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Abstract:  
The Soret and Dufour effects of an unsteady free convection flow magnetohydrodynamic and viscous dissipating 
fluid past an impulsively started vertical plate has been analyzed. The local unsteady similarity solutions of the 
transformed dimensionless equations for the flow. With appropriate transformations the boundary layer equations 
are transformed into nonlinear ordinary differential equations. These equations are solved numerically by a finite 
element method. The effects of the various parameters on the velocity, temperature and concentration profiles as 
well as the skin-friction coefficient, Nusselt number and Sherwood number are presented graphically and in 
tabulated form. 
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 NOMENCLATURE 
 

Greek symbols  

0U   the uniform velocity α  the thermal diffusivity 

( )v t the suction velocity at the plate u  dimensionless velocity component 

pc  specific heat at constant pressure φ dimensionless concentration 

f  dimensionless stream function  ,x y  dimensionless cartesian coordinates 
g  acceleration due to gravity  β co-efficient of thermal expansion 

Gr  Grashof number θ dimensionless temperature 
Du  Dufour number η  dimensionless similarity variable 

mD  the mass diffusivity 
Tk  the thermal diffusion ratio 

mT  the mean fluid temperature Ec  Eckert number 

M  magnetic parameter *β co-efficient of concentration expansion 
Gm  solutal Grashof number Sc  Schmidt number 

0B  the magnetic induction µ , ν  dynamic and  kinematic viscosities  

Pr  Prandtl number ρ  density of the fluid    

T  temperature of the boundary layer σ  electrical conductivity  

T∞  temperature in the fluid far away from plate 
sc the concentration susceptibility 

C  the species concentration ψ  stream function  

C∞  Concentration in the fluid far away from plate Sr  Soret number 

Nu  Nusselt number Sh  Sherwood number 

fC skin-friction coefficient    
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1. Introduction 
  
Coupled heat and mass transfer finds applications in a variety of engineering applications, such as the migration 
of moisture through the air contained in fibrous insulation and grain storage installations, filtration, chemical 
catalytic reactors and processes, spreading of chemical pollutants in plants and diffusion of medicine in blood 
veins. Free convection flow of an incompressible viscous fluid past an infinite or semi-infinite vertical plate has 
been studied since long because of its technological importance. Callahan and Marner (1976) solved the 
problem of transient free convection with mass transfer on an isothermal vertical plate using an explicit finite 
difference scheme. Unsteady free convective flow on taking into account the mass transfer phenomenon past an 
infinite vertical porous plate with constant suction was studied by Soundalgekar and Wavre (1977). 
Soundalgekar (1979) studied the effects of mass transfer and free convection currents on the flow past an 
impulsively started vertical plate. In these studies the magnetohydrodynamic phenomena is ignored. However in 
metallurgical transport systems, by drawing plates in an electrically conducting fluid subjected to a transverse 
magnetic field, the rate of cooling can be controlled and the final desired characteristics can be further refined.  
Magnetohydrodynamic flows has applications in meteorology, solar physics, cosmic fluid dynamics, 
astrophysics, geophysics and in the motion of earthes core. Shanker and    Kishan (1997) presented the effect of 
mass transfer on the MHD flow past an impulsively started infinite vertical plate. Elabashbeshy (1997) studied 
heat and mass transfer along a vertical plate in the presence of magnetic field. 

In all these studies Soret / Dufour effects are assumed to be negligible. Such effects are significant when density 
differences exists in the flow regime. For example when species are introduced at a surafce in fluid domain, 
with different (lower) density than the surrounding fluid, both Soret and Dufour effects can be significant. Also, 
when heat and mass transfer occur simultaneously in a moving fluid, the relations between the fluxes and the 
driving potentials are of more intricate nature. It has been found that an energy flux can be generated not only by 
temperature gradients but by composition gradients as well. The energy flux caused by a composition gradient is 
called the Dufour or diffusion-thermo effect. On the other hand, mass fluxes can also be created by temperature 
gradients and this is the Soret or thermal-diffusion effect. The thermal-diffusion (Soret) effect, for instance, has 
been utilized for isotope separation, and in mixture between gases with very light molecular weight (H2, He) and 
of medium molecular weight (N2, air), the diffusion-thermo (Dufour) effect was found to be of a considerable 
magnitude such that it cannot be ignored (Eckert and Drake (1972)). In view of the importance of these above 
mentioned effects, Dursunkaya and Worek (1992) studied diffusion-thermo and thermal-diffusion effects in 
transient and steady natural convection from a vertical surface, whereas Kafoussias and Williams (1995) studied 
the same effects on mixed free-forced convective and mass transfer boundary layer flow with temperature 
dependent viscosity. Recently, Anghel et al. (2000) investigated the Dufour and Soret effects on free convection 
boundary layer over a vertical surface embedded in a porous medium. Very recently, Postelnicu (2004)  studied 
numerically the influence of a magnetic field on heat and mass transfer by natural convection from vertical 
surfaces in porous media considering Soret and Dufour effects. 
  
Unsteady free convection flows of dissipative fluids past an infinite plate have received a little attention because 
of non-linearity of the governing equations. Gebhart (1962) stated that “a significant viscous dissipation may 
occur in natural convection in various devices which are subject to large deceleration or which operate at high 
rotational speeds. Viscous dissipation effects may also be present in stronger gravitational fields and in 
processes wherein the scale of the process is very large, e.g., on larger planets, in large masses of gas in space, 
and in geological processes in fluids internal to viscous bodies”. Gebhart and Mollendorf (1969) considered the 
effects of viscous dissipation for an external natural convection flow over a surface. Soundalgekar (1972) 
analyzed the effect of viscous dissipative heat on the two-dimensional unsteady, free convective flow past an 
infinite vertical porous plate when the temperature oscillates in time and there is constant suction at the plate.  

However, the study of Soret and Dufour effects on unsteady MHD free convection flow of a dissipative fluid 
has received a little attention. Hence, the objective of the present paper is to analyze the Soret and Dufour 
effects on unsteady MHD free convection flow of a viscous incompressible fluid past an impulsively started 
vertical porous plate by taking viscous dissipation into account. The governing equations are transformed by 
using similarity transformation and the resultant dimensionless equations are solved by using the finite element 
method. The effects of various governing parameters on the velocity, temperature, concentration, skin-friction 
coefficient, Nusselt number and Sherwood number are shown in figures and tables and analyzed in detail. 
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2. Mathematical Analysis  
 
An unsteady two-dimensional free convection flow of a viscous incompressible electrically conducting and 
dissipating fluid along an impulsively started vertical porous plate is considered. The x- axis is taken along the 
plate in the upward direction and the y- axis is taken normal to the plate. Initially, the plate and the fluid are at 
the same temperature T∞ and the concentration C∞. At time t>0, the plate starts moving impulsively in its own 
plane with a velocity U0 and the plate temperature and concentration are raised to Tw and Cw respectively and 
are maintained constantly thereafter. A uniform magnetic field is applied in the direction perpendicular to the 
plate. The fluid is assumed to be slightly conducting, and hence the magnetic Reynolds number is much less 
than unity and the induced magnetic field is negligible in comparison with the applied magnetic field. It is 
further assumed that there is no applied voltage, so that electric field is absent. It is assumed that all the fluid 
properties are constant except that of the influence of the density variation with temperature and concentration 
in the body force term (Boussinesq’s approximation). Then, under the above assumptions, the governing 
boundary layer equations of the flow field are 
Mass conservation  

0v
y
∂

=
∂                                                                                                                          (1) 

Momentum conservation  

( ) ( )
22

* 0
2

Bu u uv g T T g C C u
t y y

σν β β
ρ∞ ∞

∂ ∂ ∂
+ = + − + − −

∂ ∂ ∂
                                        (2) 

Thermal energy conservation  
22 2

2 2
m T

s p p

D kT T T C uv
t y y c c y c y

να
⎛ ⎞∂ ∂ ∂ ∂ ∂

+ = + + ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
                                                             (3) 

Species conservation  
2 2

2 2
m T

m
m

D kC C C Tv D
t y y T y

∂ ∂ ∂ ∂
+ = +

∂ ∂ ∂ ∂
                                                                             (4) 

The initial and boundary conditions are 

0 : 0, 0, ,t u v T T C C∞ ∞≤ = = = =     
( )00 : , , , 0w wt u U v v t T T C C at y> = = = = =                                          (5) 

            0, 0, ,u v T T C C as y∞ ∞→ → → → → ∞  

In order to obtain a local similarity solution in the time dependent problem under consideration, a time 
dependent length scale δ  is taken as 

( )tδ δ=                                                                                                                       (6) 
In terms of this length scale, a convenient solution of Equation (1) is considered to be in the following form 

( ) 0v v t v ν
δ

= = −                                                                                                           (7) 

where 0v is the suction parameter. 
In order to write the governing Equations and the boundary conditions in dimensionless form, the following 
non-dimensional quantities are introduced. 

( ) ( ) ( ) ( ) 2

0
0
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where f is the dimensionless velocity and η is the dimensionless variable. 
In view of the Equations (6) - (8), the Equations (2), (3) and (4) reduce to the following dimensionless form 

0 0df f v f G r G m M f
d t

δ δη θ φ
ν

⎛ ⎞′′ ′ ′+ + + + − =⎜ ⎟
⎝ ⎠

                                                        (9) 

2
0

1
Pr

d v D u Ec f
dt

δ δη θ θ θ φ
ν

⎛ ⎞ ′ ′ ′′ ′′ ′− − = + +⎜ ⎟
⎝ ⎠

                                                           (10) 

0
1d v Sr

dt Sc
δ δη φ φ φ θ
ν

⎛ ⎞ ′ ′′ ′′− − = +⎜ ⎟
⎝ ⎠

                                                                           (11) 

The corresponding dimensionless boundary conditions are 

1, 1, 1 0f a tθ φ η= = = =  
0 , 0 , 0f a sθ φ η→ → → → ∞  

Now, the Equations (9) - (11) are locally similar except d
d t

δ δ
ν

⎛ ⎞
⎜ ⎟
⎝ ⎠

, where t appears explicitly. Thus, the local 

similarity condition requires the form d
d t

δ δ
ν

⎛ ⎞
⎜ ⎟
⎝ ⎠

in the Equations (9) - (11) must be a constant quantity.  

Hence, following Hasimoto (1956), Sattar and Hossain (1992) and Sattar et al. (2000), one can try a class of 
solutions of the equations (9) - (11) by assuming that 

           
d
dt

δ δ λ
ν

⎛ ⎞ =⎜ ⎟
⎝ ⎠

(a constant)                                                                               (13) 

Integrating equation (13), we have 

2 tδ λν=                                                                                                               (14) 

where the constant of integration is determined through the condition that δ=0 when T 

t=0. Here the problem is considered for small time. In this case the normal velocity in Equation (7) will be large 
i.e., suction will be large, which can be applied to increase the lift of airfoils. From Equation (14), choosing λ 
=2, the length scale ( ) 2t tδ ν= exactly corresponds to the usual scaling factor for various unsteady 
boundary layer flows (Schlichting (1968)). Since δ is a scaling factor as well as a similarity parameter, any 
value of λ in Equation (13) would not change the nature of the solutions, except that the scale would be 
different. 

In view of the Equation (13) (with λ =2), the Equations (9) - (11) reduce to the following dimensionless 
ordinary differential equations, which are locally similar in time but not explicitly time dependent. 

( )02 0f v f Gr Gm Mfη θ φ′′ ′+ + + + − =                                                              (15) 
( ) 2

0Pr 2 Pr Pr 0v Du Ec fθ η θ φ′′ ′ ′′ ′+ + + + =                                                      (16) 
( )02 0Sc v Sc Srφ η φ θ′′ ′ ′′+ + + =                                                                         (17) 

The corresponding boundary conditions are same as (12). 

For the type of flow under consideration, the physical quantities such as the wall shear stress, surface heat flux 
and the surface mass flux are very important, which are given by 

0
w

y

u
y

τ µ
=

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

                                                                                                             (18) 

0
w

y

Tq k
y =

⎛ ⎞∂
= − ⎜ ⎟∂⎝ ⎠

                                                                                               (19) 

0
w m

y

CM D
y =

⎛ ⎞∂
= − ⎜ ⎟∂⎝ ⎠

                                                                                          (20) 

The wall shear stress, surface heat flux and the surface mass flux for an impulsively started plate are  

( )
0

0w f
U

τ δ
µ

′=                                                                                                     (21) 

     (12) 



M. Gnaneswara Reddy, N.Bhaskar Reddy / Journal of Naval Architecture and Marine Engineering 8(2011) 1-12 

Finite element analysis of Soret and Dufour effects on unsteady MHD free convection flow …... 5

( ) ( )0w

w

q
k T T

δ θ
∞

′= −
−

                                                                                         (22) 

( ) ( )0w

m w

M
D C C

δ φ
∞

′= −
−

                                                                                     (23) 

Hence, the dimensionless the skin-friction coefficient, Nusselt number and Sherwood number for impulsively 
started plate are given by 

( ) ( )1
2
0

2 2 R e 0w
fC f

U δ
τ

ρ
− ′= =                                                                                      (24) 

( ) ( )0w

w

qNu
k T T

δ θ
∞

′= = −
−                                                                                          (25) 

( ) ( )0w

m w

MS h
D C C

δ φ
∞

′= = −
−

                                                                                     (26) 

where 0R e U
δ

δ
ν

= is the Reynolds number. 

 

3. Solution of the problem 
 

The set of differential Equations (15) - (17) are highly nonlinear and therefore it cannot be solved analytically.  
Hence, following Reddy (1985) and   Bathe (1996), the finite element method is used to obtain an accurate and 
efficient solution to the boundary value problem under consideration.  
 
The convergence has been efficiently achieved by fixing infinity as 6. The whole domain is discretized into a set 
of 100 line elements of equal width, each element being three-noded. 
 
3.1 Variational formulation 

The variational form associated with Equations (18) - (20) over a typical three-noded linear element  ( )2,e eη η +  
is given by 

( ){ }
2

1 02 0
e

e

w f v f G r G m M f d
η

η

η θ φ η
+

′′ ′+ + + + − =∫                                              (27) 

( ){ }
2

2
2 0P r 2 P r 0

e

e

w R v R E c f d
η

η

θ η θ η
+

′′ ′ ′+ + + =∫                                                 (28) 

( ){ }
2

3 02 0
e

e

w Sc v d
η

η

φ η φ η
+

′′ ′+ + =∫                                                                            (29) 

Where w1, w2 and w3 are the arbitrary test functions which may be viewed as the variations in the functions f,  
θ and  respectively. 
 
3.2 Finite element formulation 
The finite element method seeks an approximate solution to the differential equation over each element. The 
polynomial approximation of the solution within a three-noded element is of the form 

3

1

e e
i i

i
f f ψ

=

= ∑  
3

1

e e
i i

i
θ θ ψ

=

= ∑                                                                                                              (30) 

3

1

e e
i i

i
φ φ ψ

=

= ∑                

where
e

if , 
e
iθ  and 

e
iφ are the values of the solution at the i th node of the element and  

e
iψ  are the shape 

functions for a typical element ( )2,e eη η +  and are taken as 
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( ) ( )
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e
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η η
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e

e s e s

e s e s e s e s

η η
ψ
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− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

      ( 1, 2, 3, ...,100)e = ,  (31) 

( ) ( )

( ) ( ) ( ) ( )3
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e

e s e s

e s e s e s e s

η η
ψ
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⎝ ⎠ ⎝ ⎠=
⎛ ⎞ ⎛ ⎞− −
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⎝ ⎠ ⎝ ⎠

         ( 1, 2, 3, ...,100)e = . 

where 6s = . 

The coefficients
e

if , 
e
iθ  and 

e
iφ are determined such that Equations (27) - (29) are satisfied in the weighted 

integral sense.  

Taking 1 2 3 ( 1, 2,3)e
iw w w iψ= = = = , the finite element model of the equations thus formed. 

The stiffness matrix for the Equation (27) is as follows. 

{ }f f
e j e jK f B⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦  

where   

                   ( )
2 23 3

0
1 1

2
e e

e e

ee e
jf e e ei i

e j i i j
i i

K f d v f d
η η

η η

ψψ ψη η ψ η
η η η

+ +

= =

⎛ ⎞ ⎛ ⎞∂ ⎛ ⎞∂ ∂
= − + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠⎝ ⎠

∑ ∑∫ ∫   

                               
2 3

1

e

e

e e e
i i j

i
M f d

η

η

ψ ψ η
+

=

⎛ ⎞
− ⎜ ⎟

⎝ ⎠
∑∫ , 

                  
2 23 3

1 1

e e

e e

f e e e e e e
e j i i j i i j

i i

B Gr d Gm d
η η

η η

θ ψ ψ η φ ψ ψ η
+ +

= =

⎛ ⎞ ⎛ ⎞⎡ ⎤ = − −⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠
∑ ∑∫ ∫ ,                                                                              

                                                                                      ( ) ( )1,2,3...,100 , 1,2,3e j= =  
                 and 

                 { } 1 2 3 201[ , , ,...., ]Tf f f f f= . 
The stiffness matrix for Equation (28) is as follows. 

{ }e j e jK Bθ θθ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦  
where   

( )
2 23 3

0
1 1

Pr 2
e e

e e

ee e
je e ei i

e j i i j
i i

K d R v d
η η

θ

η η

ψψ ψθ η η θ ψ η
η η η

+ +

= =
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2
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1
Pr

e

e

e
e ei

e j i j
i

B R Ec f d
η

θ

η

ψ ψ η
η

+

=

⎛ ⎞∂⎡ ⎤ = ⎜ ⎟⎣ ⎦ ∂⎝ ⎠
∑∫ , ( ) ( )1,2,3...,100 , 1,2,3e j= =  

and 
             { } 1 2 3 201[ , , , ..., ]Tθ θ θ θ θ= . 
The stiffness matrix for the Equation (29) is as follows. 

{ }e j e jK Bφ φφ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦  
where   

( )
2 23 3

0
1 1

2
e e

e e

ee e
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e j i i j
i i

K d Sc v d
η η
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η η
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η η η

+ +

= =

⎛ ⎞∂ ⎛ ⎞∂ ∂⎡ ⎤ = − + +⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠
∑ ∑∫ ∫ , 

            0e jB φ⎡ ⎤ =⎣ ⎦ , ( ) ( )1, 2, 3 ...,100 , 1, 2, 3e j= =  
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         and 
            { } 1 2 3 201[ , , , ..., ]Tφ φ φ φ φ=  

These system of  201x201 matrix equations are solved by the iteration scheme. Applying the given boundary 
conditions only a system of 195 equations remains to be solved. At the beginning of the first iteration the 
velocity is taken to be zero and the system of equations is solved using a Gaussian elimination method for the 
nodal temperature and concentration. Thus the values at the first iteration are obtained. Now, the nodal 
temperature and concentration values are used to get nodal velocity and then second iteration nodal temperature 
and concentration values are obtained. This process is repeated until the desired accuracy of 0.0005 is obtained. 
 
4. Results and discussion 

 
A representative set of numerical results is shown graphically in Figs.1-9, to illustrate the influence of physical 
parameters viz., the thermal Grashof number Gr, solutal Grashof number Gm, magnetic field parameter M, 
Prandtl number Pr, Eckert number Ec, Dufour number Du, Schmidt number Sc, Soret number Sr and the suction 
parameter υ0 on the velocity, temperature, concentration. 
 
The effect of the thermal Grashof number Gr on the velocity is presented in Fig.1. The thermal Grashof number 
Gr signifies the relative effect of the thermal buoyancy force to the viscous hydrodynamic force in the boundary 
layer. It is observed that an increase in Gr causes a significant increase in the velocity. Therefore, with an 
increase in buoyancy force due to temperature differences, the flow is accelerated in the boundary layer. Here 
the positive values of Gr correspond to cooling of the plate by natural convection.  
 
The influence of the solutal Grashof number Gm on the velocity is presented in Fig.2. The solutal Grashof 
number Gm defines the ratio of the species buoyancy force to the viscous hydrodynamic force. It is found that 
the velocity increases considerably with a rise in Gm. The soluatal Grashof number boosts velocity of the fluid 
indicating that species buoyancy has an accelerating effect on the flow field.  

Fig.1: Velocity profiles for different values of Gr Fig.2: Velocity profiles for different values of Gm 
 
Fig.3 depicts the velocity profiles for different values of the magnetic field parameter M. It is noticed that an 
increase in the magnetic parameter M leads to a decrease in the velocity. The application of a transverse 
magnetic field to an electrically conducting fluid gives rise to a resistive force called Lorentz force. This force 
has the tendency to slow down the motion of the fluid. Also, the boundary layer thickness decreases with an 
increase in the magnetic parameter.  
 
For different values of the Prandtl number Pr, the velocity and temperature profiles are plotted in Figs. 4(a) and 
4(b). The Prandtl number defines the ratio of momentum diffusivity to thermal diffusivity. From Fig. 4 (a), it is 
clear that an increase in the Prandtl number leads to a fall in the velocity. From Fig.4 (b), it is observed that an 
increase in the Prandtl number results a decrease of the thermal boundary layer thickness and in general lower 
average temperature within the boundary layer. The reason is that smaller values of Pr are equivalent to 
increasing the thermal conductivities, and therefore heat is able to diffuse away from the heated surface more 
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rapidly than for higher values of Pr. Hence in the case of smaller Prandtl numbers as the boundary layer is 
thicker and the rate of heat transfer is reduced. 
 

Fig.3: Velocity profiles for different values of M Fig.4(a): Velocity profiles for different values of Pr
 
The influences of Eckert number on the dimensionless velocity and temperature functions are shown in Figs 
5(a) and 5(b) respectively.  The Eckert number designates the ratio of the kinetic energy of the flow to the 
boundary layer enthalpy difference. It embodies the conversion of kinetic energy into internal energy by work 
done against the viscous fluid stresses. The positive Eckert number implies cooling of the plate i.e., loss of heat 
from the plate to the fluid. Hence, greater viscous dissipative heat causes a rise in the temperature as well as the 
velocity, which is evident from Figs. 5 (a) and 5 (b). 

Fig.4(b): Temperature profiles for different values 
of Pr 

Fig.5(a): Velocity profiles for different values of Ec 

Fig.5(b): Temperature profiles for different values 
of Ec 

Fig.6(a): Velocity profiles for different values of Du
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For different values of the Dufour number Du, the velocity and temperature profiles are plotted in Figs. 6(a) and 
6(b) respectively. The Dufour number Du  signifies the contribution of the concentration gradients to the 
thermal energy flux in the flow. It is observed that an increase in the Dufour number causes a rise in the velocity 
and temperature throughout the boundary layer. For Du ≤ 1, the temperature profiles decay smoothly from the 
surface to the free stream value.  However for Du > 1, a distinct velocity overshoot exists near the plate, and 
thereafter the profile falls to zero at the edge of the boundary layer. 
 

Fig.6(b): Temperature profiles for different values of Du
 

Fig.7(a): Velocity profiles for different values of Sc 

Figs. 7(a) and 7(b) illustrate the velocity and concentration profiles for different values of Schmidt number Sc . 
The Schmidt number embodies the ratio of the momentum to the mass diffusivity. The Schmidt number therefore 
quantifies the relative effectiveness of momentum and mass transport by diffusion in the hydrodynamic (velocity) 
and concentration (species) boundary layers. It is observed that as the Schmidt number increases the concentration 
decreases. This causes the concentration buoyancy effects to decrease yielding a reduction in the fluid velocity. 
The reductions in the velocity and concentration profiles are accompanied by simultaneous reductions in the 
velocity and concentration boundary layers. 

Fig.7(b): Concentration profiles for different values of Sc Fig.8(a): Velocity profiles for different values of Sr 
 
The influence of Soret number Sr, on the dimensionless velocity and concentration are shown in Figs 8(a) and 
8(b) respectively. The Soret number Sr defines the effect of the temperature gradients inducing significant mass 
diffusion effects. It is noticed that an increase in the Soret number Sr results an increase in the velocity and 
concentration within the boundary layer. 
 
The effect of suction parameter υ0 on the velocity, temperature and concentration are shown in Figs. 9(a), 9(b) 
and 9(c) respectively. It is found that an increase in the suction parameter results a decrease in the velocity, 
temperature and concentration. 
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Fig.8(b): Concentration profiles for different values of 
Sr 

Fig.9(a). Velocity profiles for different values of υ0 

Fig.9(b): Temperature profiles for different values of 

0v  

Fig.9(c): Concentration profiles for different values of  

0v  
 

Table 1 Numerical values of the skin-friction coefficient, Nusselt number  and Sherwood number for Pr = 0.71, 
Ec = 0.01, Du = 0.2, Sc = 0.6, Sr = 1.0 
Gr  Gm  M  0v  fC  Nu  Sh  
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2.0 

0.5 
0.5 
0.5 
1.0 
0.5 

0.5 
0.5 
0.5 
0.5 
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Tables 1-2 show the effects of the thermal Grashof Number, solutal Grashof number, magnetic field parameter, 
suction parameter, Prandtl number, Eckert number, Dufour number, Soret number and the Schmidt number on 
the skin-friction coefficient Cf, Nusselt number Nu, and Sherwood number Sh. From Table 1, it is noticed that as 
Gr or Gm increases, there is a rise in the skin-friction coefficient, Nusselt number and the Sherwood number. It 
is observed that as M increases, there is a fall in the skin-friction coefficient, the Nusselt number and the 
Sherwood number. It is noticed that as the suction parameter increases, the skin-friction coefficient decreases, 
while the Nusselt number and the Sherwood number increase. From Table 2, it is found that as Pr increases 
there is a decrease in the skin-friction coefficient and Sherwood number, while the Nusselt number increases. It 
is also observed that an increase in Ec or Du leads to an increase in the skin-friction coefficient and Sherwood 
number while a decrease in the Nusselt number. It is clear that as the Schmidt number increases the skin-friction 
coefficient and the Nusselt number decrease while the Sherwood number increases. It is also seen that an 
increase in Sr leads to an increase in the skin-friction coefficient and Nusselt number while a decrease in the 
Sherwood number. 
 
5. Conclusions 
 

The Soret and Dufour effects of an unsteady free convection flow magnetohydrodynamic and viscous 

dissipating fluid past an impulsively started vertical plate has been analyzed. With appropriate transformations 

the boundary layer equations are transformed into nonlinear ordinary differential equations. These equations are 

solved numerically by a finite element method.  From the above mentioned discussion, following conclusions 

can be drawn: 

  

1. The velocity increases with the increase thermal Grashof number and solutal Grashof number. 

2. The velocity decreases with an increase in the magnetic parameter. 

3. A positive increase in Eckert number is shown to reduce the velocity and temperatures in the flow. 

4. Increasing the Prandtl number substantially decreases the translational velocity and the temperature . 

5. An increase in the Dufour number causes a rise in the velocity and temperature throughout the 

boundary layer.  

6. The velocity as well as concentration decreases with an increase in the Schmidt  number. 

7. An increase in the Soret number  results an increase in the velocity and concentration with in the 
boundary layer. 
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