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Abstract:  
Numerical study is performed to examine numerically the stable solution for the incompressible 
viscous steady flow through a curved pipe with circular cross-section. Also the combined effects of 
high Dean Number nD  and curvature   on the flow are investigated. Spectral method is applied as 

a main tool for the numerical technique; where, Fourier series, Chebyshev polynomials, Collocation 
methods, and Iteration method are used as secondary tools. The flow patterns have been shown 
graphically for large Dean Numbers and a wide range of curvature, 0.01 0.9  .Two vortex 
solutions have been found for secondary flow. Axial velocity has been found to increase with the 
increase of Dean number and decrease with the increase of curvature. For high Dean number and 
low curvature almost all the fluid particles leave the inner half of the cross-section. The stable 
solution zone increases with the increase of curvature up to a certain limit, then decrease.  
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1. Introduction 
Flow through curved ducts play very important role in various purposes e.g. chemical, mechanical and 
biological engineering. Curved ducts are used as parts of pipe line, heat exchangers, cooling systems, chemical 
reactors, gas turbines, centrifugal pumps, etc. Uses of curved ducts are also found in human arterial system. The 
first experimental work on curved duct flow was done before about more than one century ago in 1876. Again 
such type of flow was studied by Williams et al.(1902), Eustice (1910, 1911, 1925). But Dean (1927, 1928) was 
the first author to formulate the problem mathematically. Here incompressible viscous fluid flow under constant 
pressure gradient force has been investigated and the flow is found to be dependent on a parameter termed as 

Dean number nD  given by 
3 2

n

a a
D G

L
 ; where,   is the coefficient of viscosity,   is the kinematic 

viscosity, G  is the pressure gradient force, L  is the radius of curvature and a  is the radius of the cross-section. 
This type of flow is called Dean flow. 

In addition to pressure gradient force, because of the centrifugal force resulting from the curvature of the pipe 
curved duct flow exerts interesting flow features. One of these interesting features is the bifurcation of the flow 
in case of Dean number higher than a critical value, which is called Critical Dean number. The bifurcation of the 
flow was first observed by Dennis and Ng (1982) and Fourier finite difference method was used. Dual solution 
was found for small curvature and Dean number larger than 956. Below this value only two vortex solutions 
were found. They used the same Dean number as Dean (1927, 1928) used. Nandakumar and Masliyah (1982) 
also found the bifurcation structure applying the finite difference method. Daskopoulos and Lenhoff (1989) 
found dual solution in Dean flow. Cheng and Mok (1986) performed an experimental study on the bifurcation of 
the flow in a curved circular tube using visualization technique and showed that the critical Dean number 
decreases as curvature increases. Nandakumar and Masliyah (1982) and Kao (1992) studied the bifurcation 
numerically to show that the critical Dean number increases with increase of curvature which contradicts the 
experimental result of Cheng and Mok (1986). So the effect of curvature on bifurcation was not clearly 
understood. Moreover, it is important to find out what type of flow occurs in practice which depends on the 
linear stability of steady solution. Winters (1987) studied the stability of dual solution regarding flow through a 
curved duct using a finite element method. Yanase et al.(1988) studied the linear stability of the dual solution 
for flow through a curved duct on the assumptions of Dean approximation and the two-dimensionality of the 
flow. The two vortex solution is found to be stable against any disturbances. The four vortex solution 
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( 956nD  ) is found to be stable for symmetric disturbance and unstable for asymmetric disturbances. Yanase et 

al.(1994) studied the effect  of curvature  on the dual solution of the flow. The critical Dean number was found 
to increase with increase of curvature. But there is no study regarding the range of Dean number for which we 
get stable solution and the effect of curvature on it, which is the main goal of the present study. 

2. Governing Equations 
For the curved pipe flow we take the coordinate system as shown in the Fig. 1 where, O is the centre of 
curvature, L is the radius of the pipe, a is the radius of the cross-section,   is the circumferential angle,   is the 
axial variable and r is the radial variable. The variables are nondimensionalized as, 

 rq
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Here, , ,u v w    are non-dimensional velocities along the radial, circumferential and axial direction respectively. 

r  is non-dimensional radius, S   is the nondimensional axial variable,   is non-dimensional curvature and p  

non-dimensional pressure. The other variables without primes are dimensional variables. Constant pressure 
gradient force is applied along the axial direction through the centre of cross section. At the centre of the cross-
section 0r   and at the boundary of the cross-section r a , where all the velocity components are zero. In 
dimensionless form this reduces to 0r   at the centre of cross-section and 1r   at the boundary of the cross-
section. With the help of the above dimensionless variables and the boundary conditions the equation of motion 
reduces to the following form, 

    21 cos
sin 0

w w
w

r r r r r

    
  
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where, 
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Here,   is the stream function defined by, 
1

u
r



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 

, v
r
  


. G is the constant pressure gradient force, 

  is the viscosity,   is the kinematic viscosity and nD  is the Dean number. 

The dimensionless flux   is given by, 
1 2

0 0

2
r w d dr



 


     . 

Fig 1. Coordinate system for curved pipe.
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3. Numerical Method of Solution 
The Spectral method which is a very useful numerical tool for solving Navier-Stokes equation (Gottelib and 
Orszag 1977) has been used to solve the equations (1) and (2). Fourier series and Chebyshev polynomials are 
used in circumferential and radial directions respectively. Assuming that steady solution is symmetric with 
respect to the horizontal line of the cross-section,   and w  are expanded as, 

     
1 0

, sin cos
N N

s c
n n

n n

r f r n f r n   
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1 0

, sin cos
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s c
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w r w r n w r n  
 

       

where, N is the truncation number of the Fourier series.  

The collocation points are taken to be, 
2

cos
2

N i
R

N
    

 
[1 1i N   ]. Then we get non-linear equations 

for , , ,s c s c
nm nm nm nmW W F F . The obtained non-linear algebraic equations are solved under by an iteration method with 

under-relaxation. Convergence of this solution is taken up to five decimal places by taking 5
p 10  , where 
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Here, p is the iteration number. The values of M and N are taken to be 60 and 35 respectively for better 
accuracy. 

4. Results and Discussion 
Steady viscous flow through a curved circular pipe is studied for 0.01 0.9   and a wide range of Dean 
number subjected to fully developed flow conditions. The flow is mainly characterized by Dean number which 
depends on the constant pressure gradient force applied along the centre line of the cross-section. And due to the 
curvature of the pipe there induce centrifugal force which results in a secondary flow. 

In Fig. 2 non-dimensional flux ( ) has been plotted against Dean number for different values of curvature. 
With the increase of Dean number, flux increases for all curvature but decreases with the increase of curvature. 
The highest flux is found at 0.01   and 19216nD  . For 19216nD   and 0.01   convergence criteria is 

very poor and as a result no stable solution is found beyond this region. The stable solution zone initially 
increases with the increase of curvature. The largest Dean number to give stable solution is  20384nD   for 

0.4  . For 0.4  , stable solution zone decrease. For 0.9   the highest Dean number to give stable 
solution is 18520nD  .  

 

D
n

  

Fig.2 Dean number nD  versus flux   for different values of curvature 
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Fig. 3: The secondary flow, vector plots of the secondary flow and axial flow at the highest Dean
number for different values of curvature.  
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In Fig. 3 the secondary flow, vector plots of the secondary flow and axial flow at the highest Dean numbers 
have been shown at the first, second and third column respectively. The highest Dean number, increment in 
axial velocity  w , increment in constant   lines    have been given on the right side. 

 

Fluxes for different curvatures have been shown in Fig. 4 for 15000nD   and 18000 . The flux for a specific 

Dean number decreases with the increase of curvature and also the rate of decrease of flux diminishes as 
curvature increase. 

The secondary flow patterns and vector plot of the secondary flow have been shown in Fig. 5 for different 
curvature and Dean number. The increment of constant   lines has been taken as 1.6. Only two vortex 

solution has been found which is symmetric about the line passing through the centre of the cross-section. The 
upper vortex is rotating in anti-clock wise direction and the lower vortex is rotating in clock wise direction. The 
strength of the vortices are same. For small curvature both the vortices are strong in the inner half of the cross-
section.  But with the increase of curvature the strength of the vortices are shifted towards the outer half of the 
cross-section. The arrows in the vector plots show the direction and magnitude of the secondary velocity of the 
particles. The secondary velocity of the particles near the wall in the upper and lower portion is greater in 
magnitude than that of the particles in the middle. This is due to the combined effect of centrifugal force and 
frictional force. The strength of the vortices increase with the increase of Dean number for all curvature but 
decrease with the increase of curvature. This is due to the decrease in centrifugal force for increase in curvature. 

Contour plots of the axial flow have been shown in Fig.6 for different values of curvature. The axial flow is 
greater in magnitude than secondary flow and it varies a great deal with curvature. As a result the difference 
between two consecutive contours of the axial flow has been taken different for different curvatures and 
different Dean numbers, which are given in the Table 1. The axial flow increase with the increase of Dean 
number. As curvature decreases the magnitude of the axial flow gets higher. At very high Dean number and 
small curvature almost all the particles are shifted towards the outer half of the cross-section and a high velocity 
band inside the outer wall of the cross-section is formed. With the increase of curvature the high velocity band 
expands towards the inner half of the cross-section. For high Dean number and high curvature triple peaked 
axial flow patterns are found. With the increase of curvature and Dean number the peak near the outer wall is 
diminished but other two peaks are multiplied. 

  

  
Fig. 4 Flux   versus curvature   for Dean number nD  15000(♦), 18000(●) 
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Fig. 5 Stream lines and vector plots of the secondary flow at different values curvature   0.01, 0.05, 0.1, 0.2, 0.3, 
0.4, 0.5, 0.6, 0.7, 0.8, 0.9  and Dean number 500,5000,10000,15000nD   
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Fig. 6 Contour plots of the axial flow at different values of curvature   0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8, 0.9 and Dean numbers 500,5000,10000,15000nD   
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Table 1: Difference between the contours for various values of Dean number and curvature 

 w  at nD =500 w  at nD =5000 w  at nD =10000 w  at nD =15000 

  0.01 25 25 165 350 
  0.05 25 25 165 350 
  0.1 25 25 165 350 
  0.2 25 25 165 350 
  0.3 25 25 165 350 
  0.4 25 25 165 350 
  0.5 25 25 150 320 
  0.6 25 25 140 300 
  0.7 25 25 140 300 
  0.8 25 25 140 300 
  0.9 25 25 110 290 

5. Conclusion 
Two vortex solutions have been found and the strength of the vortices is shifted to the outer half from the inner 
half with the increase of curvature. The axial flow is shifted towards the outer wall and for high Dean number a 
high velocity band is formed which gradually gets stronger with the increase in Dean number. Triple pecked 
axial flow is found at high Dean number and high curvature. The stable solution range increases with the 
increase in curvature but decrease when  0.4. 
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