
     Journal of Naval Architecture and Marine Engineering                                                                                                        
June, 2020 

                                  http://dx.doi.org/10.3329/jname.v17i1.37777                           http://www.banglajol.info 
 
 
 

1813-8535 (Print), 2070-8998 (Online) © 2020 ANAME Publication. All rights reserved.            Received on:  Aug 2018 

 

HEAT AND MASS TRANSFER EFFECT ON A RADIATIVE SECOND 
GRADE MHD FLOW IN A POROUS MEDIUM OVER A 

STRETCHING SHEET 
A. P. Baitharu1, S. N. Sahoo2, G. C. Dash3 

1Department of Mathematics, College of Engineering and Technology, Bhubaneswar, Odisha,  INDIA, Email: 
abaitharu2@gmail.com 
2Department of Mathematics, Faculty of Engineering and Technology, Institute of Technical Education and Research, Siksha 
‘O’ Anusandhan (Deemed to be University), Khandagiri,  Bhubaneswar-751030, Odisha, INDIA, Email: 
sachimath1975@gmail.com 
3Department of Mathematics, Faculty of Engineering and Technology, Institute of Technical  Education and Research, 
Siksha ‘O’ Anusandhan (Deemed to be University), Khandagiri, Bhubaneswar-751030, Odisha, INDIA, Email: 
gcdash45@gmail.com 

Abstract:  
The present problem deals with a radiative second grade fluid flow through a porous medium over a 
semi infinite stretching sheet. In the present study, governing equations for the third grade fluid has 
been formulated. However, computation has been made for a second grade fluid as a particular case 
of third grade of fluid. The bounding surface is subjected to power law temperature distribution and 
heat flux. Confluent hypergeometric function and Runge-Kutta method of fourth order are used to 
solve the transformed non-linear governing equations. The physical variables such as velocity, 
temperature and concentration are studied in response to radiative heat transfer, electromagnetic 
mechanical force and porosity of the medium. The important findings of the present study are: the 
applied transverse magnetic field prevents the growth of boundary layer but accelerates the mass 
transfer; the presence of porous medium in a higher Reynolds number-fluid reduces the skin friction 
which is desirable for maintaining laminarity of flow and also for reduction of heat transfer rate at 
the surface; the temperature distribution decreases with the thermal radiation for both PST and PHF 
cases. In asymptotic case, presence of thermal radiation improves thermal stability. 

 

Keywords: Thermal radiation, MHD flow, second and third grade fluid, stretching sheet, porous medium, 
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NOMENCLATURE 
 

x, y coordinates Cp specific heat at constant pressure 

u, v 

 

velocity components along x-axis and y-axis 
respectively 

k* 

Kp* 

absorption coefficient 

dimensional porosity parameter 

P spherical pressure Kp non-dimensional porosity parameter 

I identity matrix Pr Prandtl number 

A1, A2 Rivlin-Ericksen tensors Sc Schmidt number 

A positive constant (stretching rate) Rd thermal radiation parameter 

T dimensional temperature l characteristic length 

G non-dimensional temperature (PHF) D thermal diffusivity of the medium 

C dimensional concentration Ec Eckert number 

Tw temperature at the wall B1,B2,B3 Constants 

Cw concentration at the wall Rc elastic parameter 



A. P. Baitharu, S. N. Sahoo, G. C. Dash/ Journal of Naval Architecture and Marine Engineering, 17(2020) 51-66 

 

Heat and mass transfer effect on a radiative second grade MHD flow in a porous medium over a stretching sheet 52

T∞               ambient temperature Greek symbols 
C∞              ambient concentration   non-dimensional temperature (PST) 

Q dimensional heat source parameter   non-dimensional concentration 

B0 external magnetic field   fluid density 

D mass diffusion coefficient   kinematics viscosity ( /   ) 

k fluid thermal conductivity   Stefan-Boltzmann constant 

Kc* dimensional chemical reaction Parameter   non-dimensional heat source parameter 

Kc non-dimensional chemical reaction Parameter   coefficient  of viscosity 

M magnetic parameter 1 2 3, ,    material constants 

1. Introduction 

The study of magneto-convective flow of visco-elastic fluids over a continuously moving wall has wide 
applications in technological and manufacturing processes. These include extrusion of plastic sheets, cooling of 
metallic plates, production of synthetic materials, aerodynamic and condensation processes etc. The present 
study finds numerous applications in problems of practical interest such as flows over stretching sheets (polymer 
extrusion), through porous medium (insulation and application in agriculture and biology), thermal radiation (a 
frequent occurrence in metallurgical processes) and electromagnetic application (electric motors, pumps). 
Therefore, it is an open problem of interest to many researchers. Further the spinning of fibers and glass blowing 
involve the flow due to the stretching surfaces. Most importantly, the qualities of final product depend upon the 
rate of heat and mass transfer at the stretching surface that warrants the present study. Crane (1970) presented a 
similarity analytical solution for two dimensional boundary layer flows due to stretching of a sheet. Carragher 
and Crane (1982) took up the heat transfer in the flow over a stretching sheet when the temperature difference 
between the surface and the ambient fluid is proportional to a power of spatial distance measured from the fixed 
point. Andersson and Dandapat (1991) studied the flow of a power law fluid past a stretching surface. Later, 
Chaim (1994) took up a stagnation point-flow of viscous fluid towards a stretching plate. An interesting result 
he arrived at, during the study that the flow near the plate is identical with the inviscid flow far off the plate and 
hence no boundary layer is formed near the plate but this result is an outcome of the restrictive assumption that 
the stretching velocity is proportional to the distance from the stagnation point such that this velocity is identical 
with the stagnation flow-velocity in the inviscid region. Abel et al. (2002) have considered the boundary layer 
flow and heat transfer of a visco-elastic fluid in a porous medium over a non-isothermal stretching sheet. Their 
study reveals that when the flow is through a porous medium, the viscosity parameter significantly decreases the 
surface temperature and the permeability parameter decreases the skin friction. Prasad et al. (2003) have studied 
the chemical reaction rate in a laminar visco-elastic fluid in presence of porous medium over a stretching sheet 
and have found that destructive chemical reaction reduces the thickness of concentration boundary layer and 
enhances the mass transfer rate from the sheet to the fluid. Liu (2005) has performed an analysis on the flow and 
heat transfer phenomena of second grade electrically conducting fluid in a porous medium over a stretching 
sheet with a transverse magnetic field and has found that for large Eckert number, the heat is transferred from 
the fluid to the surface but the reverse effect is observed for small Eckert number. Afzal (2010) has analyzed 
momentum and thermal boundary layer over a two-dimensional non-linear stretching surface in a stationary 
fluid and has presented the thermal boundary layer closed form solution, series solution and asymptotic solution 
for very large and small values of Prandtl number. Further, Prasad et al. (2010), Cortell (2011), Nandeppanavar 
et al. (2011), Rashidi et al. (2014) and Kar et al. (2014) enriched the literature on flow past a stretching surface 
due to their significant contributions. Sahoo et al. have studied the effect of heat source and chemical reaction 
on MHD flow past a vertical plate subject to a constant motion with variable temperature and concentration. 
Rajput and Kumar (2019) have analysed theoretically the effects of radiation, chemical reaction and porosity of 
the medium on unsteady flow of a viscous, incompressible and electrically conducting fluid past an 
exponentially accelerated vertical plate with variable wall temperature and mass diffusion in the presence of 
transversely applied uniform magnetic field. They have obtained the results which claim to have applications in 
the research related to the solar physics dealing with the sunspot development, the structure of rotating magnetic 
stars, cooling of electronic components of a nuclear reactors etc. 
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The effect of thermal radiation on mixed convection flow past a stretching sheet in a porous medium has 
attracted a lot of research interests in the past few decades. In modern metallurgical and continuous casting of 
metals, the study of MHD flow of an electrically conducting fluid in the boundary layer flow due to stretching 
of sheet is of considerable interest. Many researchers such as Abel et al. (2005), Sidheswar and Mahabaleswar 
(2005) and Singh (2008) have studied the flow problems where the flow is caused due to stretching of sheets. 
Pal (2011) has studied the unsteady laminar boundary layer flow of a viscous incompressible fluid and heat 
transfer phenomenon with thermal radiation over continuously stretching permeable surface in the presence of a 
non-uniform heat source/sink. The recent works of Panda et al. (2012), (2011) and (2010) have contributed to 
heat and mass transfer on MFD flow through porous media over an accelerating surface in the presence of 
constant and oscillatory suction/injection on viscous and visco-elastic fluids subject to volumetric 
variable/constant heat sources. In contrast to heat conduction, in case of mass diffusion, the average velocity of 
the particles of the individual materials in a volume element can be different from each other, so that the relative 
movement of individual particle to each other is macroscopically perceptible. Hence, consideration of mass 
diffusion is taken care of in the present analysis. Thermal radiation is released from all bodies and is dependent 
on their material properties and temperature. The radiative energy may be transferred or absorbed in the body, 
i.e., flow domain. It plays a vital role in modifying the flow and heat transfer processes. 
 
The following lines describe Rheological equations of the third grade fluid. The Rivlin-Ericksen fluids are 
acceptable from theoretical and experimental point of view. The special cases of the model are the fluids of 
second grade and third grade. Following Fosdick and Rajagopal (1980), the stress tensor for third grade fluid is 
given by  

2 2
1 1 2 2 1 3 1 1( )pI A A A trA A                                                                                                             (1) 

1
2 1 1

=

=

T
1

T

A L+ L

dA
A + A L+ L A

dt






                                                                                                                                     (2) 

where L V   and /d dt  is the material derivative and the material constants should satisfy the relations 

1 3 1 2 30, 0, 0, 24                                                                                                               (3) 

Hence Equation (3) gives  1 1 20, 0, and + 0                                                                                     (4) 

 
Further Rajagopal (1979) showed that unlike second grade fluids, third grade fluids provide additional drag 

which is of the same sign as that of viscous terms. Fosdick and Satrughan (1981) showed that when 1 0  , non 

physical results occur. Further Pakdemirli (1992) derived boundary layer equations of third grade fluids for 
steady two dimensional fluids using a special co-ordinate system (orthogonal curvilinear set of co-ordinates). 
Then it is shown that the boundary layer equations do not have similarity solutions. Further Pakdemirli 
calculated the shear stress on the boundary for the co-ordinate system. Hayat (2007) studied the steady flow of 
third grade fluid in a porous half space using Homotopy Analysis Method (HAM). Moreover, Sahoo and Poncet 
(2011) studied third grade fluid flow past an exponentially stretching sheet with partial slip boundary condition.  
The Prandtl number Pr, signifies the ratio of momentum diffusivity to thermal diffusivity. Fluid with lower Pr 
possesses higher thermal conductivity and gives rise to thicker boundary layer structure, so that, heat can diffuse 
from the bounding surface faster than higher Prandtl number fluid. In order to obtain thinner boundary layer as 
well as to reduce the rate of thermal conductivity as per the requirement, the analysis for large values of Prandtl 

number  Pr  is motivated.  

 
Liu (2005) has confined his discussion to flow and heat transfer aspects leaving aside the heat losses due to 
radiation which is an important criteria for radiating surfaces and high temperature flow phenomena. He has not 
considered mass transfer ignoring diffusing species. Kar et al. (2014) have studied the visco-elastic fluid model 
and mass transfer in a chemically reactive species. But they have considered a permeable surface with a cross 
flow. In the present study we have an impermeable surface having no suction/injection. Therefore, the case of 
Kar et al. (2014) cannot be discussed as a particular case of the present study.  
 
To obviate the limitations of the earlier works, we have incorporated thermal radiation and mass transport 
aspects of a chemically reactive diffusing species in the present study. Our study is confined to an 
incompressible, electrically conducting, steady and laminar flow of a second grade fluid past a vertical 
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stretching porous wall in the presence of thermal radiation and chemical reaction. The work is more amenable to 
industrial application because corrosive/reactive species are abundant in industrial wastes. The industrial liquids 
are also conducting in nature. Further, the inclusion of first order chemical reaction in mass transport equation 
which generates/absorbs heat, justifies the inclusion of heat source in the heat equation. The analytical solution 
of the study is accomplished by hypergeometric function (Kummer’s function) and the numerical solution by 
Runge-Kutta method provides the consistency and reliability. An interesting outcome is to note that, the 
inclusion of thermal radiation in asymptotic case indicates thermal stability which is desirable in the thermal 
transport processes. 
 
2. Flow Analysis                 
 
Consider a two dimensional steady convective laminar flow of an electrically conducting incompressible grade 
fluid past a stretching sheet with the plane y=0. Due to the linear stretching of the bounding surface, the flow is 

generated. A uniform transverse magnetic field B0 of moderate strength is applied to the flow field. Let u and v 

be the velocity components along x-axis and y-axis respectively. From a thin slit at the origin, the stretching 
sheet is originated as shown in Fig.1. Due to moderate magnetic field strength, the induced magnetic field is 
neglected. The heat transfer and mass transfer phenomena are subjected to volumetric heat source, dissipative 
heat energy, thermal radiation and chemical reaction.  

 

x 

y 

B0 Stretching Sheet 

      Slit 

Boundary Layer 

 
                                                                   Figure1: Flow geometry 
 

The governing boundary layer equations of third grade fluid following Pakdemirli (1992) are given by 

0
u v

x y

 
 

 
                                            (5) 

2 22 2 2 3 2 2
3 01 2

2 2 2 3 2 2

62
( ) 3

*

B uu u u u u v u u v u u
u v u v u

x y y x y y y y y y y y Kp

   
   
              

                       
                         (6) 

If we put 3 0  and 2 1    Equation (6) coincides with Equation (6) of second grade fluid of Liu (2005) 

which is given by 
22 2 2 3
01

2 2 2 3
( )

*

B uu u u u u v u
u v u v u

x y y x y y y y Kp

 
 
        

               
                                                 (7) 

 

The appropriate boundary conditions are 

, 0 at 0

0, / 0 as

u Ax v y

u u y y

   
  ∂ ∂ 

            (8) 

 

The condition / 0 asu y y   has been discussed by Garg and Rajagopal (1991). We introduce the 

following similarity transformations satisfying Equation (5) as discussed by Rajagopal et al. (1984).  

  ( )u Axf  , 1 2( ) ( )  /v A f  ,  1 2( ) /A / y           (9) 

where  f  is the dimensionless stream function and the prime denotes the differentiation with respect to the 
similarity variable .  
 

With the help of Equation (9), Equations (7) and (8) are reduced to  

  (2 ) 1 /      2 2 ivf - ff = f + Rc f  f - f - ff - M Kp f                    (10) 
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and  
0, 1 at 0

0, 0 as

   
   

f f

f f


                                                                                                (11) 

where 1Rc A  , 2
0M B A  and  *K p A K p  . 

An exact solution to (10) is given by   

   1
1 ( )  f exp mη

m


                                                                                                                                (12) 

where  (1 ( 1 / )) (1 )   m M Kp Rc  .  

The dimensionless wall shear stress at the stretching sheet ( 0)  , the skin friction coefficient fC  is given by  

1 2
1 2

(0) 2
(1 3 ) (0) = -2 (1 3 )

2
12

f x2
w x

C = + Rc f m + Rc Re
ρu Re

                      (13) 

where 0
2

xRe = B x     is the local magnetic Reynolds number.                    
 
3. Heat Transfer Analysis 
 
The heat transfer in a flow of a visco-elastic electrically conducting fluid is obtained as the balance of energy for 
a fluid element in motion in conjunction with viscous dissipation. It is also to be noted that during the motion of 
a visco-elastic second grade fluid, a certain amount of energy is stored up in the flow as strain energy and some 
energy is lost due to thermal radiation, viscous as well as Ohmic dissipation. In the present study we have 
neglected the Ohmic dissipation as the applied magnetic field is of low magnetic induction (small local 
magnetic Reynolds number). On the other hand, we have accounted for an internal volumetric temperature 
dependent heat source which is of frEquent occurrence along with thermal radiation. Using the boundary layer 
approximations, the heat transfer Equation for third grade fluid is given by 

 
2 42

1 32
2 r

p

qT T T u u u u u
C u v k u v Q T T

x y y y y y x y y y
    

                
                               

    (14) 

When 3 0  , Equation(14) reduces to 

 
22

12 

             
                         

r
p

qT T T u u u u
C u v k u v Q T T

x y y y y y x y y
           (15) 

Using Rosseland approximation for radiation as outlined by Brewstar (1972), we have   
44

3


 

r *

σ T
q

k y
, 4 3 44 3  T T T T         (16) 

Therefore, Eq. (15) is reduced to 

 

22

12

3 2

2

16

3




            
                     


  



p

*

T T T u u u u
C u v k u v

x y y y y y x y

T T
Q T T

k y

  

          
(17)

 

We have discussed the temperature distribution in two forms such as (i) Prescribed Surface Temperature and (ii) 
Prescribed Surface Heat Flux. 
 
3.1 The prescribed surface temperature (PST):  
 
The boundary conditions are    

 
2

10 : ( / ) ; :wy T T T B x l y T T                                 (18) 
 According to Nield and Bejan (1998), the temperature is now expressed as  

2
1( ) ( / ) ( )T T B x l    , where w( ) ( ) / ( )T T T T                              (19) 

Using Eqs. (9), (12) and (19) in Eqs. (17) and (18), we obtain  
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3 3 3
- (2 - ) ( ) ( )

3 4 3 4 3 4
2RdPr RdPr RdPrEc

θ + fθ f β θ = - f + Rc f f  f - ff
Rd + Rd + Rd +

          
                               (20) 

and  0 : 1 ; : 0,                                                                                                   (21)  

where pPr = C / k , pQ A C  , 34*Rd = kk σT and  2 2
1 .pEc A l B C  

Introducing the new variable -mηre    with 
3

(3 4)2

PrRd
r =

m Rd +
, Eqs. (20) and (21) reduce to 

( )
( ) ( )

( )

2

2 2 2

d θ dθ βr 3RdPrEc 1+ Rc ξ
ξ + 1- r - ξ + 2+ θ = -

dξ dξ ξ m 3Rd +4 r ,                    (22) 
( ) 1r   and (0) 0.                                                                                                           (23) 

The solution of (22) in view of the boundary conditions (23) in terms of confluent hypergeometric function 
(Kummer’s function) ( )F a,b,ξ is as follows  

( )/2 2

4
1

2
( ) (1 )( ) ( )

4
1

2

r+s

r + s -
F ,s + ,ξ

θ ξ = + H - / r - H - / r
r + s -

F ,s + ,-r
 

  
  

  
  
                                                    (24) 

where  4s r r    ,  
3 (1 )

,
(3 4)(4 2 )

EcPrRd + Rc
H =

Rd + - r + rβ
 

( )
( ) 1 ,

( )
nn

n=1 n

a
F a,b,ξ = + ξ

b

∞

 

( ) ( 1)( 2) ( 1)na a a+ a+ L a+ n -  and  ( ) ( 1)( 2) ( 1)nb b b b b n      

The solution (24) in terms of   is given by 

  2

2 1
2

(1 ) ( ( ) ) / 2 ,
2 1

2

-mη

- mη

r s
F - ,s + ,-re

θ(η)= + H exp - r + s m - He
r s

F - ,s + ,-r


 
 
 

 
 
                       (25) 

The rate of heat transfer at the wall, i.e., Nusselt number, Nu is given by 

0 1 2 (0)
( )

y
x

w

T
k

y
Nu x Re

k T T








  


                                        (26) 

2 2
4 2

where (0) (1 ) ( ) 2
2( 1) 2

2 1
2

   
   

    
   

      

r s
F - ,s+ ,-r

r + s - m
θ = + H mr r + s + mH

r + ss +
F - ,s + ,-r

 
 

3.2 The prescribed surface heat flux (PHF): 
 

The boundary conditions for this case are: 
2

w 20 :
T x

y k q B
y l

         
; :y T T          (27) 

Now, we set  
2 1 2

2 ( )
B x

T T g
k l A

 
        
   

         (28) 

Substituting Eqs. (28) and (9) in Eq. (17), we get  
3 3 3

( 2 ) ( ) ( )
3 4 3 4 3 4

2RdPr RdPr RdPrEc
g + fg + β - f g = - f + Rcf f  f - ff

Rd + Rd + Rd +
          

   (29) 
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 and 0 : 1; : 0g g       ,                                                                                         (30)  

where 2( )2 2 1 2
pEc = kA l A / υ B C  which differs from the Eckert number in previous section and all other 

parameters are the same as before.                                                                          
 

Using the same transformation ,mre     Eqs. (29) and (30) reduce to  

3 (1 )
(1 ) (2 )

(3 4)

2

2 2 2

d g dg βr RdPrEc + Rc ξ
ξ + - r - ξ + + g = -

dξ dξ ξ m Rd + r       (31) 
-1dg

d rm
 for r   and 0 for g =                                    (32) 

 

The solution of Equation (31) satisfying the boundary conditions (32) is given by 

 
 

-12 4 21
( ) 2 1 1 1 2

2 2 1 2

r+s r + s -ξ r + s r + s r + s
g ξ = + H × F - ,s + ,-r - r F - ,s + ,-r

m -r s +

        
        

         
 

                                                   
2

2 1
2

r + s ξ
×F - ,s+ ,ξ - H

-r
   
   
   

 ,                    (33) 

 

The following solution ( )g   is obtained by substituting mre     in Eq. (33)   

     -1
4 21

2 2 2 1 1 2
2 2 1 2

-2mη r +s -r+s r+s r +s
g(η)= -He + + H exp r+s mη × F - ,s+ ,-r - r F - ,s+ ,-r

m s+

      
      

      

                               
2 1

2
-mηr + s

F - ,s + ,-re
   
         (34) 

From Eq. (28) the dimensionless wall temperature is obtained as 

  2

0

/ ( )



    
         

2 1 2
B x υ

T -T = g
k l A∞





,        (35) 

where  
1

(0) 2 2 1 2 1
2 2 2

r + s r + s r + s
g = -H + H + F - ,s+ ,-r × F - ,s + ,-r

m

     
     
     

   

                                                                
  1

4 2
1 2

1

r r + s - r + s
F - ,s + ,-r

s + 2


   

 
   (36) 

Asymptotic analysis is important as it is valid for the region with very low thermal conductivity, analogous to 

potential flow  Re  following Schlichting and Gersten (1996). For large values of  Pr ( Pr  ), the 

asymptotic solutions of (20) and (29) are as follows:  
 
Prescribed Surface Temperature: Using Eq. (12) in Eq. (20), we have    

      2 23 3 3
1 2 1

3 4 3 4 3 4
-mη -mη - mηPrRd PrRd PrRdEc

θ + - e θ - e - β θ = - + Rc m e
m( Rd + ) ( Rd + ) ( Rd + )

 
             (37) 

0 : 1; : 0                                                                                                (38) 

Let 2- mηw= θ + He . Then we have 

 3 4 1
1 (2 ) 0

3
-mη -mηRd

w + - e w - e - β w=
PrRd m

  
                                                                              (39) 

 
The boundary conditions are  

0 : 1 ; : 0    w H w                                                                       (40) 
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As the thickness of the thermal boundary layer is of the order 1/ ,RePr  using the coordinate transformation 

3

3 4

η
PrRd

ς =
Rd +

 
 
 

and putting
2(-1/4)ςw = e ψ , Equations (39) and (40) become 

1 5
0

4 2

2
2

2

d ψ
ς

dς
      

                                                                                     (41) 
0 : 1 ; : 0H                                                  (42) 

 
In the derivation of the parabolic cylindrical equation (41), the limiting case Pr  has been considered. 
From the solution of (41) satisfying boundary conditions (42), we get  

  

 
2-3

2 22 3 4

2

3 1 1 3
1

2 2 2 3 4

4
6 4 3 1 32

.
33 4 2 2 2 3 4

2

PrRd
η

- mη Rd+ - β PrRd
θ(η)= -He + + H e F , , η

Rd +

- β
Γ

PrRd - β PrRd
- ηF , , η

- βRd + Rd +
Γ

 
 
 

   
   

  
 

            
    

    (43) 

4
6 2

(0) 2 (1 ) .
33 4

2

- β
Γ

PrRd
θ = mH - + H

- βRd +
Γ

 
 
 
 
 
 

       (44) 

Prescribed surface heat flux: From the solution of Equation (29) as Pr  , we get 

      

 
-3

2 22 3 4

2

3
3 4 3 1 1 32

1 2
46 2 2 2 3 4

2

4 3 1 3

2 2 2 3 4

2PrRd
η

- mη Rd+

- β
Γ

Rd + - β PrRd
g(η)= -He + + mH e F , , η

- βPrRd Rd +
Γ

- β PrRd
-ηF , , η

Rd +

 
 
 

  
            
   

  
  

    (45) 

3
3 4 2

(0) (1 2 )
46

2

- β
Γ

Rd +
g = -H + + mH

- βPrRd
Γ

 
 
 
 
 
         (46) 

4.  Mass Transfer Analysis 
 
The species concentration equation and the relevant boundary condition are given by  

( )
  
  

2
*

2

C C C
u + v = D - Kc C - C

x y y ∞
        (47) 

2
30 : ( / ) ; :wy = C = C = C + B x l y C C ∞        (48) 

Assuming the concentration profile as 

 2
3( ) ( / ) ( ),C C B x l    where ( ) ( ) / ( ),wη = C - C C - C  ∞      (49) 

the mass transfer Eq. (47) and the boundary condition (48) reduce to   
(2 ) 0+ Scf - Scf + KcSc      ,        (50) 

and 0 : 1 ; : 0       ,        (51) 
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where /Sc D  and Kc=Kc*/A.        

Now, introducing 
2

-mηSc
ζ = - e

m
 , Eqs. (50) and (51) reduce to   

(1 ) 2 0,
2

2 2 2

d Sc d ScKc
ζ + - - ζ + - =

dζ m dζ m ζ

   
 
 

       (52) 

   1 , 0 0.2ζ = -Sc / m             (53) 

 

Using the transformation ( )δ= ζ h ζ , Eqs. (52) and (53) reduce to      

4
(1 ) 0,

2

2

2

d h dh c + d -
ζ + - d - ζ - h =

dζ dζ
 
 
 

        (54)  

   2 2/ ( / ) , 0 0 ,h Sc m Sc m h                (55) 

where 
4

2 2

Sc ScKc
c = , d = c -

m m
and .

2

c+ d
δ =  

 
Eq. (54) is a confluent hypergeometric differential equation and its solution satisfying Equation (55) and on 
back substitution,   in terms of   , is obtained as    

2 1
2

( )
2

2 1
2

-mη
2

2

c+ d Sc
F - , + d,- e

c + d m
η = exp - mη

c + d Sc
F - , + d,-

m



 
    

    
 
 

      (56)  

The rate of mass transfer in terms of Sherwood number (Sh) is given by                                                                                   

2
2

4 ( )2
(0)

2 1 2
2 1

2

2

2

c+ d - Sc
F , + d,-

Sc c+ d - m c + dm
Sh = = -

c+ d Scm + d
F - , + d,-

m



 
         
 
 

                      (57) 

5.  Results and Discussion 
 
The solution of the velocity boundary layer equation has been obtained in a closed form whereas the confluent 
hypergeometric function has been applied to obtain the solution of heat transfer as well as mass transfer 
equations. In order to establish the reliability of the solutions, we have also applied Runge-Kutta method of 
fourth order with shooting technique for solution. The governing equations are formulated for third grade fluid, 
however, the computations and discussions are carried out for the second grade fluid. Also we have mentioned 
the relation between two fluid models in the present study.  
 
5.1 Effect of flow parameters on velocity profile 
 
Figs. 2(a), 2(b) and 3(a), 3(b) depict the transverse and longitudinal components of the velocity profiles for both 
the methods. It is observed that the resistive electromagnetic force decreases the primary as well as transverse 
velocity. This observation is similar to the effect of suction at the plate which reduces the boundary layer 
thickness. But the elasticity and permeability of the medium enhance both the components of velocity. Further, 
it is to note that the asymptotic variation of the primary velocity component aids to the laminarity of the flow 
pattern. Thus, it is concluded that the transverse magnetic field prevents the growth of boundary layer. Figures 
2(b) and 3(b), based upon numerical method show a good agreement. 
 
5.2 Effect of flow parameters on temperature profile 
 
It is observed from Figs. 4(a) and 4(b) (PST case) that the force generated due to interaction of applied magnetic 
field and conducting flowing fluid, enhances the thermal energy in the flow domain but the permeability of the 
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medium absorbs the thermal energy by reducing the temperature.  The observation is compatible to physical 
property of the parameters since the resistive force generated due to transverse magnetic field, decelerates the 
fluid motion generating heat energy, consequently, enhancing the temperature. Further, the increase in Pr, 

reduces the temperature distribution of the flow region. The increase in Pr means slow rate of thermal diffusion, 
which causes a fall in temperature. The similar explanation can be attributed to permeability of the medium also. 
The Fig 4(b) presents the consistency of the two methods in temperature distribution also.     
 

  
(a) Analytical method (b) Numerical method 

Fig. 2: Transverse velocity profile for M, Kp and Rc 
 

  
(a) Analytical method (b) Numerical method 

Fig. 3: Longitudinal velocity profile for M, Kp and Rc 
 
 

  
(a) Analytical method (b) Numerical method 

Fig. 4: Temperature profile for M, Kp and Pr in case of PST. 
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Fig. 5 (PST case) depicts the effect of elastic parameter (Rc), radiation parameter (Rd), Eckert number (Ec) 
and the heat source parameter   . The increase in visco-elastic parameter leads to increase in temperature. 

This is in conformity with the facts that the increase in elastic property results into stored up higher energy, so as 
to increase the thermal energy. Further, the figure reveals that the effect of increasing Ec, increases slightly the 

temperature distribution due to viscous dissipative heat. Moreover, the heat source parameter    also 

increases the temperature distribution.   
 
Figs. 6 and 7 depict the temperature profiles in case of prescribed heat flux (PHF). The effect of all the 
parameters (Fig. 6) on temperature distribution remains same as that of PST case (Fig. 4). Only difference in 
temperature is marked at the bounding surface. The variations depend on the power of heat flux applied to the 
flow which acts as an embedded volumetric heat source in the flow domain. The Fig.7 has been compared with 
Fig. 5 (PST case). It is remarked that the effects of all the parameters remain same except the elastic parameter 
(Rc), where the opposite effect is observed (decrease in temperature) in the presence of heat flux. The higher 

elastic property (increasing Rc) leads to more amount of stored up energy, resulting lower down of temperature 
in the entire fluid mass.  
 

Fig.5: Temperature profile for Rc, Rd, Ec and             

in case of PST 
Fig.6: Temperature profile for M, Kp and Pr                     

in case of PHF                                                                         
 

Fig.7: Temperature profile for Rc, Rd, Ec and   in 

case of PHF 
Fig. 8: Temperature profile for M, Kp and Pr in case 

of asymptotic PST 

Fig. 8 shows the effect of magnetic parameter (M), permeability parameter (Kp) and Prandtl number (Pr) on 
temperature profile in case of asymptotic surface temperature ( Pr , low thermal conductivity). The 
temperature distribution exhibits the negative temperature within a few layers close to the plate indicating 
absorption of thermal energy resulting fall in temperature  and then rises due to prescribed surface plate 
temperature. Further, it is seen that, the fall of temperature is accelerated for higher value of Pr (curves III and 
IV). Due to the low thermal conductivity of the fluid, the thermal energy fails to navigate within the layers close 
to the plate resulting negative temperature distribution which is not for the non-asymptotic case. Hence, the 
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asymptotic analysis reveals the temperature fluctuation near the wall showing thermal instability due to the 
appearance of point of inflexion. This information may have industrial bearing for the right choice of fluid with 
required thermal conductivity. On careful observations it is also found that variation of other parameters, fails to 
affect the temperature distribution. 
 

5.3 Effect of flow parameters on concentration profile 
 

Fig. 9 shows the variation of solutal concentration across the flow field. On careful observation it is seen that 
permeability of the medium (Kp), impacts proactively by reducing the concentration distribution (curve III, IV) 

in comparison with magnetic field parameter (M). However, an increase in M, increases the concentration level 
slightly, since it reduces the velocity across flow domain due to the low momentum diffusivity. 
 

Fig. 10 indicates some fluctuations due to higher value of Sc i.e. for heavier species combined with higher rate 
of chemical reaction. The similar fluctuation is indicated in case of temperature distribution also. The striking 
results indicating the fluctuations in thermal diffusivity (Fig. 8) and mass diffusivity (Fig. 10) are of utmost 
importance in industrial applications. 

Fig.9 Concentration distribution for  M and Kp    Fig.10 Concentration distribution for Rc, Sc and Kc 
 

Table 1: Skin friction coefficient, Cf  (wall shear stress) 
 

M Kp Rc Re Cf 

0.5 0.5 0.5 0.5 -10.8012 

1.0 0.5 0.5 0.5 -11.5470 

0.5 1.0 0.5 0.5 -9.1287 

0.5 0.5 1.0 0.5 -14.9666 

0.5 0.5 0.5 1.0 -7.6376 

0.0 0.5 0.5 0.5 -10.0000 

0.5 0.5 0.0 0.5 -5.2915 

0.5 100 0.5 0.5 -7.0946 

  
5.4 Effect of flow parameters on skin friction, Cf 
 

Table 1 presents the values of skin friction for different values of M, Kp, Rc and Re. It is interesting to note 

that all the entries are negative. It is further observed that fC  increases with the increase in magnetic and 

elastic parameters but decreases with the increase in porosity parameter and Reynolds number. For increasing 
magnetic Reynolds number, the inertia force is predominant and the effect of viscosity is considered to be 
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confined within the boundary layer adjacent to the solid surface. Thus, presence of porous medium in a higher 
Reynolds number-flow is favorable for reducing skin friction which is desirable for maintaining laminarity of 
flow.   
 
5.5 Effect of flow parameters on Nusselt number, Nu 
 
Table 2 presents the values of Nusselt number, measure of the rate of heat transfer coefficient at the solid 

surface for different values of  M, Kp, Pr, Rc, Re, Rd, Ec and . It is observed that Nusselt number 

increases with the increase in magnetic parameter, Prandtl number, Reynolds number and thermal radiation but 
decreases with the increase in porosity, elasticity, heat source and higher value of Eckert number. Therefore, it is 
concluded that, for reduction of heat transfer rate at the wall, it is recommended to reduce the strength of applied 
magnetic field, Prandtl number as well as Reynolds number. It is interesting to note that rate of heat transfer is 

quite sensitive to higher value of Reynolds number (Re), Eckert number (Ec) and heat source parameter    

which contribute significantly to increase/decrease the rate of heat transfer. 
         

Table 2: Nusselt number, Nu (heat flux at the wall) 
 

M Kp Pr Rc Re Rd Ec   Nu 

0.5 0.5 5 0.5 0.5 0.5 0.5 0.5 4.5293 
1.0 0.5 5 0.5 0.5 0.5 0.5 0.5 4.7241 
0.5 1.0 5 0.5 0.5 0.5 0.5 0.5 4.0222 
0.5 0.5 10 0.5 0.5 0.5 0.5 0.5 4.8813 
0.5 0.5 5 1.0 0.5 0.5 0.5 0.5 4.0710 
0.5 0.5 5 0.5 1.0 0.5 0.5 0.5 6.4054 
0.5 0.5 5 0.5 0.5 1.0 0.5 0.5 5.0075 
0.5 0.5 5 0.5 0.5 0.5 3.0 0.5 3.9657 
0.5 0.5 5 0.5 0.5 0.5 0.5 1.0 3.6815 
0.5 0.5 5 0.5 0.5 0.5 0.5 0.0 5.2993 
0.5 0.5 5 0.0 0.5 0.5 0.5 0.5 5.1546 

 
5.6 Effect of flow parameters on Sherwood number, Sh 
 
Table 3 presents the values of Sherwood number measuring the rate of mass transfer at the solid surface for 
different values of M, Kp, Rc, Sc and Kc (Kc >0, exothermic). It is observed that Sherwood number 
increases with the increasing permeability, elasticity and higher rate of chemical reaction but decreases with an 
increasing magnetic field as well as heavier diffusing species. Thus, the decrease in mass transfer at the surface 
is well supported by the physical property of diffusing species as well as exothermic chemical reaction. 
 

Table 3: Sherwood number, Sh (mass flux at the wall) 
 

M Kp Rc Sc Kc Sh 
0.5 0.5 0.5 0.5 0.5 -1.1939 
1.0 0.5 0.5 0.5 0.5 -1.2993 
0.5 1.0 0.5 0.5 0.5 -0.9657 
0.5 0.5 1.0 0.5 0.5 -0.9956 
0.5 0.5 0.5 1.0 0.5 -1.8734 
0.5 0.5 0.5 0.5 1.0 -0.9113 

 
5.7 Effect of flow parameters on temperature gradient, (0)   
 

Table 4 presents the temperature gradients in the presence/absence of thermal radiation. The positive values of 

(0)  indicate the heat flows from the plate to the fluid. In spite of the non-availability of values of all the 

parameters of Table 2 of Liu (2005), we have compared the physical aspects of the parameters. In case of ,  
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“the temperature gradient (0)   should increase, (0)  decrease with  ”. The same observation is made from 

table 4(1st line and last line) in absence of thermal radiation. The other parameters also show good agreement.  
 

Table 4: Comparison of temperature gradient ( (0)  ) 
 

M Kp Pr Rc Ec   

In presence of Rd 
(Rd=0.5) 

In absence of Rd 
(Rd=0.0) 

(0)   (0)   

0.5 0.5 5 0.5 0.5 0.5 6.4054 3.9102 
1.0 0.5 5 0.5 0.5 0.5 6.6809 4.8008 
0.5 1.0 5 0.5 0.5 0.5 5.6882 3.2269 
0.5 0.5 10 0.5 0.5 0.5 6.9031 1.4928 
0.5 0.5 5 1.0 0.5 0.5 5.7573 3.4458 
0.5 0.5 5 0.5 1.0 0.5 6.2460 4.6172 
0.5 0.5 5 0.5 0.5 1.0 5.2064 3.0922 

 
It is further observed that an increase in M, increases the surface temperature gradient in the presence as well as 
absence of radiation indicating more amount of heat energy flows from the plate to the fluid. It is interesting to 
note that permeability of the medium has reverse impacts as compared to magnetic strength in both the cases. 
 
5.8 Effect of flow parameters on temperature gradient, (0)   in asymptotic case 
 

Table 5 shows that (0) 0 (0) 0      , i.e. the wall is warmer than the fluid outside it in the presence of 

thermal radiation. It is interesting to note that for higher value of Ec (Ec=1) and ( 1)   , (0) 0   which 

shows that heat flows from the boundary layer to the plate (heating of the plate). It is also seen that effect of all 
the parameters, except Pr, has the same effect irrespective of the flow phenomena exposed to thermal radiation 

or not. The rate of heat transfer increases with higher value of Pr but the reverse effect is observed in the 
absence of thermal radiation. 
  

Table 5: Comparison of temperature gradient ( (0)  ) in asymptotic case 
 

M Kp Pr Rc Ec   
In presence of Rd 

(Rd=0.5) 
In absence of Rd 

(Rd=0.0) 
(0)   (0)   

0.5 0.5 100.0 0.5 0.5 0.5 7.3164 1.9729 
1.0 0.5 100.0 0.5 0.5 0.5 7.3009 1.4274 
0.5 1.0 100.0 0.5 0.5 0.5 7.3527 3.2096 
0.5 0.5 150.0 0.5 0.5 0.5 8.9346 1.7268 
0.5 0.5 100.0 1.0 0.5 0.5 7.3008 1.5620 
0.5 0.5 100.0 0.5 1.0 0.5 7.1441 -3.5428 
0.5 0.5 100.0 0.5 0.5 1.0 6.3410 -0.1913 

 
6. Conclusion 
 

Both analytical and numerical methods provide consistency of the solutions. The applied transverse magnetic 
field prevents the growth of boundary layer. The fluid with higher visco-elastic property along with volumetric 
heat source and viscous dissipative heat enhance the fluid temperature, consequently, heat flows from the fluid 
to the bounding surface (PST Case). Most importantly, thermal instability is marked in a few layers close to the 
bounding surface due to low thermal conductivity of the fluid. The permeability of the porous medium impacts 
proactively on the reduction of concentration distribution in comparison with imposed magnetic field. The 
higher value of Schmidt number combined with high rate of chemical reaction gives rise to fluctuation in 
concentration profiles indicating solutal instability. Thus, thermal instability and solutal instability brings 
analogy between high Prandtl number as well as high Schmidt number. The rate of heat transfer at the plate is 
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quite sensitive to high value of Prandtl number, Eckert number and heat source parameter. The presence of heat 
source in the present study reduces the heat transfer at the plate slowing down the cooling of the bounding 
surface. The present analysis includes asymptotic as well as non-asymptotic cases representing high and low 
conductivity fluid properties to encounter cooling and heating of the bounding surface. In metallurgical 
industries, cooling and heating processes are taken care for extraction and processing of metals. 
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