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Abstract:  
The present numerical work describes the effect of the temperature dependent variable 

viscosity and viscous dissipation on natural convection heat transfer boundary layer flow of 

a viscous incompressible electrically conducting fluid along a vertical wavy surface in 

presence of a transverse magnetic field. The wavy surface is maintained at uniform wall 

temperature that is higher than that of the ambient. A simple coordinate transformation is 

employed to transform the wavy surface into a flat plate. A marching finite difference 

scheme is used for present analysis. The numerical results, including the developments of 

the skin friction coefficients, the local Nusselt number, the streamlines as well as the 

isotherms for different values of the magnetic parameter M (= 0.0 to 2.0), viscous 

dissipation parameter vd (= 0.0 to 10.0), variable viscosity variation parameter ε (= 0.0 to 

15.0), the amplitude-to-length ratio of the wavy surface  = 0.3 and Prandtl number Pr = 

0.73 which correspond to the air at 2100
0
K are presented and discussed in detail. The 

results of this investigation illustrated that the skin friction coefficient increase with an 

increase of the variable viscosity and viscous dissipation parameter, while the local Nusselt 

number at the heated surface decrease for increasing values of variable viscosity 

parameter, magnetic parameter and viscous dissipation parameter. 

Keywords: Natural convection, variable viscosity, viscous dissipation, wavy surface, magnetic field, Keller-box 

method. 
 

 

NOMENCLATURE 
 

Greek symbols 

Cfx local skin friction coefficient 

 

α amplitude of the wavy surface 

Cp specific heat at constant pressure (Jkg
-1

K
-1

) 

         [Jkg
-1

K
-1

]   

 

β volumetric coefficient of thermal expansion(K
-1

)     

f  dimensionless stream function β0 applied magnetic field strength 

g  acceleration due to gravity (ms
-2

) η dimensionless similarity variable 

Gr Grashof number  dimensionless temperature function 

k thermal conductivity of fluid (Wm
-1

K
-1

)  stream function (m
2
s

-1
) 

 L characteristic length associated with the   

 

μ  dynamic viscosity of the fluid (Kg m
-1

s
-1

) 

 wavy surface (m) ν kinematic viscosity of the fluid (m
2
s

-1
) 

M  magnetic parameter ρ density of the fluid (Kg m
-3

) 

Nux  local Nusselt number σ0 electrical conductivity of the fluid (Ω
-1

m
-1

) 

 P pressure of the fluid (Nm
-2

) w  shearing stress 

Pr  Prandtl number σ(x)   

surface 

profile 

function 

defined  

surface profile function defined in equation (1) 

 
T temperature of the fluid in the boundary  

 

  

 layer (K) 

 

Subscripts 

Tw  temperature at the surface (K) w  wall conditions 
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T temperature of the ambient fluid (K)  ambient conditions 

vd viscous dissipation parameter   

u, v 

 

dimensionless velocity components along  

 

 

 

Superscripts 

  the (x, y) axes (ms
-1

) ' differentiation with respect to η 

 x, y axis in the direction along and normal to   

 the tangent of the surface   

1. Introduction 

The study of the flow of electrically conducting fluid in the presence of magnetic field is important from the 

technical point of view and such types of problems have received much attention by many researchers. Viscous 

dissipation is of also interest for many applications: significant temperature rises are observed in polymer 

processing flows such as injection molding or extrusion at high rates. The viscous dissipation effect plays an 

important role in natural convection in strong gravitational field processes on large scales. It is also necessary to 

study the heat transfer from an irregular surface because irregular surfaces are often present in many 

applications, such as radiator, heat exchangers and heat transfer enhancement devices. However, it is known that 

viscosity must be change significantly with temperature. To predict accurately the flow behavior, it is necessary 

to take into account of viscosity. 

Charraudeau (1975) proposed the viscosity of the fluid to be proportional to a linear function of temperature. 

Larger scale surface non-uniformities are encountered, for example, in cavity wall insulating systems and grain 

storage containers. Yao (1983) studied the effects of such non-uniformities on the vertical convective boundary 

layer flow of a Newtonian fluid. Hossain (1992) introduced the viscous and Joule heating effects on MHD-free 

convection flow with variable plate temperature. The problem of free convection flow from a wavy vertical 

surface in presence of a transverse magnetic field was studied by Alam et al. (1997). Also the effect of free 

convection flow with variable viscosity and thermal diffusivity along a vertical plate in the presence of magnetic 

field has been discussed by Elbashbeshy (2000). Hossain et al. (2002)  studied natural convection of fluid with 

temperature dependent viscosity from heated vertical wavy surface. Jang et al. (2003) investigated the natural 

convection heat and mass transfer along a vertical wavy surface. Molla and Hossain (2007) studied radiation 

effect on mixed convection laminar flow along a vertical wavy surface. Combined effect of viscous dissipation 

and Joule heating on the coupling of conduction and free convection along a vertical flat plate has been 

investigated by Alim et al. (2008). Jha and Ajibade (2012) investigated the effect of viscous dissipation on 

natural convection flow between vertical parallel plates with time-periodic boundary conditions. They solved 

the governing equations analytically and discovered that heat is being transferred from the fluid with viscous 

dissipation to the plate when the fluid has small Prandtl. Sujon and Parveen (2014) investigated natural 

convection flow along a vertical wavy surface with the effects of viscous dissipation and heat generation on 

magnetohydrodynamics. Hazarika and Konch (2016) studied the effects of variable viscosity and thermal 

conductivity on magnetohydrodynamic free convection dusty fluid along a vertical porous plate with heat  

generation. They found that viscosity and species concentration decrease and temperature increases with the 

increasing value of the viscosity variation parameter for both the fluid and dust particles. Quite the opposite 

phenomenon was seen with the thermal conductivity variation parameter. Pakdee et al. (2017) analyzed 

numerically the two-dimensional unsteady magnetohydrodynamic compressible flow through a porous medium. 

They showed that the magnetic field and variable properties considerably influences the flows that is 

compressible thereby affecting the heat transfer as well as the wall shear stress. Alam et al. (2018) used the 

finite difference method together with Newton’s linearization approximation to discuss the conjugate effects of 

viscous dissipation and variable viscosity on free convection flow over a sphere with joule heating and heat 

conduction. They argued that an enhanced Joule heating causes an increase in both the velocity and temperature 

profiles. Recently, Rajput and Kumar (2019) analyzed the effects of radiation and chemical reaction on MHD 

flow past a vertical plate with variable temperature and mass diffusion. Very recently, Abiodun and Bolaji 

(2020) studied the approximate solution of MHD natural convection flow with variable properties induced 

magnetic field, viscous dissipation and Ohmic heating. They obtained that increase in the viscous dissipation of 

the fluid results in the increase in its velocity, temperature, current density and the heat transfer. They also found  

that the skin friction on an isothermal condition and a temperature equal to zero plates grows and the heat 

transfer increases as the magnetic parameter decreases. Hasan et al. (2020) investigated Physics of bifurcation of 

the natural and forced convection flow and heat transfer through a curved duct. They detected that convective 
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heat transfers to periodic and multi-periodic flows have boosted significantly more than steady-state flows. 

Kumar et al. (2020) investigated heat transfer reaction on a viscous dissipative free convective radiating stream 

over a permeable laminate within presence of induced magnetic field. They found that velocity accelerates as 

heat source and Eckert number parameters increases.  

To our best of knowledge, magnetic field effect with temperature dependent variable viscosity and viscous 

dissipation on natural convection flow along a vertical wavy surface has not been studied yet and also for 

considering the practical importance the present work demonstrates the issue. The developed equations are made 

dimensionless by using suitable transformations. The non-dimensional equations are then transformed into non-

linear equations by introducing a non-similarity transformation. The resulting non-linear equations together with 

their corresponding boundary conditions are solved numerically by using the finite difference method along 

with Newton’s linearization approximation. The effects of magnetic field, variable viscosity and viscous 

dissipation parameter on the friction factor, Nusselt number, the streamlines as well as the isotherms are studied 

in detail. 

2. Formulation of the Problem 

The boundary layer analysis outlined below allows )(X being arbitrary, but our detailed numerical work 

assumed that the surface exhibits sinusoidal deformations. The wavy surface may be described by 











L

Xn
XYw


 sin)(  (1) 

where  is the amplitude and L is the characteristic length associated with the wavy surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: The coordinate system and the physical model 

 

 

The geometry of the wavy surface and the two-dimensional Cartesian coordinate system are shown in Fig. 1. 

Under the usual Boussinesq approximation, the flow governed by the following boundary layer equations: 
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X
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pp




 (5) 

where (X, Y) are the dimensional coordinates along and normal to the tangent of the surface and (U, V) are the 

velocity components parallel to (X, Y), )//( 22222 yx   is the Laplacian operator, g is the 

acceleration due to gravity, P is the dimensional pressure of the fluid, ρ is the density, pC is the specific heat at 

constant pressure and )/(   is the kinematic viscosity and μ(T) is the dynamic viscosity of the fluid in the 

boundary layer region depending on the fluid temperature, k is the thermal conductivity of the fluid, 0  is the 

electrical conductivity of the fluid, 0 is the strength of magnetic field and β is the volumetric coefficient of 

thermal expansion. 

The boundary conditions for the present problem are 











 YaspPTTU

XYYatTTVU ww

,,0

)(,0,0 
 (6) 

Following Yao (1983), here introduce the following non-dimensional variables 

 
L

X
x  , 4

1

Gr
L

Y
y


 , PGr

L
p 1

2

2



,  UVGr

L
vUGr

L
u x


















4
1

2
1

, , 

 

 










TT

TT

w

 , 
dx

d

dX

d
x


  , 3

2

)(
L

TTg
Gr w



 
    

Introducing the above dimensionless dependent and independent variables into Equations (2)–(5), the following 

dimensionless form of the governing equations are obtained:  
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 where 
k

C p 



Pr is the Prandtl number, )(*

 TTw is the viscosity variation parameter,  

)(2

2




TTCL

Gr
vd

wp

  is the viscous dissipation parameter and 
2

1

22

00

Gr

L
M




 is the magnetic parameter. 

There are very few forms of viscosity variation available in the literature. Among them we have considered that 

one which is appropriate for liquid introduced by Hossain et al.(2002) as follows: 
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*[1 ( )]T T        (11) 

where μ is the viscosity of the ambient fluid and 
*  is a constant evaluated at the film temperature of the flow.   

Eq. (9) indicates that the pressure gradient along the y-direction is )( 4
1

GrO , which implies that lowest order 

pressure gradient along x-direction can be determined from the inviscid flow solution. For the present problem 

this pressure gradient ( 0 xp ) is zero. Eq. (9) further shows that ypGr  /4
1

 is O(1) and is determined 

by the left-hand side of this equation. Thus, the elimination of yp  /  from Eqs. (8) and (9) leads to 
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The corresponding boundary conditions for the present problem are 


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
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  (13) 

Now introduce the following transformations to reduce the governing equations to a convenient form: 

),(,),,( 4
1

4
3
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

  (14) 

where η is the pseudo similarity variable, θ is the dimensionless temperature and ψ is the stream function.  

Introducing the transformations given in Eq. (14) into Eqs. (12) and (10) the momentum and energy equations 

are transformed the following forms: 
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The boundary condition (13) now takes the following form: 


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  (17) 

The rate of heat transfer in terms of the local Nusselt number, Nux and the local skin friction coefficient, Cfx take 

the following forms: 

),(1)/( 24
1

oxxGrNu xx  


 (18) 

),(1)1(2/)/( 24
1

oxfxGrC xfx
    (19) 

3. Method of Solution 

The nonlinear systems of partial differential equations are solved numerically with the help of implicit finite 

difference method known as the Keller box scheme developed by Keller (1978).  

To apply the aforementioned method, equations (15) and (16) their boundary condition (17) are first converted 

into the following system of first order equations. For this purpose we introduce new dependent variables 
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,),(),,(  vu ),( p  and ),( g  so that the transformed momentum and energy equations can be 

written as  
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Now consider the net rectangle on the (, ) plane shown in the Fig. 2 and denote the net points by 
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Here n and j are just sequence of numbers on the (, ) plane, kn and hj are the variable mesh widths. 

Approximate the quantities f, u, v and p at the points (n
,j) of the net by 
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Fig. 2: Net rectangle of difference approximations for the Box scheme. 

The finite difference approximations according to box method to the three first order ordinary differential 

equations (20) – (22) are written for the mid point (n
,j-1/2 ) of the segment P1P2 shown in the Fig. 2 and the 

finite difference approximations to the two first order differential equations (23) and (24) are written for the mid 

point (n-1/2
,j-1/2 ) of the rectangle P1P2P3P4. This procedure yields 
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The above equations are to be linearized by using Newton’s Quasi-linearization method. Then linear algebraic 

equations can be written in block matrix which form a coefficient matrix. The whole procedure, namely 

    hj 

kn 

ηj-1/2 

ηj 

ηj-1 

ξ
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n 

P1 P4 

P3 P2 
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reduction to first order followed by central difference approximations, Newton’s Quasi-linearization method and 

the block Thomas algorithm, is well known as the Keller-box method. 

During the program test, the convergent criteria for the relative errors between two iterations are less 10
-5

. A 

uniform grid of 201 points is used in x- direction with  x = 0.05, while a non-uniform grid of 76 points lying 

between η = 0.0 and 10.017 is chosen. Grid points are concentrated towards the heated surface in order to 

improve resolution and the accuracy of the computed values of the surface shear stress and rate of heat transfer.  

4. Results and Discussion 

In the present study, numerical solutions are obtained in terms of the skin friction coefficient, Nusselt number, 

the streamlines as well as the isotherms for different values of the magnetic parameter M (= 0.0, 0.5, 1.0 and 

2.0),  viscous dissipation parameter vd (= 0.0, 1.0, 5.0, 10.0), variable viscosity variation parameter ε (= 0.0, 4.0, 

8.0 and 15.0), the amplitude-to-length ratio of the wavy surface  = 0.3 and Prandtl number Pr = 0.73 which 

correspond to the air at 2100
0
K. 

It is seen that the effect of the magnetic parameter M  leads to a decrease in the local skin friction coefficient Cfx 

and the local Nusselt number Nux in Figs. 3(a) and 3(b). This phenomenon can be easily understood from the 

fact that the magnetic parameter M increases the Lorentz force, which opposes the flow, therefore decrease the 

velocity and temperature gradient and hence the local skin friction coefficient Cfx and local Nusselt number Nux 

decrease. It is also observed that the skin friction coefficient Cfx and the local Nusselt number Nux decrease by 

approximately 25% and 9% respectively as M increases from 0.00 to 2.00. 
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Fig. 3: Effect of M on (a) skin friction coefficient Cfx and (b) rate of heat transfer Nux. 

 

    
0 2 4 6 8x

0

1

2

3
  

  

  

  

(a)

C
fx

   
0 2 4 6x

0

  

  

  

  

(b)

N
u x

 

Fig. 4: Effect of ε on (a) skin friction coefficient Cfx and (b) rate of heat transfer Nux. 

The effect of the variable viscosity variation parameter on local skin friction coefficient Cfx and the local Nusselt 

number Nux are shown in Figs. 4(a)–(b) respectively while vd = 0.4, M = 0.5,  = 0.3 and Pr = 0.73. It is 

observed that an increase in the values of ε leads to enhance in the results of Cfx. When the variable viscosity 

variation parameter increases, then the temperature of the surface rises and decreases the temperature gradient. 

For this reason the local Nusselt number Nux decreases. 
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Figs. 5(a) and 5(b) display the results of the skin friction coefficient Cfx and the rate of heat transfer Nux against 

x for different values of viscous dissipation parameter vd while Prandtl number Pr = 0.73, ε = 4.0, M = 0.5 and  

= 0.3. It is found that for the effect of viscous dissipation parameter in the fluid, the skin friction coefficient Cfx 

increases that is the frictional force at the wall enhances and the rate of heat transfer Nux reduces. It is evident 

that due to the viscous dissipation parameter vd, fluid temperature rises and temperature difference between 

solid wall and fluid become slower and consequently reduction rate of heat transfer happens. 
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Fig. 5: Effect of vd on (a) skin friction coefficient Cfx and (b) rate of heat transfer Nux. 
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Fig. 6: Streamlines for (a) M = 0.5 (b) M = 1.0 (c) M = 2.0 while Pr = 0.73, ε = 4.0, vd = 0.4 and  = 0.3. 

 

Figs. 6 and 7 illustrate the effect of the magnetic parameter M on the development of streamlines and isotherms 

respectively, which are plotted for α = 0.3, Pr = 0.73, ε = 4.0 and vd = 0.4. It is seen that when M = 0.5 the 

maximum values of stream function, that is, max within the computational domain is 5.80. From Fig. 6(b) for M 

= 1.0 the value of max is 4.06. From Fig. 6(c) for M = 2.0 the value of max is 2.68. It can be concluded that with 

the effect of the magnetic parameter M, the flow flux in the boundary layer decreases. From Figs. 7(a)–(c), it is 

noted that with the effect of M the thermal boundary layer thickness enhances significantly. Due to the effect of 

magnetic parameter M, the temperature within the boundary layer increases and the associate thermal boundary 

layer becomes thicker. 
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Fig. 7: Isotherms for (a) M = 0.5 (b) M = 1.0 (c) M = 2.0 while Pr = 0.73, ε = 4.0, vd = 0.4 and  = 0.3. 

The effects of viscous dissipation parameter vd and variable viscosity variation parameter ε, on the development 

of streamlines which are displayed in Fig. 8 for  = 0.3, M = 0.5 and Prandtl number Pr = 0.73. The viscosity is 

independent of temperature with vd = 0.0 as shown in Fig. 8(a) and found that maximum value of stream 

function max is 6.52. Fig. 8(b) displays the results that an increasing values of vd, the velocity boundary layer 

thickness increases. In this case the maximum value of stream function max is 10.86. For increasing values of 

viscosity variation parameter ε the boundary layer becomes thinner and the maximum value of stream function 

max is 4.88 that is shown in Fig. 8(c). The combined effects of viscosity variation parameter ε and viscous 

dissipation parameter vd are shown in Fig. 8(d). Here the maximum value max is 6.09. From these figures it is 

observed that the value of stream function ψ becomes lower for larger values of viscosity variation parameter ε 

and becomes higher for viscous dissipation parameter vd.      
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Fig. 8: Streamlines for (a) ε = 0.0, vd = 0.0 (b) ε = 0.0, vd = 5.0 (c) ε = 10.0, vd = 0.0 and (d) ε = 20.0, vd = 5.0 

while  = 0.3, M = 0.5 and Pr = 0.73. 
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The variation of isotherms with viscosity variation parameter ε and viscous dissipation parameter vd for  = 0.3, 

magnetic parameter M = 0.5 and Prandtl number Pr = 0.73 are shown in Fig. 9. We can say after observing the 

isotherms of this figure that temperature enhances within the boundary layer due to the higher values of variable 

viscosity variation parameter ε and viscous dissipation parameter vd. 
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Fig. 9: Isotherms for (a) ε = 0.0, vd = 0.0 (b) ε = 0.0, vd = 5.0 (c) ε = 10.0, vd = 0.0 and (d) ε = 20.0, vd = 5.0 

while  = 0.3, M = 0.5 and Pr = 0.73. 

 

Table 1: Comparison of the present numerical results of skin friction coefficient, f (x,0) and the heat transfer, -

(x,0) with Hossain et al. (2002) for the variation of Prandtl number Pr while vd = 0.0, ε = 0.0, M = 

0.0 and   = 0.1. 

 

Pr 

f (x,0) -(x,0) 

Hossian et 

al. (2002) 

Present 

work 

Hossian et 

al. (2002) 

Present 

work 

1.0 0.908 0.90814 0.401 0.39914 

10.0 0.591 0.59269 0.825 0.82663 

25.0 0.485 0.48733 1.066 1.06847 

50.0 0.485 0.41880 1.066 1.28351 

100.0 0.352 0.35640 1.542 1.54198 

 

A comparison of the present numerical results of the skin friction coefficient f (x,0) and the rate of heat transfer 

- (x,0) with the results obtained by Hossain et al. (2002) is depicted in Table 1. Here, the magnetic parameter 

M, viscosity variation parameter ε and viscous dissipation parameter vd are ignored while different values of 

Prandtl number Pr = (1.0, 10, 25.0, 50.0 and 100.0) are chosen. From Table 1, it is clearly seen that the present 

results are excellent agreement with the solution of Hossain et al. (2002). 

5. Conclusion 

The effect of temperature dependent variable viscosity and viscous dissipation on magnetic field natural 

convection flow along a vertical wavy surface has been studied numerically. The present investigation can be 

concluded as follows: 
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 The skin friction coefficient increases for decreasing values of magnetic parameter M. For increasing 

values of viscosity variation parameter and viscous dissipation parameter the skin friction coefficient 

increase.  

 The rate of heat transfer decrease for increasing values of magnetic parameter M, viscosity variation 

parameter and viscous dissipation parameter.  

 The velocity of the fluid flow decreases and the temperature distribution of the fluid within the 

boundary layer significantly increases for increasing values of M.  

 The velocity of the fluid flow decreases but velocity gradient increases for the effect of temperature 

dependent viscosity variation parameter ε. The velocity boundary layer becomes thinner for the effect 

of ε. On the other hand for the effect of ε the temperature increases  and the thermal boundary layer 

becomes thicker.  

 For increasing values of vd, the momentum and thermal boundary layer thickness enhanced. 
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