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Abstract:  
The effect of magnetic field dependent (MFD) viscosity on the onset of soret driven convection in a 

ferromagnetic fluid layer heated from below and salted from above saturating rotating porous medium in 

the presence of vertical magnetic field is investigated theoretically by using Darcy model. The thermal 

perturbation method is employed for analytical solution. A theory of linear stability analysis and normal 

mode technique have been carried out to analyze the onset of convection for a fluid layer contained 

between two impermeable boundaries for which an exact solution is obtained. 
 

Keywords: Coriolis force, Darcy Model, ferromagnetic fluid, MFD viscosity, perturbation technique, Soret    

Effect. 

 
 

 

1. Introduction  

 
In thermal instability problems, the instability is driven by a density difference which is caused by a temperature 

difference between the upper and lower planes bounding the fluid. If the fluid layer additionally has salt dissolved 

in it, then there are potentially two destabilizing sources for the density difference, that is the temperature field 

when the simultaneous presence of two or more components with different diffusivities is considered, the 

phenomenon of convection which arises is called thermosolutal or double diffusive convection. The magnetization 

of ferrofluids depends on the magnetic field, temperature, and density. Hence, any variations of these quantities 

induce change of body force distribution in the fluid and eventually give rise to convection in ferrofluids in the 

presence of a gradient of magnetic field. There have been numerous studies on thermal convection in a ferrofluid 

layer called ferroconvection analogous to Rayleigh-Benard convection in ordinary viscous fluids. 

 

Sharma (1977) investigated the thermal instability of compressible fluids in the presence of rotation and magnetic 

field. Knobloch and Moore (1988) studied the linear stability of experimental Soret convection. Abdullah and 

Lindsay (1991) examined the Benard convection in a nonlinear magnetic fluid under the influence of a non-

vertical magnetic field. Abdullah (1992) derived thermal instability of a non-linear magnetic fluid under the 

influence of both non-vertical magnetic field and Coriolis force. Thermal convection in a rotating layer of a 

magnetic fluid has been studied by Auernhammer and Brand (2000). Bennacer et al. (2003) carried out the Soret 

effect on convection in a horizontal porous domain under cross temperature and concentration gradients. Alam et 

al. (2006) carried out Dufour and Soret effects on mixed convection flow past a vertical porous flat plate with 

variable suction. Lakshmi Narayana et al. (2008) discussed the Soret-driven thermosolutal convection induced by 

inclined thermal and solutal gradients in a shallow horizontal layer of a porous medium.  Sekar et al. (2008, 2009) 

derived the effect of presence of dust particles on Soret-driven ferrothermohaline convection with and without 

porous medium. Shivakumara et al. (2011) investigated the ferromagnetic convection in a rotating ferrofluid 

saturated porous layer.   

 

A study of the effect of chemical reaction and radiation absorption on MHD convective heat and mass transfer 

flow past a semi-infinite vertical moving plate with time dependent suction derived by Singh et al (2011). Rana 

et al. (2011, 2012) discussed the effect of rotation on the onset of convection in Walters' (Model B') heated from 
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below in a Brinkman porous medium with and without dust particles. Chand  (2012) analyzed the effect of rotation 

on triple-diffusive convection in a magnetized ferrofluid with internal angular momentum saturating a porous 

medium. Alloui et al. (2012) discussed the Double-diffusive and Soret-induced convection in a micro polar fluid 

layer. Malashetty et al. (2012) investigated the linear and non-linear double-diffusive convection in a fluid 

saturated porous layer with cross-diffusion effect. Vasanthakumari et al. (2013) investigated the effect of rotation 

and magnetic field on thermal instability of Compressible Walters' B' and incompressible non-newtonian 

viscoelastic fluid. Ram et al. (2014) discussed the Swirling flow of field dependent viscous ferrofluid over a 

porous rotating disk with heat transfer. Jana et al. (2014) carried out the oscillatory mixed convection in a porous 

medium. Singh et al. (2014) examined unsteady MHD free convection past an impulsively started isothermal 

vertical plate with radiation and viscous dissipation. Ramesh Chand and Rana (2015) investigated the magneto 

convection in a layer of nanofluid in porous medium.  Ram et al. (2017) derived free convective boundary layer 

flow of radiating and reacting MHD fluid past a cosinusoidally fluctuating heated plate. Raju (2018)  examined 

the effect of temperature dependent viscosity on ferrothermohaline convection saturating an anisotropic porous 

medium with Soret effect using the Galerkin technique. Mahajan analyzed et al. (2018) Penetrative Internally 

Heated Convection in Magnetic Fluids. Sekar et al. (2018) carried out the linear stability effect of densely 

distributed porous medium and coriolis force on soret driven ferrothermohaline convection. Prakash et al. (2020) 

found that the effect of magnetic field dependent viscosity on ferromagnetic convection in a rotating sparsely 

distributed porous medium – revisited. Pulkit Kumar Nadian et al. (2020) derived thermal instability of couple 

stress ferromagnetic fluid in the presence of variable gravity field, Rotation and Magnetic Field. Murugan et al. 

(2021) studied the onset of Soret driven ferrothermoconvective instability in the presence of Darcy Porous medium 

with Anisotropy effect and MFD viscosity. Murugan et al. (2022) investigated a numerical technique and effect 

of magnetic field dependent (MFD) viscosity on thermal instability in a ferrofluid with Coriolis force for Darcy 

model. 

 

2. Mathematical formulation 

 

 
 

An infinitely spread layer of Boussinesq ferromagnetic fluid of thickness ‘d’ rotating with 

uniform constant angular velocity (0, 0, )  along the vertical direction, is taken as z-axis. The 

entire system is heated from below and salted from above.The temperature and salinity at the 
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bottom and top surfaces z = ±d/2 are T0 ± ∆T/2 and S0 ± ∆S/2, respectively. Both the boundaries 

are taken to be impermeable and perfect conductors of heat and solute. The fluid is assumed to 

be incompressible fluid having a variable viscosity, given by  1 1 . .   δΒ where 1  is taken as 

viscosity of the fluids when the applied magnetic field is absent. The variation in the coefficient 

of the magnetic field dependent viscosity  has been taken to be isotropic, that is, 

1 2 3.       

 

The basic governing equations for the above model are  

  

The continuity equation is 

. 0q 
                                                                                                                                                                    

(1) 

The modified Navier-Stokes equation is 
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(2) 

The modified thermal diffusivity equation is 

2
, 1

, ,
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(3) 

The Fick’s diffusion equation is 

2 2
s T

DS
K S S T

Dt
   

                                                                                                                                          
(4) 

Maxwell’s equations are 

. 0, 0B H   
                                                                                                                                             

(5a,b)  

Further B, M and H are related by 

 0B M H 
                                                                                                                                                       

(6) 

Combining Equations (5a) and (6), we get 

 . 0  M H                                                                                                                                                       (7) 
Since, the magnetization is aligned with the magnetic field and depends on the magnitude of the magnetic field, 

temperature and salinity, so that 

 , ,M H T S
H


H

M
                                                                                                                                                 

(8) 

The magnetic equation of state is 

     0 0 0 2 0M M H H K T T K S S      
                                                                                                    

(9) 

where  
0 0,( / ) ,H TM H     

0 0,( / )H TK M T     and 
0 02 ,( / ) .H SK M S    

The density equation of state is 

   0 0 01 t sT T S S                                                                                                                              
(10) 

where   1/ /t T      and   1/ / .s S      

The basic state is assumed to be the quiescent state and the basic state quantities obtained are: 
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3. Linear Stability Theory 

The basic state is disturbed by a small thermal perturbation, consider a perturbed state such that

, (z) p', (z) ', (z) ', (z) ',  ' p  p     (z    ) '.b b b b bT T T         q q H H M MMH where ' ''  , p , ,q  

' ' ', , andT H M are perturbed variables and are assumed to small.  

 ' ' '0

0

1 1,2i i i

M
H M H i

H

 
    

                                                                                                                      

(12) 

 ' ' ' ' ' '
3 3 3 21 TH M H KT K S S KT     

                                                                                                       
(13) 

Let  1 2 3, ,B B B  denote the components of B, using Eq. (6), one gets the result   ' '
0i i iMB H  and Eqs. (12) 

and (13) become 
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(15) 

When of Eq. (6) is used in Eq. (2) and resulting equation is linearized with Bi (i=1, 2, 3) given by Eqs. (14) and 

(15), we obtain the following components 

 
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(18) 

Differentiating Eqs. (16)-(18) with respect to x, y and z respectively and adding, the following equation is obtained 

upon using Eq. (2) 
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where '
H has the components  1 2 3

' ' ', , .H H H
 

From Eq. (6), '  H  where is a scalar potential. Elimination of p from Eq. (16) - (18) and using Eq. (19), 

We get, 
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4. Normal Mode Technique 

The normal mode solution of all dynamical variables can be written as
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(21) 

with the wave number 2 2 2
0 x yk k k   

Using Eq. (21) in Eq. (20), one gets the vertical component of the momentum equation can be written as 
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(23) 

where    is the  z – component of vorticity given by 
v u

x y


 
 
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The linearized perturbed temperature equation is 
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(24) 

0 0 , 0 0where V HC C KH   
 

The salinity equation is 
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The magnetic potential equation is 
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The above equations can be written in dimensionless form using 
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Following the normal mode analysis, the linearized perturbation dimensionless equations for the thermosolutal 

convection due to Soret effect in a ferrofluid are 
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where the non-dimensional parameters used are 
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5. Mathematical Analysis 

 
The free-free boundary conditions on velocity, temperature, salinityand angular momentum are 
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(33) 

The exact solutions satisfying above equation (33) are 
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(34) 

In this part, all the partial derivatives and asterisks are removed with use of exact solutions to find the solution of 

the system of homogeneous equations in (35) to (38). Using equation (5.2) in equations (27) to (31), we get 
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(38) 

The determinant of co-efficient of A, B, C and E are vanish for the existence of non-trivial Eigen functions. Eqs. 

(35) – (38) lead to  
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6. Stationary convection 

 
For the steady state (i.e., the validity of principle of exchange of stability), we have 0   at the margin of 

stability. Then the Eq. (39) helps one to obtain Eigen value RSC for which a solution exists; 
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 For 1M very large, the critical magnetic thermal Rayleigh number 1SC SCN R M  for stationary mode could be 

simplified as  
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7. Overstability  

 

Taking i  and 
2 0,   in Eq. (39), one gets the real value of the Rayleigh number because the Rayleigh 

number is not a complex number (i.e., Im Roc = 0), implies that  Roc is a real number. Therefore, the critical 

Rayleigh number for oscillatory mode has been calculated using 
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8. Results and discussion 

 
The critical thermal Rayleigh number is calculated for both stationary and oscillatory modes. When 1 1000,M   

the classical Rayleigh problem for buoyancy-induced convection is and obtained Chandrasekhar (1961). When 

all the magnetic parameters 1 6toM M vanish, this reduces to double diffusive convection (Baines and Gill, 1969). 

When the salinity Rayleigh number 0,SR  the critical Rayleigh number obtained by Finlayson (1970) for single 

component ferrofluid. When 
2 0 q and Soret effect is absent,  the thermal Rayleigh number is identical to 

Vaidyanathan et al., (2002). When
2 0, 0, 0, 0 andTa k      q  this tends to critical Rayleigh number 

obtained by Vaidyanathan et al., (2005). When 0, 1 and 0Ta    the thermal Rayleigh number is identical to 

Sekar et al., (2006). When 
2 0 q and Soret effect is present, the critical Rayleigh number calculated in 

Hemalatha (2014). When 0,  one gets the thermal Rayleigh number is identical to Sekar et al., (2016). When

1 1 2( , , ),k k k k  the critical Rayleigh number derived by Sekar et al., (2019). 
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Figure 1. Variation of SCR versus S
R  for various  ,

0.03, 0.001, 0.002Tk S     and M3 = 5. 

Figure 2. Variation of SCR versus TS for various ,

0.03, 0.001, 500Sk R     andM3 = 5. 

 

Figure 1 represent the variation of SCR  versus S
R  for different values of  . When the salinity Rayleigh number 

S
R increases from -500 to 500, the critical magnetic Rayleigh number SCR  decreases. Therefore the system gets  

a destabilizing  behaviour. It is observed that the MFD viscosity parameter   is found to stabilize the system. 

 

Figure 2 indicates the variation of the critical magnetic Rayleigh number SCR with respect to the Soret parameter 

ST for various  . It is found that the increase in Soret effect stabilizes the system, thereby delaying the onset of 

convection. The figure exhibits a stabilizing trend. This is due to the fact that the modulation of the salinity 

gradient by temperature gradient promotes stabilization. Positive values of 
T
S  stabilizethe system which is more 

pronounced. The stabilizing behavior of  is seen from Figure, as would mean adding salt from the top. 

 

Figure 3 gives the variation of the critical Rayleigh number SCR versus the non-buoyancy magnetization parameter 

M3 for different MFD viscosity parameter  .  It is seen from the figure that as the value of M3 increases from 5 to 

25, the value of SCR decreases for small value 0 01  . ,  thus the convective system has a destabilizing effect for 

0.01.   whereas for higher values of   (0.05, 0.07 and 0.09), SCR  gets increasing values. In this situation, the 

system has a stabilizing behavior which is increasing slowly.
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Figure 3.Variation of SCR versus M3 for various  ,

0.03, 0.001, 500,Sk R     and 0.002.TS  
 

 

Figure 4. Variation of SCR versus   for various  ,

500, 0.001, 0.002S TR k S     and M3 = 5. 

 

 

Figure 4 shows the variation of critical magnetic Rayleigh number SCR versus the mass transport to heat transport 

 for different  . It is seen from this figure that the system destabilizes as the mass transport to heat transport

increases. This is shown by a fall in SCR values. It is observed from the figure that the magnetic field dependent 

viscosity  is found to stabilize the system. 

 

Figure 5 represents the variation of critical magnetic Rayleigh number SCR  versus permeability of the porous 

medium k for different  . It is clear that the system destabilizes as the permeability of the porous medium k 

increases. This is indicated by a decrease in SCR values. The reason is that as the pore size increases, it becomes 

easier for the flow to destabilize the system. It is observed from the figure that the magnetic field dependent 

viscosity   is found to stabilize the system. 

 

Figure 6, illustrates that as M3 increases, the values of SCR  decreases for small values of  ,whereas for higher 

values of  , SCR decreases for lower values of M3, and then increases for higher values of M3. The same trend is 

seen from Figure 3. The destabilizing trend of ,SR k  and  is also seen from Figs. 8, 9 and 10. But stabilizing 

behavior of TS is seen from Figure 7. 
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Figure 5. Variation of SCR versus k for various  ,

500, 0.003, 0.002S TR S     and M3 = 5. 

Figure 6. Variation of SCR versus   for various M3, 

500, 0.003, 0.002S TR S     and 0.001.k   
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Figure 7. Variation of SCR versus   for various ST ,
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Figure 8.Variation of SCR versus  for various ,
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Figures 6-10 investigate the variation of SCR versus  for different values of 3 , , , and .T SM S R k   From Figs. 6 - 10, 

one can find that as the coefficient of MFD viscosity is increased from 0.01 to 0.09, the critical magnetic Rayleigh 

number increases. This means that the system is stabilized through viscosity variation with respect to magnetic 

field. This leads to the conclusion that the MFD viscosity delays the onset of convection for ferrofluid in a densely 

distributed porous medium. 

 

 

Figure 9.Variation of SCR versus   for various k, 

500, 0.002, 0.003S TR S      and 3 5.M   

Figure 10.Variation of SCR versus  for various ,

500, 0.002, 0.001S TR S k     and 3 5.M   

 

Figure11 indicate the variation of SCR  versus ST for different values of Ta. The figure exhibits a stabilizing 

behavior which is not much pronounced. The stabilization is minimal when Taylor number Ta assumes values 

from 103 to 106, and then it increases phenomenally. This is indicated by an increase in SCR values. 

 

Figure12 is a plot of the variation of SCR  versus RS for different values of Ta. This figure shows that as Ta increases, 

there is an increase in the values of the critical magnetic Rayleigh number .SCR  Therefore Taylor number leads 

to stability of the system. 
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Figure 11.Variation of SCR  versus STfor various Ta, 

RS = -500, k = 0.001, 0.03  and M3= 5. 

Figure 12. Variation of SCR  versus S
R for various Ta, 

RS = -500, k = 0.001, 0.03  and M3= 5. 

 

 

9. Conclusions 

The Soret-driven thermoconvective instability of ferromagnetic fluid layer heated from below and salted from 

above saturating a densely packed rotating porous medium with magnetic field dependent (MFD) viscosity has 

been analyzed using Darcy model. Perturbation method is applied and Normal mode analysis is adopted. In the 

perturbation method, due to the application of magnetic field, the system is perturbed from the basic state 

(quiescent state). According the governing and other equations are modified. Linear stability analysis is 

considered. Then Normal mode analysis is taken, Non-dimensional analysis is carried out and the exact solutions 

satisfying the appropriate boundary conditions are taken yielding to algebraic equations. For getting non-trivial 

solution for the system of linear homogeneous equations, the coefficients of the dynamic variables are equated to 

zero and on simplification, the expression for SCR is obtained. Varying the values of the parameters in the allowable 

range and getting the corresponding SCR values, we get the stability pattern. 

Before discussing the significant results of the convective system, we turn our attention to the possible range of 

values of various parameters arising in the study. The Prandtl number rP  is assumed to be 0.01. The Soret 

parameter TS  is assumed to take values from -0.002 to 0.002, the salinity Rayleigh number sR  is varied from -

500 to 500. The values of ratio of the mass transport to heat transport  is assumed to be 0.03, 0.05, 0.07, 0.09 

and 0.11. The coefficient of MFD viscosity   is assumed from 0.01 to 0.09. The Taylor numberTa is assumed 

from 10 to 108.The magnetization parameter M1 is assumed to be 1000; for a very large value of M1, the effect of 

magnetic mechanism is very large, when compared to buoyancy effect.  For such fluids, M2 is assumed to have 

negligible value and hence taken to be zero.  M3 is varied from 1 to 25 because M3 cannot take a value less than 

one. M6is taken to be 0.1. M4 is the effect on magnetization due to salinity. This is allowed to vary from 0.1 to 0.5 

taking values less than the magnetization parameter M3. M5 represents the ratio of the salinity effect on magnetic 

field and pyromagnetic coefficient. This is varied between 0.1 and 0.5. The permeability of porous medium k is 

assumed to take the values 0.001, 0.003, 0.005, 0.007, 0.009  (Darcy numbers). 

A small perturbation imparted on the basic state and a linear stability is used for which normal mode technique is 

applied. In this investigation, it is clear that the system gets destabilized with respect to
 

a) variation in magnetization parameter 3.M  

b) variation in salinity Rayleigh number .sR  

c) variation in the ratio of the mass transport to heat transport .  

In order to investigate our results, we must review the results and physical explanations. It is well known that in 

case of Newtonian fluid the rotation introduces vorticity into the fluid. Then, the fluid moves in the horizontal 
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planes with higher velocities. On account of this motion, the velocity of the fluid perpendicular to the planes 

reduces, and hence delays the onset of convection. When the fluid layer is assumed to be flowing through an 

isotropic and homogeneous porous medium, free from rotation or small rate of rotation, then the permeability of 

porous medium has a destabilizing effect. As permeability of porous medium increases, the void space increases 

and as a result of this, the flow quantities perpendicular to the planes will clearly be increased. Thus, increasing 

Darcy's number leads to decrease in critical thermal Rayleigh number. In case of high rotation, the motion of the 

fluid prevails essentially in the horizontal planes. This motion is increased as permeability of porous medium 

increases. Thus the component of the velocity perpendicular to the horizontal planes reduces, leading to delay in 

the onset of convection. Hence permeability of porous medium has a stabilizing effect in the case of high rotation. 
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