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Abstract:  
  Viscous dissipation and Joule heating effects on steady MHD combined heat and mass transfer 

flow through a porous medium along a semi-infinite vertical porous plate in a rotating system has 
been studied numerically. The boundary layer equations have been transformed into 
dimensionless coupled nonlinear ordinary differential equations by using appropriate 
transformations. The similarity solutions of the transformed dimensionless equations for the flow 
field and heat and mass transfer characteristics are obtained by shooting iteration technique. 
Numerical results are presented in the form of primary and secondary velocities, temperature and 
concentration distributions for different parameters entering into the analysis. Finally, the effects 
of the pertinent parameters on the Skin-friction coefficients, Nusselt number and Sherwood 
number are also examined. 
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1. Introduction 
 
In a rotating system, the Coriolis force is very significant as compared to viscous and inertia forces 
occurring in the basic fluid equations. In Stellar studies it is generally admitted that the Coriolis force 
due to Earth's rotation has a strong effect on the hydromagnetic flow in the Earth's liquid core. Consider-
ing this aspect of the rotational flows, model studies were carried out on MHD free convection and 
mass transfer flows in a rotating system by many investigators of whom the names Debnath(1975), 
Debnath et al.(1979), Raptis and Perdikis(1982) are worth mentioning.  

 
In the above-mentioned work, the Soret and Dufour effects were neglected on the basis that they are of a 
smaller order of magnitude than the effects described by Fourier’s and Fick’s laws. The thermal diffusion 
(Soret) effect, for instance, has been utilized for isotope separation and in mixture between gases with 

very light molecular weight  2 , eH H and of medium molecular weight  2 , airN , the diffusion-thermo 

(Dufour) effect was found to be of order of considerable magnitude such that it cannot be ignored (Eckert and 
Drake, 1972). In view of the importance of above-mentioned effects, Kafoussias and Williams (1995) studied 
Soret and Dufour effects on mixed free-forced convection and mass transfer boundary layer flow with 
temperature dependent viscosity. Anghel et al.(2000) investigated the Dufour and Soret effects on free-
convection boundary layer flow over a vertical surface embedded in a porous medium. Recently, Postelnicu 
(2004) studied numerically the influence of a magnetic field on heat and mass transfer by natural convection 
from vertical porous plate in porous media considering Soret and Dufour effects. Quite recently, Alam and 
Rahman (2006) investigated the Dufour and Soret effects on mixed convection flow past a vertical porous flat 
plate with variable suction.  
 
Hence, our objective is to investigate the steady MHD combined heat and mass transfer flow through a porous 
medium past an infinite vertical porous plate with viscous dissipation and Joule heating effects in a rotating 
system. The effect of Joule heating on MHD combined heat and mass transfer flow of an electrically conducting 
viscous incompressible fluid past an infinite plate was, however considered by Hossain (1990). The governing 
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equations of the problem contain the partial differential equations, which are transformed by similarity 
transformation into dimensionless ordinary coupled non-linear differential equations. The obtained equations are 
solved numerically by sixth order Runge-Kutta method along with the Nachtsheim-Swigert iteration technique. 
The obtained solutions are shown graphically as well as in tabular form. 
 
2. The Governing Equations 
 
 

Let us consider a steady MHD combined heat and mass transfer flow of an electrically conducting viscous fluid 
through a porous medium along semi-infinite vertical porous plate y = 0 in a rotating system. The flow is also 

assumed to be moving with a uniform velocity oU , which in the x -direction is taken along the plate in the 

upward direction and y-axis is normal to it. Initially the plate is at rest, after that the whole system is allowed to 
rotate with a constant angular velocity   about the y -axis. The temperature and the species concentration at 

the plate are constantly raised from wT  and wC  to T  and C  respectively, where T and C  are the 

temperature and species concentration of the uniform flow respectively.  
 
A uniform magnetic field B is taken to be acting along the y-axis which is assumed to be electrically non-
conducting. We assumed following (Pai, 1962) that the magnetic Reynolds number of the flow is taken to be 
small enough so that the induced magnetic field is negligible in comparison with applied one, so that 

)0,,0( 0BB  and the magnetic lines of force are fixed relative to the fluid. The equation of conservation of 

charge 0.  J  gives yJ constant, where the current density )( ,, zyx JJJJ . Since the plate is 

electrically non-conducting, this constant is zero and hence yJ 0 at the plate and also zero everywhere. The 

physical configuration considered here is shown in Figure. 1. It is assumed that the plate is semi-infinite in 
extent and hence all the physical quantities depend on y and x. Thus accordance with the above assumptions and 
Boussinesq’s approximation, the basic equations relevant to the problem is; 
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Figure 1: Physical configuration and coordinate system. 
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The boundary conditions for the problem are; 

0
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Following the work of Sattar (1993), a transformation is now made as, 

1 0 0 1,     u U u u U u    
 

Equations (1) – (5) and the boundary conditions (6), respectively, transform to; 
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where wvu ,,  are the velocity components in the zyx ,,  direction respectively,   is the kinematics viscosity, 

g is the acceleration due to gravity,   is the density,   is the coefficient of volumetric thermal expansion, *  

is the volumetric mass expansion. T , wT  and T  are the temperature of the fluid inside the thermal boundary 

layer, the plate temperature and the fluid temperature in the free stream, respectively, while , ,wC C C  are the 

corresponding concentrations. Also K   is the permeability of the porous medium,   is the thermal 

conductivity of the medium, mD  is the coefficient of mass diffusivity, pc  is the specific heat at constant 

pressure, mT  is the mean fluid temperature, Tk  is the thermal diffusion ratio, sc  is the concentration 

susceptibility and other symbols have their usual meaning. 
 
3. Mathematical Formulations 
 
In order to solve Equations (8)-(11) under the boundary conditions (12), we adopt the well-defined similarity 
analysis to attain similarity solutions. 
For this purpose, the following similarity transformations are now introduced; 
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Where wf  is the suction parameter or transpiration parameter and clearly in (21) w 0f   corresponds to 

suction and 0w f  corresponds to injection at the plate. 

From equations (8) - (12) and (13)-(21), we have the following dimensionless ordinary coupled non-linear 
differential equations 
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3.1 Skin-friction coefficients, Nusselt number and Sherwood number     
       
The quantities of chief physical interest are the skin friction coefficients, the Nusselt number and the Sherwood 
number. The wall skin frictions are denoted by  
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The numerical values of the skin-friction coefficients, the Nusselt number and the Sherwood number are sorted 
in Tables 1-5. 
 
4. Calculation Procedure And Numerical Technique 
 
4.1. Calculation procedure 
 
Alam et. al (2006) has used shooting method to solve their problem. The same solution technique has been used 
to solve our problem and the details solution procedures are given below. The system of non-linear ordinary 
differential equations (22)-(25) together with the boundary conditions (26) are similar and solved numerically 
using Nachtsheim-Swigert shooting iteration technique (guess the missing value) along with sixth order Runge-
Kutta initial value solver. 
 
In a shooting method, the missing (unspecified) initial condition at the initial point of the interval is assumed, 
and the differential equation is then integrated numerically as an initial problem to the terminal point. The 
accuracy of the assumed missing initial condition is then checked by comparing the calculated value of the 
dependent variable at the terminal point with its given value there. If a difference exists, another value of the 
missing initial condition must be assumed and the process is repeated. This process is continued until the 
agreement between the calculated and the given condition at the terminal point is within the specified degree of 
accuracy. For this type of iterative approach, one naturally inquires whether or not there is a symmetric way of 
finding each succeeding (assumed) value of the initial condition. 
 
The method of numerically integrating a two-point asymptotic boundary value problem of the boundary-layer 
type, the initial value method is similar to an initial value problem. Thus it is necessary to estimate as many 
boundary conditions at the surface as were given at infinity. The governing differential equations are then 
integrated with these assumed surface boundary conditions. If the required outer boundary condition is satisfied, 
a solution has been achieved. However, this is not generally the case. Hence, a method must be devised to 
estimate logically the new surface boundary conditions for the next trial integration. Asymptotic boundary value 
problems such as those governing the boundary-layer equations are further complicated by the fact that the outer 
boundary condition is specified at infinity. In the trial integration infinity is numerically approximated by some 
large value of the independent variable. There is no a priorigenera method of estimating these values. Selecting 
too small maximum value for the independent variable may not allow the solution to asymptotically converge to 
the required accuracy. 
 
Nachtsheim-Swigert developed an iteration method to overcome these difficulties. An extension of Nachtsheim-
Swigert iteration scheme to the system of equations (22)-(25) and the boundary conditions (26) is straight 
forward. In equation (26) there are four asymptotic boundary conditions and hence four unknown surface 

conditions (0)f  , )0(0g  , )0(   and (0) . 

 
4.2. Numerical technique in brief 
 

Within the context of the initial-value method and Nachtsheim-Swigert iteration technique the outer boundary 
conditions may be functionally represented as 
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represent asymptotic convergence criteria. 
 

Choosing        1 0 2 3 40 , 0 , 0 0f g g g g g       ,  and expanding in a first order Taylor’s series 

after using equation (27) yields; 
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Where subscript ‘C’ indicates the value of the function at max  determined from the trial integration. 
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Now solving the system of linear equations (31) using Cramer’s rule we obtain the missing (unspecified) values 

of ig  as  

i i ig g g     (33) 

 
Thus adopting the numerical technique aforementioned, the solution of the non-linear ordinary differential 
equations (22)-(25) with the boundary conditions (26) are obtained together with sixth order Runge-Kutta initial 
value solver and determine the velocities, temperature and concentration as a function of the coordinate  . 

 
4. Results and Discussion 
 

In this paper, the effects of viscous dissipation and joule heating on steady MHD combined heat and mass 
transfer flow through a porous medium in a rotating system have been investigated using Nachtsheim-Swigerts 
shooting iteration technique. To study the physical situation of this problem, we have computed the numerical 
value of the velocities, temperature, concentration, within the boundary layer and also find the skin friction 
coefficients, Nusselt and Sherwood number at the plate. It can be seen that the solutions are affected by the 

parameters, namely suction parameter wf , Grashof number rG , modified Grashof number mG , Permeability 

parameter K , Magnetic parameter M , Prandtl number rP , Eckert number cE , Dufour number fD , Schmidt 

number cS , Soret number oS , Rotation parameter R . 

 

The values of rG , mG  are taken to be large, since these values corresponds to a cooling problem, i.e.  

Generally encountered in nuclear engineering in connection with the cooling of reactors. The result of numerical 
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calculations are presented in the form of primary ( f  ) and secondary ( 0g ) velocities in Figures. (2)-(19) for 

different values of wf  , M , R , oS , fD , cE , rP , cS , K . The values 0.2,0.5, 0.71,1,2,5  are 

considered for Prandtl number rP (0.2,0.5,0.71 for air and 1.0, 2.0, 5.0  for water ) . The values 

0.1, 0.5, 0.6, 0.95, 5, 10  are also considered for Schmidt number cS , which represent specific conditions of 

the flow (0.95  for 2CO  and 0.1, 0.5, 0.6, 5, 10  for water ) . The values of other parameters are chosen 

arbitrarily. The effects of various parameters on secondary velocity are shown in Figures. 2-10. From Figure. 2, 

it can be seen that the primary velocity increases with the increase of suction parameter wf , for both 0wf   

and 0wf  , indicating the usual fact that suction stabilizes the boundary layer growth. The free convection 

effect is also apparent in this figure. For 1.5  , the velocity field is found to increase and reaches a maximum 

value in a region close to the leading edge of the plate, then gradually decreases to one. Figure. 3, shows the 
primary velocity for different values of magnetic parameter M and has a decreasing effect with increase of M . 
The magnetic field can therefore be used to control the flow characteristics. The variation of the primary 
velocity for different values of rotation parameter R  is shown in Figure. 4. It is seen that the rotation parameter 
R  has a minor decreasing effect on the primary velocity. 
 

Figure 2: Primary velocity profiles for different values 
of wf  

Figure 3: Primary velocity profiles for different values 
of  M  

Figure 4: Primary velocity profiles for different values 
of R  

Figure 5: Primary velocity profiles for different values 
of 0S  
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In Figures 5-7 the variations of the primary velocity for different values of Soret number oS , Dufour number 

fD  and the Eckert number cE , are shown respectively. From these figures it is observed that the primary 

velocity uniformly increases with the increase of Soret number oS , Dufour number fD  and the Eckert number

cE . In Figs. 8-10, the variations of the primary velocities for different values of Prandtl number rP , Schmidt 

number cS  and permeability parameter K  are shown respectively. Figures 8 and 9 show that the magnitude of 

the primary velocities have a overshoot behavior for small Prandtl number rP  and Schimdt number cS . But for 

larger values of  0.5r rP P   and cS  the velocities are found to decrease monotonically and hence there 

appears a thin boundary layer indicating the decrease of the free convection. Also the primary velocity decreases 
with the increase of permeability parameter K . 
 

Figure 6: Primary velocity profiles for different values 
of fD  

Figure 7: Primary velocity profiles for different values 
of cE  

Figure 8: Primary velocity profiles for different values 
of rP  

Figure 9: Primary velocity profiles for different values 
of cS  

 
The effects of various parameters on the secondary velocity are shown in Figs. 11-19.  From Fugure 11, it can 

be seen that the secondary velocity field decreases with the increase of suction parameter wf , for both 0wf   
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and 0wf  , indicating the usual fact that suction stabilizes the boundary layer growth. The free convection 

effect is also apparent in this figure, for 1.8  , the velocity field is found to decrease and reaches a minimum 

value in a region close to the lading edge of the plate, then gradually increase to zero. Figure. 12 shows the 
secondary velocity for different values of magnetic parameter M  and shows a large increasing effect with 
increase of M .   

Figure 10: Primary velocity profiles for different 
values of K 

Figure 11: Secondary velocity profiles for different  
values of fw 

 

Figure 12: Secondary velocity profiles for different 
values of M 

Figure 13: Secondary velocity profiles for different value
R 

 

 
In Figures 13-16 the variations of the secondary velocity for different values of rotation parameter R , Soret 

number oS , Dufour number fD  and the Eckert number cE , are shown respectively. From these figures it is 

observed that the secondary velocity decreases with the increase of rotation parameter R , Soret number oS , 

Dufour number fD  and the Eckert number cE .  

 

In Figs. 17-19, the variations of the secondary velocity for different values of Prandtl number rP , Schmidt 

number cS  and permeability parameter K  are shown respectively.  
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Table 2: Numerical values of x , z , uN  and hS  for 0.5wf  , 4 .0rG  , 2.0mG  , 71.0Pr  , 

0.2oS  , 6.0cS , 2.0fD , 5.0K and 0.01cE   

M  R  x  z  

0.0 0.2 -3.5022917 -.0220123 
0.5 -- -3.6917408 -.0093294 
1.0 -- -3.6980711 -.0008342 
1.5 -- -3.7164723 .0050039 
2.0 -- -3.7435833 .0091054 
2.5 -- -3.7770366 .0120398 
-- 0.2 -3.6917408 -.0093294 
-- 0.4 -3.6860095 -.0179782 
-- 0.6 -3.6766617 -.0252933 
-- 0.8 -3.6639933 -.0306751 
-- 1.0 -3.6483983 -.0336014 
-- 1.2 -3.6303484 -.0336476 

 

Table 3: Numerical values of x , z , uN  and hS  for 5.0wf , 4 .0rG  , 2.0mG  , 71.0Pr  , 

2.0R , 5.0M , 2.0fD , 01.0cE  and 5.0K . 

oS  cS  x  z  uN  hS  

0.0 -- -3.6863470 -.0087116 .3686189 .9793709 
0.2 -- -3.6917408 -.0093294 .3663491 .9914265 
0.4 -- -3.6970671 -.0099420 .3637905 1.0049244 
0.6 -- -3.7023847 -.0105583 .3608885 1.0200427 
0.8 -- -3.7075551 -.0111624 .3576506 1.0369413 
1.0 -- -3.7126155 -.0117608 .3540188 1.0558461 
2.0 -- -3.7355230 -.0146655 .3280050 1.1907625 
-- 0.10 -3.9076176 -.0253921 .4499665 .5033741 
-- 0.50 -3.7102878 -.0104183 .3754558 .9377720 
-- 0.60 -3.6917408 -.0093294 .3663491 .9914265 
-- 0.95 -3.6490389 -.0070213 .3439702 1.1239821 
-- 5.00 -3.5444672 -.0024614 .3052763 1.3840714 
-- 10.00 -3.5234570 -.0016634 .3367076 1.4476235 

 

hS  increases with the increase of Soret number oS . It is also seen from this table that the skin friction 

components x  and z  and the Sherwood number hS  increases with the increase of Schmidt number cS , 

while the Nusselt number uN  decreases with the increase of Schmidt number cS .  

 

From Table 4, we observe that the skin friction components x  and z , and the Nusselt number uN  decrease 

with the increase of Dufour number fD , while the Sherwood number hS  increases with the increase of Dufour 

number fD .It is also observed from this table that the skin friction  

component x  and z  and the Nusselt number uN  increase with the increase of Prandtl number rP  while the 

Sherwood number hS  decreases with the increase of Prandtl number rP .  

 

From Table 5, we observe that the skin friction component z  increases while the skin friction component x  

decreases with the increase of permeability parameter K . It is also observed from this table that the skin friction 
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components x  and z  decrease while the Sherwood number hS  increases with the increase of Eckert number

cE . 

 

Table 4: Numerical values of x , z , uN  and hS  for 5.0wf , 2.0mG  , 4 .0rG  , 5.0K , 

2.0R , 5.0M , 0 0.2S  , 01.0cE  and 6.0cS . 

fD  rP  x  z  uN  hS  

0.0 -- -3.6099163 -.0049333 .4575134 .9688530 
0.2 -- -3.6917408 -.0093294 .3663491 .9914265 
0.4 -- -3.7758098 -.0136408 .2693714 1.0144665 
0.6 -- -3.8622569 -.0178842 .1662347 1.0380500 
0.8 -- -3.9510433 -.0220521 .0566285 1.0622193 
1.0 -- -4.0423218 -.0261582 -.0598571 1.0870546 
1.2 -- -4.1362128 -.0302091 -.1836539 1.1126291 
-- 0.2 -4.0427357 -.0372245 .2040620 1.0529437 
-- 0.5 -3.7811806 -.0160653 .3275896 1.0068981 
-- 0.71 -3.6917408 -.0093294 .3663491 .9914265 
-- 1.0 -3.6124076 -.0035178 .3938730 .9787620 
-- 2.0 -3.4827098 .0058550 .3973896 .9651949 
-- 5.0 -3.3913691 .0134775 .3994546 .9543460 

 

Table 5: Numerical values of x , z , uN  and hS  for 5.0wf , 4 .0rG  , 2.0mG  , 71.0Pr  , 

2.0R , 5.0M , 0 0.2S  , 2.0fD  and 6.0cS . 

K  cE  x  z  

0.0 -- -3.6831492 -.0220644 
0.5 -- -3.6917408 -.0093294 
1.0 -- -3.6975916 -.0008105
1.5 -- -3.7157276 .0050371 
2.0 -- -3.7426961 .0091411 
2.5 -- -3.7760778 .0120748 
-- 0.01 -3.6917408 -00932937 
-- 0.05 -3.7218309 -01053025 
-- 0.10 -3.7612752 -01209855 
-- 0.15 -.38029588 -01374844 
-- 0.2 -3.8471337 -01548839 
-- 0.25 -3.8940949 -017328202 

 
5. Conclusions 
 
From the result the following conclusions can be drawn: 

1. The primary velocity increases with the increase of suction parameter wf , for both 0wf   and

0wf  , indicating the usual fact that suction stabilizes the boundary layer growth. While the 

secondary velocity field decreases with the increase of suction parameter wf , for both 0wf   and

0wf  . 

2. The primary velocity for different values of magnetic parameter M and has a decreasing effect with 
increase of M . The magnetic field can therefore be used to control the flow characteristics. The 

Prandtl number rP  has increasing effect on the concentration as the Prandtl number rP  increases 

while the concentration field rapidly decreases with the increase of Schmidt number cS .  
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3. For larger values of  0.5r rP P   and cS  the velocities are found to decrease monotonically and 

hence there appears a thin boundary layer indicating the decrease of the free convection.  

4. The temperature and concentration increases uniformly with the increase of suction parameter wf . The 

Soret number oS  has decreasing effect on the concentration field. The Soret number oS  has 

decreasing effect on the concentration field. 
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