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Abstract: 
A large eddy simulation (LES) of a plane turbulent channel flow is performed at a Reynolds number Reτ 

= 590 based on the channel half width, δ and wall shear velocity, uτ by approximating the near wall 

region using differential equation wall model (DEWM). The simulation is performed in a computational 

domain of δδ2δ2 π××π . The computational domain is discretized by staggered grid system 

with 32×30×32 grid points. In this domain the governing equations of LES are discretized spatially by 

second order finite difference formulation and for temporal discretization the third order low-storage 

Runge-Kutta method is used. Essential turbulence statistics of the computed flow field based on this LES 

approach are calculated and compared with the available Direct Numerical Simulation (DNS) and LES 

data where no wall model is used. Comparing the results throughout the calculation domain, it is found 

that the LES results based on DEWM show closer agreement with the DNS data, especially at the near 

wall region. That is, the LES approach based on DEWM can capture the effects of near wall structures 

more accurately. Flow structures in the computed flow field in the 3D turbulent channel have also been 

discussed and compared with LES data using no wall model. 

 

Keywords: Large eddy simulation, differential equation wall model, standard Smagorinsky model, turbulent 
channel flow, staggered grid system. 

 

NOMENCLATURE 
 

Greek symbols 

x streamwise direction Δ filter width 

y wall normal direction Δx grid spacing in streamwise direction 

z spanwise direction Δy grid spacing in wall normal direction 

t time Δz grid spacing in spanwise direction 

iu  filtered velocity component ν  kinematic viscosity 

iu′ subgrid scale velocity component 
Sν  subgrid scale eddy viscosity 

p  filtered pressure 
νT turbulent eddy viscosity 

CS Smagorinsky constant δ channel half width 

uτ wall shear velocity ρ density of fluid 

y
+

 non-dimensional wall unit ijτ  subgrid scale Reynolds stress 

Reτ flow Reynolds number τx streamwise shear stress 

ijS  strain-rate tensor in the filtered field τwi wall shear stress in ith direction 

Aij velocity gradient tensor Ωij Rotation tensor 

Q second invariant of velocity gradient tensor   

 

1. Introduction 
 

Turbulent wall-bounded flows are commonly encountered in engineering practice and are of considerable 
interests in a variety of industrial applications. For numerical simulations and validation of turbulent models, 
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turbulent wall-bounded flow or more specifically, turbulent channel flow is an important test case. Its geometry 
is simple and attractive for the researchers for both the experimental and computational studies on turbulent 
flow. Consequently, a broad range of experimental and computational studies of turbulent channel flow have 
been carried out (Dritselis, 2014; Elbatran, 2016; GrÖtzbach, 1987; Kim et al., 1987; Mallik and Uddin, 2016; 
Mallik et al., 2014; Moser et al., 1999; Schumann, 1975; Uddin and Mallik, 2015; Yang et al., 2008). 
 
Experimental evidence indicates that the larger scales of turbulence are flow-dependent, while the smaller ones 
are more universal. The larger scales are responsible for most of the production, convection, and redistribution 
of the energy, while the smaller ones are mainly responsible for the dissipation of the energy. These 
observations lead to the conclusion that LES, which resolves the large scales and models the small ones. For 
studying flows of practical interest the LES is currently the most promising method (Balaras et al., 1996; Cabot, 
1995; Cabot and Moin, 2000; Dritselis, 2014; GrÖtzbach, 1987; Mallik and Uddin, 2016; Mallik et al., 2014; 
Sagaut, 2001; Uddin et al., 2006; Uddin and Mallik, 2015; Xie et al., 2013; Yang et al., 2008). The position of 
LES is intermediate between DNS (GrÖtzbach, 1987; Mallik et al., 2013; Moser et al., 1999) and Reynolds-
averaged Navier-Stokes equations (RANS) techniques. Although DNS is considered as the exact approach to 
turbulence simulation, this simulation is very expensive for high Reynolds number case and requires large 
number of computational grids. On the other hand, the most used approximation to the solution of turbulent flow 
is RANS (Ferziger and Perić, 2002; Jagadeesh and Murali, 2005; Kianejad and Ansarifard, 2016), but this 
approach suffers from one principal shortcoming that the model used here must represent a very wide range of 
scales. 
 
In the wall-bounded flows, the near wall region of the boundary layer needs to be directly resolved in LES with 
sufficiently fine resolution. This approach comes with very high computational cost. Another approach in LES 
for the wall-bounded flows is to model the near-wall dynamics by the wall stress models. The main advantage of 
this method is that the resolution requirement can be reduced significantly. There are several wall stress models 
to approximate the near wall region e.g. Schumann model (Schumann, 1975), GrÖtzbach model (GrÖtzbach, 
1987), Algebraic wall model (Spalding, 1961), etc. Wall stress models based on boundary-layer approximations 
are more sophisticated stress model suggested by Balaras et al. (1996), Cabot (1995), Cabot and Moin (2000) 
and others. Such a model can capture the effects of near-wall structures more accurately. In these models, three-
dimensional turbulent boundary layer (TBL) equations are solved numerically in a region in between the first 
off-wall grid points in LES and the wall to compute the wall shear stresses. These wall shear stresses are then 
forced at the outer boundary by the instantaneous tangential velocities from LES, while no-slip conditions are 
applied at the wall. The turbulent eddy viscosity can be obtained by a RANS type mixing-length eddy viscosity 
model. In this study, we approximated the near wall region by DEWM to capture the effects of near wall 
structures more accurately.   
 
To perform LES in a turbulent channel flow, discretization method is another concern. Since the governing 
equations of LES are unsteady, to solve them numerically both space and time discretizations are needed. There 
are several discretization methods for spatial and temporal discretization of the governing equations of LES. For 
spatial discretization the conventional finite difference method (Ham et al., 2002; Morinishi, 2010) is the most 
straightforward one. It is widely used with structured grids. For temporal discretization or equivalently in 
another word, for time integration explicit Runge-Kutta methods are a popular choice, and they are cheaper than 
implicit methods. Typical LES calculations demand minimum levels of memory locations during the time 
integration. In this case, low-storage Runge-Kutta scheme (Kennedy et al., 2000; Williamson, 1980) is 
significant. Because, low-storage Runge-Kutta schemes require minimum levels of memory locations during the 
time integration and efficiently fulfill the modern large-scale scientific computing needs. 
 
Therefore, the objective of this study is to perform LES of a plane turbulent channel flow with near wall region 
approximation by DEWM. The governing equations of LES are discretized by third order Low-Storage explicit 
Runge-Kutta method in time and second order finite difference formulation in space in a staggered grid system. 
For subgrid scale (SGS) modeling in LES the Standard Smagorinsky model is used. Essential turbulence 
statistics based on this approach are calculated and compared with DNS data of Moser et al. (1999) and LES 
data of Uddin and Mallik (2015). Instantaneous streamwise shear velocity distribution at the immediate vicinity 
of the wall and instantaneous streamwise velocity distribution at the centerline plane of the channel are also 
discussed by different contour plots and compared with those obtained by Uddin and Mallik (2015). Vortical 
structures using second invariant of velocity gradient tensor in the 3D turbulent channel flow are visualized and 
compared with that of Uddin and Mallik (2015). More specifically, the prime objective of this study is to 
investigate the performance of DEWM in LES. 
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2. Governing Equations 
 

The governing equations of LES for an incompressible plane channel flow are the filtered Navier-Stokes and 
continuity equations for constant density in Cartesian co-ordinates given as  
 

( ) ji i

i j ij
j i j j i

uu up1
u u ν

t x ρ x x x x
τ

 ∂ ∂ ∂∂∂ ∂   + + = − + +
  ∂ ∂ ∂ ∂ ∂ ∂
   

, where i, j = 1, 2, 3 (1) 

0i

i

u

x

∂
=

∂
  (2) 

 

where the index i = 1, 2, 3 refers to the x, y and z directions respectively. Here xu , yu , zu  are streamwise, 

wall normal and spanwise filtered velocity respectively. ρ represents the fluid density, p is the filtered pressure 

and ν  represents the kinematic viscosity. ijτ  is SGS Reynolds stress which is in fact the large scale momentum 

flux caused by the action of the small scales. The equations are non-dimensionalized by the channel half-width 

δ, and the wall shear velocity uτ. The flow Reynolds number is therefore written as /νδuRe ττ = . A schematic 

geometry of the plane channel flow and the co-ordinate system are shown in Fig. 1.  
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Schematic geometry of plane channel flow. 
 
In LES by applying a spatial filtering operation the velocity field ui is decomposed into a filtered or large scale 

component iu  and a subgrid scale component iu′. According to Sagaut (2001), this decomposition is 

represented as  
 

i i i
u u u ′= +  (3) 

 

The large scale or resolved velocity component iu  can be expressed as  

( ) ( ) ( )
3

1 2 3 1 2 3 1 2 3
1

, , , , , ,
i i i i i

i

u x x x t G x x u x x x t dx dx dx

+∞ +∞ +∞

=−∞ −∞ −∞

 
 ′ ′ ′ ′ ′ ′ ′= −
 
 
∏∫ ∫ ∫  (4) 

 

where ( )iii xxG ′−  is a general filtering function which satisfies the following relation: 

 

( )
3
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1

1
i i i
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In this approach the effect of the SGS field appears through the SGS Reynolds stress term, which is defined as  

ij i j i j
τ u u u u= −  (6) 

 

Experimental and numerical evidence indicates that the most significant effect of the SGS Reynolds stresses is 
to transfer energy from the large eddies to the SGS eddies. LES requires a model to represent the effects of the 
SGS field on the filtered field. The models used to approximate the SGS Reynolds stress are called SGS models. 
There are a number of SGS models. The most commonly used SGS model is the Standard Smagorinsky model 

(Smagorinsky, 1963), which assumes that the SGS Reynolds stress deviator tensor, ijτ  is proportional to the 

local strain rate tensor of the filtered field, ijS  as follows: 

2τ - ν S
ij s ij

=  (7) 

 

The proportionality factor is the SGS eddy viscosity, Sν  which is defined as   

( )
2

Δ
s s
ν = C S  (8) 

 

The quantity CS is the Smagorinsky constant which is not fixed for channel flows. Many authors used different 
values of CS in LES. The value of this constant is, in practice, adjusted to improve the results. In this study, the 

simulation is performed for CS = 0.065 in a plane channel. ( )1/ 3
x y z∆ = ∆ ∆ ∆ is the filter width and 

2S S S
ij ij

= is the magnitude of strain rate, where
1

2

ji

ij
j i

uu
S

x x

∂ ∂
 = +
 ∂ ∂
 

. 

The presence of a solid wall modifies the turbulence dynamics in several ways. To represent the dynamics at the 
near-wall region correctly, it is important to modify the SGS models that verify the good properties in this 
region. This modification can be done by the introduction of Van-Driest damping function (Sagaut, 2001) in the 
SGS eddy viscosity. The SGS eddy viscosity is then modified as 

( )
2

Δ
s s s
ν C f S=  (9) 

 

Here 







−−=

+

+

A

y
f S exp1 is the Van-Driest damping function that has long been used for the reduced growth 

of the small scales near the wall, where  y
+  is the distance from the wall in viscous wall units defined as 

τ
yu

y
ν

+ =
 
and  A+  is a constant usually taken to be approximately 25 (Sagaut, 2001).  

 

3. Numerical Methods and Grid System 
 

The governing equations of LES are discretized by using the second order finite difference formulation in space 
and the third order low-storage explicit Runge-Kutta method in time (Kennedy et al., 2000). The coupling 
between continuity equation and pressure fields is achieved by the simplified marker-and-cell (SMAC) method 
(Johnson et al., 1994). Poisson equation for pressure is solved iteratively by a Preconditioned Incomplete 
Cholesky Decomposition Conjugated Gradient method. To approximate the near wall region the unsteady thin 
boundary layer equations are solved in this region by using the second order Adams-Bashforth scheme in time 
and second order finite difference formulation in space. 
 
To discretize the governing equations of LES in space, the continuous space should be divided by a set of grid 
points. There are several types of computational grids. Among them the structured grids are commonly used. 
Conventional numerical algorithms based on structured grids mostly fall into three classes: regular, staggered 
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and collocated grid systems. In the regular grid system, the velocity components and pressure are stored at the 
same points. In collocated grid system, all variables are computed at the same location. This location 
corresponds to the cell center rather than a grid point at a cell vertex. In the Staggered grid approach, the 
location at which each independent variable is computed is different for all variables. This type of grid was 
introduced by Harlow and Welch (1965) in constructing Marker-and-cell (MAC) method. In particular, this type 
of grid is used for pressure correction methods. In this study we have used staggered grid system. Staggered 
grids may be constructed by several methods. An example of a staggered grid system in a two-dimensional 
plane is shown in our previous papers (Mallik et al., 2014; Uddin and Mallik, 2015). 
 
When the computational domain is discretized by the grid points, the governing equations should be discretized 
in this domain. Since the governing equations of LES are unsteady, to solve them numerically both spatial and 
temporal discretizations are required. For spatial discretization the second order finite difference formulation is 
widely used which is simply the substitution of the continuous differential operators with corresponding discrete 
operators, can be represented as (Morinishi, 2010):  

x

φφ

x

φ kj,,ikj,i,

kj,i,
Δ

1

1

1 −−
=

∂

∂
 (10) 

 

where φ is the discrete variable,  ∆x is grid spacing in x direction, and (i, j, k) denotes associated mesh indices in 

x, y and z directions. Subscript “1” indicates the stencil size. Discrete operators in the other directions are 
similarly defined. Second order differential operator is defined to be two successive applications of the first 
order operator. In addition to the discrete differencing operator we also define interpolation operators acting on 
different variables associated to the directions, which are given in our previous papers (Mallik et al., 2014; 
Uddin and Mallik, 2015). 
 
For temporal discretization or, for time integration of the governing equations of LES the low-storage explicit 
Runge-Kutta methods are a better choice. These methods generally have better stability properties and do not 
have a start-up problem. During the time integration the low-storage Runge-Kutta schemes require minimum 
levels of memory locations. As for example, the third order low-storage explicit Runge-Kutta scheme 
(Williamson, 1980) requires only two levels of memory locations during the time integration. Such a scheme is 
applied for the nonlinear convection and viscous terms in the governing equations, which is shortly described in 
our previous papers (Mallik et al., 2014; Uddin and Mallik, 2015). 
 

4. Computational Parameters 
 

The computational domain of the mesh is selected to be δδ2δ2 π××π  in streamwise, wall normal and 

spanwise directions respectively. The computation is performed in 32×30×32  grid points which are 
distributed uniformly in the corresponding directions. In the computational domain the grid spacings in the 

streamwise, wall normal and spanwise directions are 116≈Δ
+

x , 58≈Δ
+

z  and 3.39≈Δ
+

y  wall units 

respectively. The superscript ‘+’ indicates a non-dimensional quantity scaled by the wall variables; e.g. 

/νuyy τ=+ , where ( )1/2
wτ /ρτu =  is the wall shear velocity. The possible flow Reynolds number is Reτ = 590 

which is based on δ and  uτ. The computation is carried out with a non-dimensional time increment, ∆t = 0.002, 
which maintained a CFL number (Mallik et al., 2014; Mallik and Uddin, 2016; Uddin and Mallik, 2015): 

max 0.346 1.0
yx z

uu u

CFL t
x y z

 
 
 = ∆ + + = <

∆ ∆ ∆ 
 
 

 (11) 

where, 
i

u denotes an ensemble average of iu . The computation is executed up to time, tnt Δ= , where n is 

the number of time step.  

In the LES calculation, the first off-wall grid points are at 7.19≈+
y  wall unit. At the region in between the 

first off-wall grid points in LES and the wall the unsteady thin boundary layer equations are solved. The grid 
numbers for this region computation are same as LES except in the direction normal to the wall, which is 34. 
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The grid points for this region approximation are distributed uniformly in the corresponding directions. In the 
wall normal direction, the grids coincide with the LES grids, and the grid spacing in this direction is 

31.1≈Δ
+
2x . A sample of grid generation in the given domain is shown in Fig. 2. 
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Fig. 2: A sample of grid generation in a plane channel. 
 

5. Boundary Conditions 
 

We consider fully developed incompressible viscous flow and use periodic boundary conditions in the 
streamwise and spanwise directions. The wall boundary condition is no-slip. For the staggered grid arrangement 
we set up additional nodes surrounding the physical boundary. The calculations are performed at internal nodes 
only. Just outside the solution domain the values of the velocity components are equated to the values of the 
nearest node just inside the solution domain (Versteeg and Malalasekera, 1995). The pressure boundary 
condition is periodic in the streamwise and spanwise directions. But in the wall normal direction the values of 
pressure, just outside the solution domain, are determined by assuming a zero gradient (Anderson, 1995). 
 

6. Differential Equation Wall Model 
 

Differential equation wall model is well established for separated flow regions and can capture the effects of 
near wall structures more accurately. In this model, the unsteady thin boundary layer equations which is in 
general are a simplified set of partial differential equations derived from the Navier-Stokes equations, are solved 
numerically at the near wall region in between the first off-wall grid points in LES and the wall. In this region 
the governing equations for horizontal velocity components Ui (i =1, 3) are (Cabot and Moin, 2000; Wang and 
Moin, 2002): 

( ) ( )
2 2

i i

i j T
j i

U UP
U U ν ν

t x x x x

∂ ∂ ∂ ∂ ∂
 + = − + +

∂ ∂ ∂ ∂ ∂  

 (12) 

 

with continuity  
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dx
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x
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



∂

∂
+

∂

∂
−=  (13) 

 

where the index 1, 2, 3 refers to the streamwise, wall normal and spanwise directions respectively. The pressure 
P, in Eq. (12) is assumed x2 – independent, equal to the value from the outer-flow LES solution. The turbulent 
eddy viscosity, νT can be obtained from a RANS type mixing-length eddy viscosity model with near-wall 
damping (Cabot, 1995; Cabot and Moin, 2000; Wang and Moin, 2002): 
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( )2

1  /Ay

w

T weyκ
ν

ν +−+ −=  (14) 

 

where
w τ

w

y u
y

ν

+ = is the distance from the wall in wall units, κ is the model co-efficient, and A = 19. The 

boundary values of horizontal velocity components at the first off-wall grid points are obtained from the outer-
flow LES velocity nodes and the wall boundary condition is no-slip. With those boundary conditions, Eqs. (12) 
and (13) are solved by using the second order Adams-Bashforth scheme in time and the second order finite 
difference formulae in space. Then, the wall shear stresses, τwi (i = 1, 3) are determined from the wall gradient of 
the solution: 

0
22

i

wi x

U
τ ν

x =

∂
=

∂
 (15) 

 

Since the LES does not resolve the viscous sub-layer, approximate wall boundary conditions are imposed in 
terms of the wall shear stress components.   
 

7. Grid Sensitivity Test 
 

Grid sensitivity is the dependence of results upon the grid size. In the LES with no wall model (NWM) 
approximation the grid size in the streamwise and spanwise directions are uniform. But in the wall normal 
direction the computational grid is stretched by a hyperbolic tangent function: 

( )
( )

2
tanh 1

, 0 , 1, , ,
tanh

j
γ

N
Y j j N

γ

  
−  

  
= = ⋅ ⋅ ⋅ ⋅ ⋅   (16) 

 

where  N  is the number of grid points in that direction and  γ  is the stretching parameter, which is set to 2.25. In 

this direction, the minimum grid spacing is 2≈Δ
+y  wall unit which exists at the immediate vicinity of the 

wall and maximum grid spacing is 42≈Δ
+y  wall unit which exists at the centerline of the channel. 

 
On the other hand, in the LES with DEWM approximation the region in between the first off-wall grid points in 
LES and the wall and the LES region are computed separately. For the approximation of the region in between 
the first off-wall grid points in LES and the wall the computational grid resolution is (32, 34, 32), and for the 
LES region approximation the computational grid resolution is (32, 30, 32) which are given in Section 4. The 
grid spacings in all directions for these two regions computation are uniform. Table 1 summarizes the number of 
grid points and grid spacings used in the given directions for different approximations in the same 
computational domain where the streamwise and spanwise directions are periodic. 
 

Table 1: Comparison of grid points and grid spacings used in different approximations 
 

Approximations Nx Ny Nz +
Δ x  +

Δ z  +
Δ y (center) 

DNS 384 257 384 9.7 4.8 7.2 
LES with NWM 32 64 32 116 58 42 
LES with DEWM 32+32 34+30 32+32 116 58 1.31, 39.3 
 
In this table, Nx , Ny and Nz denote the number of grid points used in the streamwise, wall normal and spanwise 

directions respectively. Here the grid spacing in the wall normal direction, +
Δ y is given at the channel 

centerline. At this position, 2.7≈Δ
+y for DNS calculation and 42≈Δ

+y  for the LES with NWM 

approximation. Whereas, for the LES with DEWM approximation 31.1≈Δ
+y  for the computation of the 

region in between the first off-wall grid points in LES and the wall, and 3.39≈Δ
+y  for the LES region 

computation. Here, it is important to note that for the near wall region approximation denser grid points have 
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been used in the LES with DEWM approximation than that of the LES with NWM, and found that our present 
results show closer agreement with the DNS results in this region which one can be confirmed from Fig. 3 to 
Fig. 5. 
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Fig. 3: The mean velocity profile in wall units. 

 
The computations of our numerical code for the LES with NWM and LES with DEWM approaches were carried 
out on a computer equipped with Intel Core i5 Processor and 4GB of RAM. With this computer configuration 
the computational time for the LES with NWM approximation of Uddin and Mallik (2015) is approximately 
6.50 CPU hours. On the other hand, for the LES with DEWM approximation the computational time is 
approximately 4.00 CPU hours. Hence, the computational time for the LES with DEWM approximation is 
smaller than that of LES with NWM. 
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Fig. 4: Root mean square velocity profiles in wall units. 
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8. Validation of the Code 
 

The computational model has been validated by comparing the present results with the results of Moser et al. 
(1999) and Uddin and Mallik (2015). Turbulence statistical results are compared with both those of Moser et al. 
(1999) and Uddin and Mallik (2015). But due to lack of availability of computational results for the turbulence 
flow structures in the given domain with the same Reynolds number, the flow structures obtained by the present 
results are compared with those of Uddin and Mallik (2015). The statistical results are presented from Fig. 3 to 
Fig. 5 and the flow structures are shown from Fig. 6 to Fig. 8. A sample of quantitative comparison in mean 
velocity profile for different approximations is given in Table 2 and found that the present results are in 
satisfactory agreement with the reported results. 
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Fig. 5: The Reynolds stress profile in wall coordinates. 
 
 

9. Results and Discussions 
 

9.1 Turbulence statistics 
 

This section discusses some essential statistics of the computed flow field in 3D turbulent channel flow 
corresponding to the channel half width. The statistical results are compared with the DNS data obtained by 
Moser et al. (1999) and LES data using no wall model (LES-NWM) of Uddin and Mallik (2015) which are 
represented by a solid and dashed line respectively in Figs. 3-5. In these figures, the calculated statistical results 
in the region in between the first off-wall grid points in LES and the wall are represented by a dotted line and 
the results calculated in rest of the region are indicated by a dash-dot-dot line. Furthermore, in this section a 
sample of quantitative comparison between the results of different simulations has also been shown. The 
simulations are initialized with a random solenoidal velocity field and integrated ahead in time with finite 
viscosity.   
 
Numerous experiments have shown that the boundary layer in a plane turbulent channel flow can be divided into 
two parts: inner or near wall region and outer region. At the near wall region the dynamics is dominated by 
viscous effects, and in the outer region it is controlled by turbulence. Each of these regions can be split up into 
several layers corresponding to different types of dynamics. In the case of canonical boundary layer, the near 

wall region can be largely subdivided into three layers: viscous sub-layer ( 5y ≤+ ), buffer layer ( 30y5 ≤< + ) 

and logarithmic inertial layer ( 30y >+ ; y/δ << 1) (Sagaut, 2001). The outer region includes the end of the 

logarithmic inertial layer and wake region.  
 
The profiles of mean velocity normalized by the wall-shear velocity corresponding to the lower half of the 
channel for different approximations are shown in Fig. 3. The mean velocity is calculated by  
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x

x

u

u
u
τ

+ =  (17) 

 
A circle shown in this figure indicates the interface between the RANS and LES regions which is located at 

about 7.19≈+
y . That is, the RANS region is defined as the viscous sub-layer and part of the buffer layer. The 

remaining region is defined as the LES region. In the RANS region, there is hardly noticeable difference 
between the three profiles. But here after in the LES region the computed velocity profile (LES-DEWM) under 
predicts the DNS profile, whereas, the LES-NWM profile is seen to be over predicted. 
 

Table 2: Comparison between the results of mean velocity in different approximations 
 

y
+
 DNS LES-NWM 

RANS-DEWM 

& 

LES-DEWM 

5.90 5.94 5.20 6.03 
11.14 9.46 9.02 9.47 
15.08 11.05 10.89 11.00 
19.66 12.36 12.49 12.28 
59.00 15.44 17.00 15.01 

160.42 18.05 19.01 17.01 
334.33 20.23 20.68 18.96 
464.65 21.09 21.28 19.69 

 
Table 2 provides a sample of the non-dimensional mean velocity at some positions of the channel in wall units 
which shows the quantitative comparison between the results of different approximations. From this table, it can 
be observed that the separation between the DNS and computed results (RANS-DEWM and LES-DEWM) 
increases with the increase of wall units. Using these data given in the table one can easily calculate relative 
errors in the LES results at the given positions. Percentage of relative errors generated in the results in the 

RANS region at a position 14.11≈+
y  for the LES approach based on DEWM is 0.10%, whereas for the LES-

NWM approach it is 4.65%. After RANS region, in the LES region errors generated in the results at a position 

42.160≈+
y  is 5.76% for the LES approach based on DEWM, whereas for the LES-NWM approach it is 

5.32%. That is, in our approximation the error increases with the increase of wall units. But, at the near wall 
region our computed results show a good agreement with the DNS results. Therefore, the LES approach based 
on DEWM can capture the effects of near wall structures more accurately. In the error calculation the DNS data 
are considered as the true value, because DNS is considered as the exact approach to turbulence simulation.  
    
The DNS and LES profiles of non-dimensional root mean square (r.m.s.) velocity components corresponding to 
the channel half width are displayed in Figs. 4(a), (b) and (c), which are defined as 
 

τ
2

x
2
xx uuuu =+

r.m.s. -  (18) 

τ

2

y
2
yy uuuu =+

r.m.s. -  (19) 

τ
2

z
2
zz uuuu =+

r.m.s. -  (20) 

 

Profiles of streamwise root mean square velocity for different approximations are shown in Fig. 4(a). This figure 
reveals that above the wall the LES profile based on DEWM starts with 2.78 near the peak value of DNS profile 
at the position y+ ≈ 19.98. At this position the value for the LES-NWM approach is about 3.80. Beyond this 
position the trend of LES-DEWM profile is decreasing until the end of the range like the pattern of other two 
profiles.  
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Wall normal root mean square velocity profiles for the DNS and LES approaches are displayed in Fig. 4(b). 
From this figure it can be observed that at the near wall region from y+ ≈ 39.33 to 180, the LES-DEWM profile 
under predicts the DNS profile. After that, from y+ ≈ 180 to 350 the DNS and LES-DEWM profiles are almost 
collapsed. Finally, in rest of the range the LES-DEWM profile is seen to be under predicted. On the other hand, 
the wall normal root mean square velocity profile for the LES-NWM approach under predicts the DNS profile in 
the whole calculation domain. That is, the LES-DEWM profile shows less discrepancy from the DNS profile 
than that of the LES-NWM profile. 
 
Profiles of spanwise root mean square velocity for different approximations are shown in Fig. 4(c). This figure 
reveals that there is hardly noticeable difference between the DNS and LES-DEWM profiles at the near wall 
region from y+ ≈ 19.67 to 100. Whereas the LES-NWM profile under predicts the DNS profile. Here after in 
rest of the range both the LES profiles are seen to be under predicted. Hence, the LES-DEWM profile shows 
closer agreement with the DNS profile than that of the LES-NWM profile. 

 

The profiles of non-dimensional Reynolds stress, 
2
τ

'
y

'
x

u

uu
- corresponding to the lower half of the channel for 

different approximations are shown in Fig. 5. When the flow reaches an equilibrium state then this profile 
becomes a straight line in a fully developed channel flow. Our computed results clearly indicate that case. From 
this figure it can be observed that above the wall the LES profile based on DEWM starts from near the peak 
value of DNS profile at the position y+ ≈ 39. After this position, in rest of the range the LES-DEWM profile 
over predicts the DNS profile. It is also noticeable that the discrepancy of the LES-DEWM profile from the 
DNS and LES-NWM profiles decreases with the increase of the value of  y+. 
 

9.2 Flow structures 
 

We have calculated streamwise velocity ( xu ) distribution at the centerline plane of the channel and streamwise 

shear velocity ( τxu ) distribution at the immediate vicinity of the wall at the end of calculation time when the 

flow reaches to an equilibrium state. Using these computed data different contour plots of the flow field have 
been drawn and compared with those obtained by Uddin and Mallik (2015). 
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Fig. 6: Contours of streamwise velocity profiles in x-z plane for (a) LES using no wall model (Uddin and Mallik, 

2015), and (b) LES using DEWM. 
 

Contours of instantaneous streamwise velocity distribution at the centerline x-z plane of the channel for different 

LES approaches are shown in Figs. 6 (a) and (b). In these contour plots the values of xu  ranged between 16.5 

and 22.5. The results in Fig. 7(a) were obtained by Uddin and Mallik (2015), where no wall model was used in 

LES, and Fig. 7(b) has been drawn by the LES data based on DEWM. In these figures, the highest value of xu  

appears at red regions and lowest value at blue regions. In Fig. 6(a), the contribution of the larger values of xu  

is more than that of the smaller values in the whole distribution. On the other hand, in Fig. 6(b) the contribution 

of the medium values of xu is more located in the whole distribution. Therefore, the distinctive features of 

streamwise velocity in these contour plots are that the existence of the regions of larger values are more located 
in Fig. 6(a) than that in Fig. 6(b).  
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Fig. 7: Contours of streamwise shear velocity profiles in x-z plane for (a) LES using no wall model (Uddin and 

Mallik, 2015), and (b) LES using DEWM. 
 

Contours of instantaneous streamwise shear velocity distribution at the immediate vicinity of the wall of this 
channel in x-z plane for different approximations are displayed in Figs. 7 (a) and (b). Streamwise shear velocity 
can be calculated by using Eq. (21). 
 

x

x
u

τ

τ

ρ
=  (21) 

 

where, τxu = streamwise shear velocity 

             ρ   = density of the fluid 
              τx  = streamwise shear stress. 

In these contour plots, the values of τxu  ranged between 0.7 and 1.7. The lowest value is indicated by a blue 

color, while the highest value by a red color. The results in Fig. 7(a) are for the LES-NWM approach obtained 
by Uddin and Mallik (2015) and results in Fig. 7(b) are for the LES-DEWM approach. From these contour plots 

it can be observed that the larger values of τxu  appear more densely at scattered locations in the whole 

distribution in between the boundary and centerline of the plane. One of the distinctive features of streamwise 
shear velocity in these two figures are that the existence of the regions of smaller values are more located in Fig. 
7(a) than that in Fig. 7(b).  
 

         
Fig. 8: Iso-surfaces of the second invariant (Q = 5) in the channel flow for (a) LES using no wall model (Uddin 

and Mallik, 2015), and (b) LES using DEWM. 
 
Figs. 8(a) and (b) represent the visualization of vortical structures in the turbulent channel flow for different 
LES approaches. The vortical structures are visualized by iso-surfaces of the second invariant Q of velocity 
gradient tensor, which is defined as (Uddin et al., 2006): 

( )1

2 ij ij ij ij
Q S S Ω Ω= − −  (22) 
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where,
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ij
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uu
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x x
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x x
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 

 (23) 

 

are respectively, the strain-rate and rotation tensors, that is, the symmetric and asymmetric part of the velocity 
gradient tensor: 

i

ij ij ij
j

u
A S

x

∂
= = + Ω

∂
 (24) 

 

Since the velocity gradient tensor represents the balance between rotation and strain rate, flow visualization 
based on velocity gradient tensor can provide interesting evidence of direct linkage between inner and outer 
regions of the turbulent flow field. In these figures, the flow visualized region is the whole calculation domain. 
In Fig. 8(b) the near wall region is approximated by DEWM, but in Fig. 8(a) no wall model was used in LES. In 
both the figures the level of the iso-surfaces are selected to be Q = 5. For this value of Q the vortical structures 
are randomly distributed over the turbulent flow field. The vortices are generated more densely in between the 
boundary and central position of the channel than the ones generated around the central position of the channel. 
But, the density of vortical structures in Fig. 8(a) is more than that in Fig. 8(b).  
 

10. Conclusions 
 

A Large eddy simulation of a plane turbulent channel flow has been successfully carried out with 32×30×32  
grid points at a Reynolds number, 590 which is based on the channel half width and wall shear velocity. To 
capture the effects of near wall structures more accurately, the near wall region has been approximated by 
DEWM without taking sufficiently fine resolution. The DEWM lead to a significant reduction in the number of 
computational cells in this simulation. In spite of resolution limitations, the simulations are able to resolve the 
essential features of the statistical fields. The statistical results are compared with the DNS and LES data of 
reference. In comparison with the DNS data, the LES results based on DEWM show better agreement than that 
of the LES results using no wall model, especially at the near wall region. Instantaneous streamwise velocity 
distribution at the centerline x-z plane and instantaneous streamwise shear velocity distribution at the immediate 
vicinity of the wall of this channel have also been measured in the contour plots, and compared these contour 
plots with the LES results where no wall model was used. In these contour plots, one of the distinctive features 
in streamwise velocity and streamwise shear velocity distributions are that the existence of the regions of larger 
values of streamwise velocity are more located for the LES-NWM approach than that of LES-DEWM, and the 
existence of the regions of smaller values of streamwise shear velocity are less located for the LES-DEWM 
approach than that of LES-NWM. In the computed flow field the vortical structures are visualized by iso-
surfaces of the second invariant of velocity gradient tensor, and compared with that of the LES-NWM approach. 
The flow field contains lots of tube-like vortical structures which are significant and randomly distributed over 
the turbulent flow field. Compared with LES-NWM approach, in this simulation the vortices are generated less 
densely. 
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