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Abstract:  
The steady MHD flow in the presence of temperature dependent heat source in a viscous 
incompressible fluid bounded by a parallel flat wall and a long wavy wall is studied with heat and 
mass transfer, taking into account the thermal-diffusion (Soret) effects, when the no-slip condition 
at the channel wall is no longer valid.  An external uniform magnetic field and a uniform suction 
are applied perpendicular to the flat wall.  The walls are kept at different but constant 
temperatures. The velocity, temperature and concentration field have been evaluated numerically 
for various values of the parameters entering into the problem.  The skin friction, rate of heat and 
mass transfer at the walls are obtained and discussed graphically.  It is observed that increasing 
suction parameter tends to increase concentration of the fluid and thus decreases the fluid velocity.  
Further, it is interesting to note that when  0  (without slip) and M increases from 0 to 2 there is 

28% decrease in the velocity magnitude, whereas the corresponding decrease, when . 0 1 (with 
slip) is 38%,  which shows that   significantly affect the flow.  
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NOMENCLATURE 
 

 

0B  transverse magnetic field '
2T   temperature at the lower wall  

'
1C  concentration at the upper wall '

1T   temperature at the upper wall 

'
2C  concentration at the lower wall  T  temperature distribution 

d mean width of the channel 0V  suction velocity 

mD  coefficient of mass diffusivity  Greek symbols 

Tk  thermal diffusion ratio α heat source parameter 

K coefficient of thermal conductivity γ slip parameter  
L mean free path ρ density 

1m  Maxwell’s reflexion coefficient σ coefficient of electric conductivity 

M Hartmann number λ  non-dimensional frequency parameter 
p  pressure ν kinematic viscosity         

eP   peclet number   non dimensional amplitude parameter 

rP   Prandtl number   

R  suction parameter   

rS  soret number   
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1. Introduction 

When heat and mass transfer occur simultaneously in a moving fluid, the relations between the fluxes and the 
driving potentials are of more intricate nature.  It has been found that an energy flux can be generated not only 
by temperature gradients but by composition gradients as well.  The energy flux caused by a compositions 
gradient is called the Dufour or diffusion-thermo effect.  On the other hand, mass fluxes can also be created by 
temperature gradients and this is the Soret or thermal-diffusion effect.  In general, the thermal-diffusion and 
diffusion-thermo effects are of a smaller order of magnitude than the effects described by Fourier’s or Fick’s 
law and are often neglected in heat and mass transfer processes.  However, exceptions are observed therein.  
Due to the importance of Soret (thermal-diffusion) and Dufour (diffusion-thermo) effects for the fluids with 
very light molecular weight as well as medium molecular weight many investigators have studied and reported 
results for these flows [Eckert(1972); Dursunkaya and worek(1992); Streater(2000); Anghel et al.(2000); 
Postelnicu (2004); Alam et al.(2006); Malashetty (2006);  Lakshminarayana et al. (2008); Gaiwad et al. (2009); 
Srinivas and kothandapani(2008)].     

 Viscous flow over moving wavy boundaries may be observed in several natural phenomena, viz., the generation 
of wind waves on water, the formation of sedimentary ripples in river channels and dunes in the desert, etc.   
The analysis of such flows finds applications in different areas, such as transpiration cooling of reentry vehicles 
and rocket boosters, cross-hatching on ablative surfaces, and film vaporization in combustion chambers.  The 
subject is also encountered in some industrial applications, e.g., a novel method of fluid transfer, which avoids 
internal moving parts, employs a duct with flexible walls so as to generate progressive transversal deflection 
waves.  In view of these applications, Lekoudis’ et al. (1976) have presented a linear analysis of compressible 
boundary layer flows over a wavy wall.  Shankar and Sinha (1976) studied the Rayleigh problem for a wavy 
wall.  Lessen and Gangawani (1976) studied the effect of small amplitude wall waviness upon the stability of 
the laminar boundary layer.  Bhaskara Reddy and Bathaiah (1981) have discussed the MHD flow of a viscous 
incompressible fluid between a parallel flat wall and a long wavy wall.  In all these problems, the authors have 
taken the wavy walls to be horizontal.   Later,  Vajravelu (1989) studied the combined free and forced 
convection in hydromagnetic flows in a vertical wavy channel with travelling thermal waves.  Cho et al. (1998) 
have studied the problem of linear stability of two-dimensional steady flow in wavy-walled channel.   Selvarajan 
et al. (1998) have numerically reported the analysis of flow in a channel whose walls describe a traveling wave 
motion.  Chamka and Camille (1999) have discussed the problem of mixed convection effects on unsteady flow 
and heat transfer over a stretched surface.  They focused on the effects of mixed convection currents on the 
problem of unsteady, laminar, boundary-layer flow and heat transfer of an electrically conducting and heat 
generating or absorbing fluid over a semi-infinite vertical stretched surface in the presence of a uniform 
magnetic field.  Recently, Srinivas and Muthuraj (2010a) have discussed the effects of thermal radiation and 
space porosity on MHD mixed convection flow in a vertical channel using homotopy analysis method.  More 
recently, Muthuraj and Srinivas (2010b) have studied MHD oscillatory flow of an optically thin fluid in an 
asymmetric wavy channel filled with porous medium. 
 
In several applications, the flow pattern corresponds to a slip flow, the fluid presents a loss of adhesion at the 
wetted wall making the fluid slide along the wall.   When the molecular mean free path length of the fluid is 
comparable to the distance between the plates as in nanochannels or microchannels, the fluid exhibits non-
continuum effects such as slip-flow as demonstrated experimentally by Derek et al.(2002).   Nearly, 200 years 
ago Navier (1823) proposed a general boundary condition that permits the possibility of fluid slip at a solid 
boundary.  This boundary condition assumes that the tangential velocity of the fluid relative to the solid at a 
point on its surface is proportional to the tangential stress acting at that point. Barrat and Bocquet (1999) have 
used molecular dynamics to compute slip for liquids and Pit et al. (2000) have measured slip for hexadecane on 
several modified sapphire surface using a rotating disk.  Neill et al. (1986) used a linear slip, Basset-type (1961), 
boundary condition to remove the contact-line singularity that would otherwise prevent the movement of a half-
submerged sphere normal to planner free surface bounding a semi-infinite viscous fluid.  Hron et al. (2008) have 
presented analytical solutions for the flows of a generalized fluid of complexity two in special geometries under 
the assumption that the flows meet Navier slip conditions at the boundary.  Ali et al. (2008) have studied the slip 
effects on the peristaltic transport of MHD fluid with variable viscosity.    Ebaid (2008) studied the effects of 
magnetic field and wall slip conditions on the peristaltic transport of a Newtonian fluid in an asymmetric 
channel.  Sirnivas and Muthuraj (2010b) have examined MHD flow with slip effects and temperature dependent 
heat source in a vertical wavy porous space.  More recently, Muthuraj and Srinivas (2010a) have investigated the 
problem of mixed convection heat and mass transfer flow through a vertical wavy porous space with traveling 
thermal waves.  However, no work has been reported yet regarding the influence of heat and mass transfer on 
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the MHD flow through a horizontal wavy walled channel with slip effects.  With the above discussion in mind, 
we put forward the MHD flow of a viscous fluid between a parallel flat wall and a long wavy wall in the 
presence of a slip condition taking into account the thermal-diffusion (Soret) effects.  The fluid is sucked 
through the wall y=0 with the constant suction velocity 0V .  The effects of pertinent parameters entering into the 

problem have been discussed in detail.  The organization of the paper is as follows: Problem is formulated in 
Section 2.  Section 3 deals with the solution of the problem.  Numerical results and discussion are given in 
Section 4.  The conclusions have been summarized in Section 5. 
 
2. Formulation of the Problem 
 

Consider the steady, incompressible and MHD flow of a viscous fluid through a non-isothermal parallel flat wall 
and a long wavy wall (see Fig.1).  The   x- axis is taken along the parallel flat wall and a straight line 

perpendicular to that as the y-axis, so that the wavy wall is represented by *y = d + ε coskx

 

and the flat wall by 

y=0.  A uniform magnetic field is applied in the direction normal to the walls.  The wavy and flat walls are 

maintained at constant temperatures of '
1T  and '

2T  respectively.   

 

 

 

The governing equations for this problem are based on the balance laws of mass, linear momentum, energy and 
concentration modified to account for the presence of the magnetic field and temperature dependent heat source 
effects.  These can be written as  

u v
+ = 0

x y
∂ ∂
∂ ∂                                                                                                                            (1) 

   
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2 2
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∂∂ ∂ ∂ ∂                                                                                   (2)     
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The boundary conditions of the problem are 
                                                         

 
 
 

1
u

u = L
y

∂
∂

    0v = -V  '
1T = T     '

1C = C ,         at        y = 0                                                             (6)                     

 
 
 

1
u

u = -L
y

∂
∂

  v = 0     '
2T = T    '

2C = C ,          at        *y = d + ε coskx                                               (7) 

Fig. 1: Flow geometry of the problem 
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Where, 
 
 
 

1
1

1

2 - m
L = L

m
, L is the mean free path, 1m  is the Maxwell’s reflexion coefficient, 0B  is the transverse 

magnetic field, mD  is the coefficient of mass diffusivity, d is mean width of the channel, p is the pressure, T is 

the temperature distribution, ρ  is the density, ν  is the kinematic viscosity, K is the coefficient of thermal 

conductivity, σ is the coefficient of electric conductivity, Tk  is the thermal diffusion ratio, '
1T  and '

2T  are the 

wall temperatures, '
1C  and '

2C  are the wall concentrations, T is the mean value of '
1T  and '

2T .   

Since the flat wall is infinite in length, 
u

= 0
x

∂
∂

                                                                                                    (8) 

Integrating eqn(1) and using eqn(6), we obtain 0v = -V                                                  (9) 

We introduce the non-dimensional variables  

* * 1
( , ) ( , )x y x y

d
, * * 1
( , ) ( , )

0

u v u v
V

, 
0 0

pd*p =
μ V

, 
'

1

' '

2 1

* T T
T

T T





, 

'
* 1

' '

2 1







C C

C C
                                         (10) 

In view of eqns (9) and (10), eqns (2)-(5) reduce to (omitting * symbols for clarity) 
2

2
2
  

d u du dp
R M u

dy dxdy
                                                                                                                                     (11) 

dp
0

dy
                                                                                                           (12) 

2

r2

d T dT
+ P R +αT = 0

dydy
                                                                                                                                       (13) 

2 2

2 2e r
d d d T

P S 0
dydy dy

 
                                                                                                                                      (14) 

Together with boundary conditions, 
 u u ,       v = -1 ,   T = 0 ,               = 0         at  y = 0                                                    (15) 
  u u ,     v = 0 ,     T = 1 ,              = 1         at  y = h                                                        (16) 

Where h = 1+ εcosλx , 2 2 2 2
0 eM = σB μ d /μ  is the Hartmann number, r pP = μC /K  is the Prandtl number, ν= μ/ρ  

is the kinematic viscosity, *ε= ε /d  is the non-dimensional amplitude parameter( ε << 1 ), λ(= kd)  is the non-

dimension frequency parameter, 0R = V d/ν  is the suction parameter, 2α= Qd /K  is the heat source parameter, 

e 0 mP = V d/D  is the Peclet number and ' ' ' '
r T 2 1 2 1S = k (T -T )/T(C - C )  is the Soret number, 1 /L d   is the slip 

parameter. From eqn.(12), we observe that the fluid pressure p is independent of y.   We assume that the 

pressure gradient 
dp

dx
 is constant.  

3. Method of solution 

  Solving eqn. (11) using the boundary conditions (15)-(16), we obtain 

 
  
 

β h β h β y β h β h β y4 4 3 3 3 4
4 3

2 β h β h β h β h2 4 3 3 4
3 4 4 3

[(e - 1)+ γβ (1+ e )]e - [(e - 1)+ γβ (1+ e )]ec
u(y)= - 1

M (1- γ β β )(e - e )+ γ(e + e )(β - β )
                                         (17) 

Making use of eqns. (15)-(16) solve the eqn. (13), we obtain 
β y β y1 2

β h β h1 2

e - e
T(y)=

e - e
                                                                                                                                               (18) 

Incorporating eqn. (18) into (14) then solve, we get  


 
 
 
 

β y β y-P y 1 2e
r 1 2

-P h β h β he 1 2
e 1 e 2

S β (1- e ) β (1- e )(1- e )
(y)= + -

P + β P + βe - e(1- e )
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 
 
 
 

β y-P y β ye 2 1
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-P hβ h β h e1 2
e 2 e 1

S (1- e ) β (1- e ) β (1- e )
+ -

P + β P + β(e - e )(1- e )
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Where, 
dp

c
dx

;
2 2   

 r r
1

P R P R 4
β

2
; 

2 2   r r
2

P R P R 4
β =

2
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2 2  
3

R R 4M
β =

2
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4

R R 4M
β =

2
 

The shear stress at any point in the fluid is given by  
 
 
 

xy

u v
τ = μ +

y x

∂ ∂
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                                             (20) 

In non dimensionless form xy
0

d u
τ = τ =

V y
 
 
 

∂
∂

                                                                                 (21) 

The skin friction at the flat wall y = 0  and the wavy wall y = h  is given by 

                      
 
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 

0

y=0

u
τ =

y

∂
∂

 ; 
 
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 

1

y=h

u
τ =

y

∂
∂

                                                                                                       (22) 

The heat transfer coefficient, characterized by Nusselt number (Nu) on the tube boundary is   

                      
T

Nu = -K
y

∂
∂

                                                                                       (23) 

In dimensionless form it becomes  

      
   
   

  

' '
2 1T -T T

Nu = -K
d y

∂
∂

                                                      (24) 

The Nusselt number at the flat wall y = 0  and the wavy wall y = h  is given by 

                     0 y=0
Nu = Nu  ;  1 y=h

Nu = Nu                                                                                                      (25) 

The dimensionless mass transfer number corresponding to the Nusselt number is the Sherwood number, written 

as, 


Sh =
y

∂
∂

                                                                                                                                    (26) 

The Sherwood number at the flat wall y = 0  and the wavy wall y = h  is given by 

                      
 

 
 

0

y=0

Sh =
y

∂
∂

 ;  
 

 
 

1

y=h

Sh =
y

∂
∂

                                                                                                  (27) 

 
4. Results and Discussion  
 
In order to get a physical insight into the problem, factors such as velocity, temperature, concentration, skin 
friction and Nusselt number have been discussed by assigning numerical values to various parameters obtained 
in the mathematical formulation of the problem and the results are graphically shown in Figs.2-7.  The graphical 
analysis shows that the slip parameter ( γ ), Soret number ( rS ), Peclet number ( eP ), Prandtl number ( rP ), 

suction parameter (R), Hartmann number (M) and heat source parameter ( ) play an important role in this 
discussion about characteristics of the dynamical flow patterns. Throughout the computations we employ 

rP =0.5, rS =0.5, eP =1, α =5, R=0.5, c=1, ε =0.02, x=1 and M=2, unless otherwise stated.  The velocity 

distribution is graphed in Fig.2 for different values of the parameters γ ,  R and M.  Fig.2a shows that increasing 

slip parameter lead to increase the fluid velocity.  The effect of suction parameter on velocity distribution is 
graphed in Fig.2 (b). It is seen from this figure that the velocity profiles decrease monotonically with the 
increase of suction parameter indicating the usual fact that suction stabilizes the boundary layer growth.   From 
Fig.2c, one can notice that increasing Hartmann number tends to decrease the fluid velocity.  It is because that 
the application of transverse magnetic field will result a resistive type force (Lorentz force) similar to drag force 
which tends to resist the fluid flow and thus reducing its velocity.  Further, it is interesting to note that when 
γ = 0  (without slip) and M increases from 0 to 2 there is 28% decrease in the velocity value, whereas the 
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corresponding decrease, when γ = 0.1 (with slip) is 38%, which shows that γ  significantly affect the flow.  The 

solution of temperature distribution (T) is shown in Fig. 3 for different values of   and R with fixed values of 
all other parameters. 
 
   
 

 

 

 

 

 

 

 

 
 
 
 
 
 
  
 
 
 
 
 

 

 

 

 

 

 
Fig.3a is graphed to see the influence of   on temperature distribution.  It is well known that the heat 
generation causes the fluid temperature to increase, which has tendency to increase the thermal buoyancy 
effects.  From Fig.3b, we observe that increasing suction parameter lead to enhance fluid temperature.  Further, 
it is seen that increasing R temperature increases significantly in the presence of heat generation (i.e.    ).  

b(i) 
M=0 

y 

 

b(ii) 
 M=2 

u u 

y

Fig.2 Velocity distribution 
a: _ γ =0, +_ γ =0.05, *_ γ =0.1, o_ γ =0.15 

b:_R =0, +_ R =0.5, *_ R =1, o_ R =1.5,  =0.3 

c: _M=0, +_ M =2, *_ M =4, o_ M=6,  =0.05, 

(c)

y 

u 

 

a(i) 
M=0 

a(ii) 
M=2 

u u 

y y 
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On the other hand heat absorption (i.e.    ) produces opposite effect.  Fig.4 depicts the behavior of the 
concentration distribution ( ) for different values of  rS , R, eP  and rP .    From this figure, we see that the 

fluid concentration decreases with increasing rS , eP  and  rP  whereas it enhance by increasing suction 

parameter.   
 
 
 
 
 
 
 
 
 

    

 
 
 

 

 

 

 

 

 

   

 
 

 

 

 

 
 Also, we note that concentration of the fluid is positive and decreasing with an increase of eP  when     

(heat absorption) whereas it is negative when    (heat generation).   The effect of rP  and R on Nusselt 

number distribution is plotted in Fig.5.   It depicts that Nu increases with an increase of   and rP  at the flat 

wall y =0, but this behavior is reversed at the wavy wall y=h.  Physically, it means that the heat can sometimes 

Fig.4 Concentration distribution 
a: _ rS =0, +_ rS  = 0.5, *_ rS  =1, o_ rS =1.5    b: _R=0, +_ R =0.5, *_ R =1, o_ R =1.5 

c: _ eP =0, +_ eP  =0.5, *_ eP  =1, o_ eP =1.5     d: □_ rP =0, +_ rP  =0.5, *_ rP  =1, o_ rP  =1.5 

(c) 

α =5 

α = -5

 

y 



y 

(d) 

y 

(a) 



(a) 

y y 

  = 5 

(b) 

T 

  =-5 

Fig.3 Temperature distribution 
a: +_   = -5, *_   =0, o_   =5    
b: □ R=0, +  R =0.5, * R =1, o R =1.5

(b) 

y 



T



R. Muthuraj and S. Srinivas  Journal of Naval Architecture and Marine Engineering 6(2009) 62-71 
 

Influence of Magnetic Field and Wall Slip Conditions On Steady Flow ………. 69

flow out of and other times into either wall.  These behaviors are all valid qualitatively for air ( rP = 0.71) and 

water ( rP = 7).  Similar result can be noticed in Fig.5b if rP  is replaced by R.   

 

 

 
 
 
 
 
 
 
 

 

 
   
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 
Fig.6 is plotted to see the effects of R and γ  on the skin friction at the walls.  In Fig.6a, we see that magnitude 

of skin friction increases with an increase of R at both the walls.  The influence of γ  on skin friction at both the 

walls appears in Fig. 6b.  It is observed that skin friction decreases at the wall y=h while it increases at the other 
wall with an increase of γ .  It means that the flow retards at both the walls. 

 

Nu

(a) 
(b) 

1Nu
1Nu  

0Nu

τ  

b(i) 

Fig.6 Skin friction distribution (__ at the wavy wall,  _... at the flat wall ) 
     a:  _R =0, +_R=0.5, *_ R =1, o_ R =1.5, M=2, γ =0.05, rS =0.5, rP =0.5, eP =1 

 b:  _ γ =0, +_ γ  =0.05, *_ γ  =0.1, o_ γ  =0.15, M=2, R=0.5, rS =0.5, rP =0.5, eP =1 

λ  

τ  
b(ii)

λ  

0Nu

Fig.5 Nusselt number distribution 
a: □_ rP =0, +_ rP  =1, *_ rP  =3, o_ rP  =5, R=0.5, M=2,  =0.5, rS =0.5, eP =1 

b: □_R=0, +_ R =0.4, *_ R =0.8, o_ R =1.2, M=2,  =0.5, rS =0.5, rP =0.5, eP =1 

    

a(i) 

 
λ  λ

τ  

a(ii) 

τ  

Nu 
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Fig.7 shows the variation in Sherwood number distribution (Sh) with   for different values of R.   From this 
figure, we notice that Sherwood number decreases with an increase of R while it increases with increasing   at 
the flat wall y =0.  Further, we observe that Sherwood number decreases with an increase of   and R at the 

other wall. 
 
5.  Conclusion 
 
The influence of applied magnetic field and wall slip effect on the MHD flow between a parallel flat wall and a 
long wavy wall has been analyzed.  The analytical expressions are constructed for velocity, temperature and 
concentration.  The effect of pertinent parameters on flow, heat and mass transfer characteristics are discussed in 
detail.  The salient observations of the present study are listed below. 

i) The effect of increasing suction parameter suppresses the velocity while it enhances the fluid 
temperature. 

ii) Increasing rS , eP  and rP tends to reduce the fluid concentration whereas R lead to increase the 

concentration of the fluid. 

iii) Nusselt number increases with increasing values of rP  and R at the flat wall y=0 but this behavior is 

reversed at the wavy wall y=h.  

iv) The skin friction ( τ ) enhances at both the walls with increasing R.  Further, we observe that skin 
friction decreases with increasing slip parameter at the wavy wall y=h while the opposite is true at the 
other wall.   
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