

d N 
cRe  c  

2 7 56.25190226527086536216139279 .7209818858072179797 

3 12 54.45254815570607431922020134 .4841068361716114107 
4 18 54.58056714819942113836861321 .4999296570680748621 
5 25 54.58108858497677750852035270 .4999944281668630267 
6 33 54.58108686076034514319318997 .5000000019722603390 
7 42 54.58108686111190381183832271 .5000000000001361302 
8 52 54.58108686111191863895220716 .4999999999999999939 
9 63 54.58108686111191863866719641 .4999999999999999998 
10 75  54.58108686111191863866719680 .4999999999999999953 

 

Table 9: Comparisons of critical Reynolds number CRe  and corresponding exponent c    at 1.0  using  

High-order differential approximants (2002) and Makinde (2006). 
 

HODA 
D=4 
N=8 

Ha  0 1 2 3 4 5 

Rec 54.44407939 54.47805874 
 

54.51340970 54.54702585 54.58135150 54.61676356 

c  .4991155356 
 

.4991155356 .4991155356 .4997069458 .5001231984 .4985944495 

Makinde 
(2006) 

Ha  0 1 2 3 4 5 

Rec 54.4389 54.47179 54.58087 54.66510 55.22071 55.52727 

c  0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 

 

Fig. 2 illustrates the effect of varying values of magnetic parameter Ha )5,0( on the bifurcation graph of C  

at 20Re  . Here it is seen that the bifurcating point C  changes clearly from )0(26797366.0 Ha  to

)5(27419950.0 Ha . 

 
Fig. 3(a) and Fig. 3(b) show how variations of Ha  affect the flow. It can be noted that an increase in the values 

of Ha leads to a change in the bifurcation graph of critical Reynolds number at = 0. The bifurcating point Rec 
changes from )0(44407939.54 Ha to )5(61676356.54 Ha shown sharply in large scale in Fig. 3(b). 
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There it is clearly seen that the positive effect of magnetic intensity changes the behaviour of the non-
dimensional flow parameter as a result the solution behaviour. 
 

 
 
 

 
 

Fig. 3 (a): Approximate bifurcation diagram (curve I) of Rec in the (Re, (0)G ) Plane with 0Ha and 

5Ha  obtained by Drazin-Tourigny method (2003) for 4d . The other curve is spurious.    

Fig. 2: Approximate bifurcation diagram (curve I) of c in the ( , (0)G  ) Plane with 0Ha and 

5Ha  obtained by Drazin-Tourigny method  (2003) for 8d . The other curves are spurious.    
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Fig. 3(b): Approximate bifurcation diagram (curve I) of Rec in the (Re, (0)G ) Plane with 0Ha and 

5Ha  in large scale obtained by Drazin-Tourigny method (2003) for 4d .  

Fig. 4: Critical  -Re relationship (curve I) using High-order partial Differential approximants (2004) with 

.6d  The other curve is spurious. 
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The High-order Partial Differential Approximant (2004) is applied to the series (11) in order to determine the 

critical relationship among the parameters , Re, Ha. Fig. 4 displays the critical relation between the channel 

angular width  and Reynolds number Re. It is found that as   increases then Re decreases and conversely Re 
increases when  decreases. This implies that both channel angle and Reynolds number are inversely 
proportional to each other. From Fig. 5 it can be observed that the magnetic parameter increases the channel 

    Fig. 5: Critical Ha   relationship (curve I) using High-order partial Differential approximants (2004) 

    with .6d   

Fig. 6: Critical ReHa   relationship (curve I) using High-order partial Differential approximants (2004) 

with .6d  The other curve is spurious. 
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angular width   gradually that is an excellent agreement with the numerical values in Table 7. Fig. 6 
represents clearly that the Reynolds number Re increases slowly for increasing Ha The conjecture of the figure 
exactly supports the numerical solution in Table 9. 
 
5. Conclusion 
 

In this paper, we have used power series to study the critical behaviour of the time independent, two-
dimensional, laminar flow through Convergent-Divergent Channels in the presence of a magnetic field.  

 By exploiting various generalizations of the HermiteePad  approximations, we have obtained 
accurate numerical approximations of the critical parameters of the flow, which involves physically the 
instability of the problem.  

 Besides Makinde’s (2006) result, our finding is the critical relationship among the parameters.   

 Moreover, we provide a basis for guidance about new approximants idea for summing power series 
should be chosen for many problems in fluid mechanics and similar subjects. We elaborate this 
guidance here as reference.  

 The computing costs of finding the coefficients of a power series of this problem are higher than the 
costs of processing them by a summation method. So it behoves the user to exploit all the available 
information about the problem that gives rise to the series.  

By using High-order differential approximants we find more accurate result than those in Makinde (2006). 
Rapid convergence of summation, when it takes place, has given great confidence that the error is in fact small 
and that the method of summation chosen not only given accurate numerical results, but also gives the 
asymptotic form of the singularity beyond reasonable doubt. 
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