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Abstract:  
Wave interaction with a floating thin elastic plate which can be used as floating platform is 

analyzed using Boundary Element Method (BEM) for different shapes such as rectangular, 
circular and triangular. Different support conditions are considered and the performance of the 

floating platform under the action of ocean waves is explored. The study is performed under the 

assumption of linearized water wave theory and the floating elastic plate is modelled based on 

the Euler-Bernoulli beam theory. Using Galerkin’s approach, a numerical model has been 

developed and the hydrodynamic loading on the floating elastic plate of shallow draft (thickness) 
is investigated. The wave forces are generated by the numerical model for the analysis of the 

floating plate. The resulting bending moment and optimal deflection due to encountering wave 

force is analysed. The present study will be helpful in design and analysis of the large floating 

platform in ocean waves. 

 

Keywords: Wave force, boundary element method, floating platform, shapes, support conditions, Euler-
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NOMENCLATURE 

 

Greek symbols 

L Length ω Frequency 

 h  Height 

 

 

 

ρ density 

d draft (thickness of plate) ν Poisson’s ratio 

E young’s modulus  ϕ velocity potential 

k wave number w Deflection 

p pressure   

G Green’s identity   

 

1. Introduction  

 

Paper In late 1960’s, numerical techniques such as Boundary Element Method (BEM) and Boundary Integral 

Equation (BIE) were evolved to solve problems in mechanics. Initially, 2-D potential problem was formulated 

using direct BIE and this work is extended to solve elastostatic problem by Rizzo (1967). The advantage of 

BEM as compared to the other numerical methods is ease of reduction of dimensions of the problems i.e from 3-

D to 2-D and 2-D to 1-D. Hence it is much easier to generate mesh as compared with the other domain based 

methods and modelling of infinite domain problems precisely. A significant study on the hydroelastic analysis 

of the VLFS is performed by researchers in the past decade. Watanabe et al. (2004) presented detail review on 

the research being performed on the hydroelastic analysis of VLFS due to wave force, drift force, mooring 

system, profile of seabed and shapes. In the analysis of VLFS, the effect of transverse shear deformation has 

been neglected due to classical thin plate theory assumptions. The shapes of VLFS have been investigated by 

Zilman and Miloh (2002), Peter et al. (2004) and Watanabe et al. (2006). In particular studies are mainly carried 

out for the circular floating elastic plate of shallow draft in finite depth water. Andrianov and Hermans (2005) 

studied the circular floating structure in finite and infinite water depths. Further, Andrianov and Hermans (2008) 

considered pontoon type of VLFS and studied the influence of water depth on the structure. The effect of 
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articulation of the floating elastic plate is analyzed by Karmakar and Sahoo (2005) for different water 

depth.Studies suggested that with increase in stiffness of the articulated spring floating elastic plate behaves as 

continuous plate. Karmakar et al. (2009) extended the s tudy for multiple articulated floating elastic plates. 

Riyansyah et al. (2010) presented an innovative approach for reducing hydroelastic response of floating 

structure by introducing semi-rigid connections into the floating structure system instead of rig id connections.  

 

Meylan and Squire (1996) analyzed the behavior of a flexible ice-floe brought into motion by the action of long-

crested sea waves using the eigenfunction expansion method. The study discusses the displacement and 3-D 

scattering patterns in the water surrounding the ice-floe. Tkacheva (2001a and b) studied the diffraction of the 

surface waves by the semi-infinite floating plate in water of finite depth using the Wiener-Hopf technique. A 

closed form solution for the wave reflection and trans mission coefficient and their asymptotic expressions are 

obtained. In addition to the displacement, strain and pressure distributions over the plate are investigated. Gurert 

(2002) performed the studies on the interaction of free surface waves with elastic  and air cushion platform. 

Goldshtein and Marchenko (1989) presented the diffraction of plane surface gravitational waves at the edges of 

an ice cover lying on the surface of an incompressible fluid of infinite depth. The study showed that with the 

increase in incident wavelength the reflection coefficient tends to zero and the transmission coefficient tends to 

unity. Ohkusu and Namba (2004) developed an analytical method to analyse the bending vibration of a Very 

Large Floating Structure of thin and elongated rectangular plate configuration which is floating on water of 

shallow depth. Using the approach the plate vibration is obtained in an explicit form. Further,  An experimental 

model of transmission of ocean waves by an ice floe is studied by Bennetts et  al (2015) by using thin plastic 

plates with different material properties and thicknesses to model the floe. The diffraction and radiation problem 

of multiple two-dimensional rectangular bodies floating on a layer of water of finite depth was studied by Zheng 

and Zhang (2016). Ship collisions with floating ice in which the ship sustains damage are in the shared -energy 

regime – both the ice and the ship dissipate energy through inelastic deformations was analysed by Kim et al. 

(2017). 

 

Studies on VLFS have been performed by various authors using coupled equation for deflection of the plate and 

pressure below the plate surface. Taylor and Ohkusu (2002) obtained closed form expressions for the Green’s 

function for a uniform beam subjected to flexural vibrations. Further, an alternative forms for the free-free 

beam, in terms of the sinusoidal eigenmodes is developed. The numerical model based on a Galerkin approach, 

and various components of hydrodynamic loading on a shallow draft beam is investigated by Taylor (2007). The 

approach is then extended to the case of thin plate (thickness to width ratio of a plate structure is less than 0.1) in 

waves, where the hydrodynamic effects are fully three dimensional. The alternative procedure of separating 

problem into diffraction and radiation components used universally for seakeeping analysis is extended for 

hydroelastic application by Bishop and Price (1979).Further, Gao et al (2011) studied the hydroelastic response 

of pontoon-type VLFS with a flexible line connection. Mindlin plate theory has been adopted to model the plate 

and inorder to decouple the fluid–structure interaction problem, the modal expansion method is adopted. Hybrid 

method is adopted (BEM and FEM) to solve the governing equation and deflection. The stud y examines the 

effects of the location and the rotational stiffness of flexible line connection. The study suggested that the hinge 

and semi-rigid line connections are found to be effective in reducing hydroelastic response of the VLFS, 

depending on the wavelength. Analytically the solution was given by Liu et al (2012) for wave scattering by 

submerged horizontal porous plate break water with finite thickness in the context of linear potential theory. The 

velocity potential has been split into a symmetric and an antisymmetric part. Using eigenfunction expansion 

matching method all the artificial potentials are determined. To confirm the analytical solution, a multi domain 

boundary element method solution was developed and the study showed the excellent agree ment between the 

results obtained by analytical and boundary element method. the meshless numerical method is deloped by  

Mirafzali et al (2015)  to solve such a problem. The fundamental solution method is applied to approximate the 

velocity potential in the fluid domain. When the water wave encounters the plate, the wave function would not 

be enough smooth in the edge of plate compared to the other points. Hence, use of Meshless method is an 

important aspect.Futher, Oblique surface gravity wave scattering by a floating flexible porous plate is 

investigated in water of finite and infinite depths under the assumption of small amplitude water wave theory 

and structural response were captured by Koley et al (2017). By employing direct strong coupling method, Kim 

et al (2013) formulated a complete formulation for 3-D hydrodynamic analysis of floating structures subjected 

to surface regular waves, as well as other excitation forces. The interaction of oblique monochromatic incident 

waves with submerged horizontal porous plate was carried out by Cho and Kim  (2013), it has been investigated 

by considering the 2-D linear potential theory. To obtain the analytical solution the eigenfunction expansion 

method has been applied and the results were compared with the series of experiments conducted in a two- 

dimensional wave tank. They concluded that by selecting optimal design parameters, such as porosity, 
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submergence depth, and plate width the performance of the proposed submerged horizontal porous breakwaters 

can be significantly enhanced.  The new solution method based on reducing the problem to finite domain, which 

contains both the region of variable water depth and the floating thin plate was studied by Wang and Meylan 

(2002). 

 

Further, Kim et al (2014) proposed a Hydroelastic Design Contour (HDC) which can be used for the preliminary 

design of pontoon type VLFS. It is easy to predict the maximum bending moment of VLFS in irregular waves 

by using HDC. To develop the design contour, hydroelastic analyses considering various structural and wave 

conditions, namely, the bending stiffness and aspect ratio of VLFSs, incident wave length and angle, as well as 

the sea state has been extensively carried out and Hydroelastic Response Contours (HRCs) have been 

constructed. The transient response of a pontoon type VLFS subjected to moving load due to airplane landing / 

take-off was studied by Senjanović et al (2015). Here an approximate solution of free plate natural vibrations, 

based on a new set of mathematical modes consisting of ordinary products of beam modes and their 

combinations as additional (extraordinary) modes, for which the natural frequencies are analytically determined 

using the Rayleigh's quotient, was proposed. The system of modal hydroelastic equations, governing the floating 

airport forced vibrations, is derived using the Lagrange Equation of the second kind and a simplified s olution 

procedure is outlined. The study with and without barriers is studied by Nelli et al. (2016). The  wave fields 

reflected and transmitted by plates without barriers are shown to become irregular, as the incident waves 

become steeper, particularly for the denser plastic and the moored plate. Futher, time-domain incremental 

nonlinear solution procedure for the hydro-elastoplastic analysis of floating plate structures subjected to external 

loads was analysed by Yoon and Less (2017), in which elastoplastic material behavior has been considered. 

Nonlinear hydrostatic analysis of flexible floating structure subjected to self-weight, buoyancy and other 

external loads where solved using an updated Lagrangian Finite Element formulation which was carried out by 

Lee and Lee (2016). By considering the reference configuration the nonlinear equation has been linearized and 

then by using Newton-Raphson method the Finite Element formulation has been solved iteratively. A special 

numerical integration technique is developed to handle the wet-surface change without re-meshing. To 

demonstrate the capability of the model, various nonlinear hydrostatic problems were solved. In particular, the 

results obtained by the model were compared by conducting hydrostatic experimental test. An eigenfunction-

matching method was developed by Meylan et al. (2016) to solve problem of linear water-wave scattering by a 

circular floating porous elastic plate, and a coupled hybrid BEM-FEM was for the problem in which the plate is 

of arbitrary shape. Further, Cheng et al (2016) developed analytical, numerical and experimental methods for 

the hydroelastic analysis of pontoon type VLFS edged with dual horizontal / inclined perforated plates. In 

analytical method to evaluate diffraction and radiation potentials, Eigen function Expansion-Matching Method 

(EEMM) for multiple domains has adopted and by using Rayleigh-Ritz method the equation of motion has been 

solved. The hybrid BEM-FEM solution has been adopted to solve the general cases including inclined 

perforated anti-motion plates numerically. The series of experiments were also conducted to validate both 

analytical and numerical model.  

 

The present work is concerned with the hydroelastic response of the floating beams and floating plates. The 

horizontal dimension in one direction is very large in longish VLFS, such problem can be modelled as floating 

beam. If the dimension is also large in second direction then the problem can be modelled as a plate. For 2-D 

problem, a frequency domain based numerical solution is developed. The fluid is modelled as ideal fluid and 

Euler- Bernoulli theory has been used for the modelling of floating beams or floating plates. The assumptions 

which are made are: the fluid is assumed to be in viscid and incompressible an d the flow is assumed irrotational 

so that fluid velocity can be described by velocity potential which must satisfy the Laplace equation. The 

Boundary Element Method (BEM) with free space Green’s function is used to solve the governing equations of 

fluid motion and the displacement of the beam. The present paper investigates the application of boundary 

element method to compute wave forces, deflection and moment on a floating offshore structure with different 

support condition such as free-free, simply supported, moored and different shapes such as Rectangular, 

Circular and Triangular. The floating beam is allowed to move freely in the vertical direction and is always in 

contact with the fluid. The elastic response of the floating beam is analysed based on t he Boundary Element 

Method (BEM) subjected to regular wave actions. 
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2. Methodology  
The formulation of wave interaction with floating thin elastic plate is based on linearized water wave theory. 

The floating beam of length L which covers a part of undistributed water surface which is designated as  P(0 ≤ x 

≤ L) shown in the Fig. 1 (region 2) and is subjected to sinusoidal waves with wavelength  λ.Cartesian coordinate 

system has been adopted and x - y plane is considered horizontal and z-axis is vertically upward. The incident 

wave travels from x = +∞ to x  = -∞. 

 
Fig.1: Schematic diagram for floating thin plate 

 

The wavelength (λ) of incident wave is assumed to be small as compared with length of plate  L. Thickness d is 

assumed to be very small (shallow draft) as compared with other two dimensions of the plate. Fluid particle 

motion is described by velocity potential based on the assumption of fluid is inviscid, incompressible and 

irrotational which satisfies the Laplace equation as given below, 
2 2

2 2
0

x z

  
 

 
 for -∞ ˂ x ˂ ∞, -h ˂ z ˂ 0.            (1) 

The elastic plate is considered to be satisfying Euler Bernoulli equation and the plate deflection  w  is given by, 
4

4 4

4
( / ) . ,

d w
EI gL kw p

dx
    for -0 ≤ x ≤ L, z = 0,          (2) 

where, EI = Ed
3
/12(1-ν

2
) is the flexural rigidity of the plate, E is the Young’s Modulus, d is plate thickness or 

draft, ν is Poisson’s ratio, μ = h/L and h is water depth. In order to model the floating elastic plate Euler 

Bernoulli beam theory has been adopted. The relationship between displacement w and velocity potential ϕ is 

given by, 

p
i gw


   , on z = 0            (3) 

where,p is pressure, ω is frequency and ρ is density of water. The draft is assumed to be small, pressure below 

of the plate is taken at Z = 0 which is expressed as an integral equation using the Green’s function  G (x0,x) as 

0

0

( ) ( , ) ( ) ( ),

L

ikx

op x K G x x p x dx e w x            (4) 

where, K = ktanhkμ and k = 2π/λ is wave number. The hydroelastic behavior of the beam can be obtained based 

on the Galerkin’s formulation to represent deflection w and pressure p. The rigid body modes of the beam and 

finite set of sinusoidal functions is considered which are given by, 

0 0

( ) ( ), ( ) ( ).
N N

n n n n

n n

w x w x p x p x 
 

            (5) 

where,  

( ) sin( 1) (1 ), 2
2

n x n x n


    
  

By combining Equations (2), (4) and (5) and using the weak formulation of Galerkin method as described in Au 

and Brebbia (1982) we have. 

( , ) ( )
2 ( ) 2 ( ) ( ) ( , ) ,

I

P

G x
x x G x dP

n n

  
    

 
  

 

 
  
        (6) 

where, ϕ
I
 is the incident wave potential given by: 
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cosh ( )

cosh
.ikx

I

iga k x h
e

kh





            (7) 

 

At the free surface, sea bottom and at fluid structure interface boundary conditions are given by  
2

0
z g

 



 


, on z = 0          (8a) 

i w
z





 


, on p            (8b) 

0
z





, on z = -h           (8c) 

where, g is the acceleration due to gravity. The free surface dispersion relation is given by   
2tanh .gk kh              (9) 

 

Substituting fluid boundary conditions (8a-8c) in Equation (6) we have, 

32 2 ( ) ( ) ( , )( ) ( ) = ,
I

P ww

i
x p G x dP

g

i ig
p x u x


   

 


 
 

 
      (10) 

where, u3 is vertical displacement and u1 is horizontal displacement of the plate. The displacement of the plate 

according to virtual work principle is given by, 
2

3 3 3( ) ( ) ( ) ( ) ( ) ( ) ,s

V V P

u x u x dV x x dV p x u x dP               (11) 

where, dV is the volume domain lying below the plate surface (region 2), σ(x) and ε(x) are the stress and strain 

of the plate which obey hooks law given by, 
2

3
3 2

1

( ) ( )  and  ( ) .x x

u
x E x x x

x



    


       (12) 

Substituting the relation between stress and strain in Equation. (11), we obtain 
2 2

2 2 3 1 3 1

3 1 3 1 3 1 3 12 2

1 1

( ) ( )
( ) ( ) ( ) ( ) .

s

V V P

u x u x
u x u x dV Ex dV p x u x dP

x x


   

 
  

 
       (13) 

1 1 3 1 1 1 1 1 1 1 1
( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( , ) ( )

2 2
.

I

P P P Pww

i
p x p x dP u x p x dP x p x dP p G x p x dPdP

g

i i g 
      



 

  
      (14) 

 

Equation (14) represents the fluid pressure exerted on the plate due to waves and can be modelled as two noded 

line element. At each node single degree of freedom is considered. Two noded beam element is considered for 

thin plate and at each node two degrees of freedom (translation and rotation) is considered.  The standard 

interpolation functions and scheme of interpolation is adopted to solve fluid structure problem 

Using interpolation function 

1 11 1
(1 ) (1 )

2 2
h r orh                         (15a) 

2 21 1
(1 ) (1 )

2 2
h r orh                        (15b) 

(1) (1) (2) (1)

(1) (1)

u w w

e

H h h h h

H h h

 
   

   

         (16) 

 

Scheme of interpolation 
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(1) (2)

1 1 1 1 2

(1) (2)

1 1 1 1 2

(1) (2)

1

(1) (1) (2) (2)

3 3 3 3

1

;

;

;

;

T
e e e

T
e e e

N
T

e e e

e

N
e e e

u u

e

x H x x x x

H

p Hp H p p p p

u H u H u u w w

    

 





    

    

     

     





      (17) 

Substituting the above equations in Equation (13) and (14) and using Galerkin’s formulation and combining the 
boundary conditions of the fluid part, the deflection w and pressure pfor the elastic plate can be given as follows, 

1 1 12 2

2

32 2

1 1 1

det det det 0,

T

T Tu u

s u u u

H HEI
H H H Jdr Jdr u H H Jdr p

B r r
 

  

 
 

 

      
      

       

     (18) 

1 1 1 12

3 1 12

1 1 1 1

1

1

1

1
det det ( ) ( ) ( , ) det det

2

exp( ) det ,

T T T

u u

w w

T

H H Jdr u H H Jdr p H s H r G x Jdr Jds p
g g

a H x Jdr




 
   



 
     
     

      



   



 (19) 

where, H is the structural stiffness, B is the width, I is moment of inertia and det J = l/2 Equation (14), (18) and 

(19) are solved numerically. The matrix form of Equation (18 and 19) is given below 

3
0

,
m k c

c m G I

S S S u

F F F Fp

    
         

         (20) 

Where, 
1

2

1

det
T

m s u u
S H H H Jdr 



   is structural mass, 

2 21

2 2

1

det

T

u u

k

H HEI
S Jdr

B r r


 


 

   
   
   
  is structural stiffness, 

1

1

1
det

T

m u

w

F H H Jdr
g



   is fluid stiffness, 

2 1 1

1 12

1 1

( ) ( ) ( , ) det det ,
2

T

G

w

F H s H r G x Jdr Jds
g





 


 
 
 

   is fluid mass and  

1

1

1

exp( ) det
T

I
F a H x Jdr



   is incident pressure. 

By considering the stiffness mass and coupling matrix as explained in Equation (20) the study state response of 

elastic plate can be obtained. Fluid pressure is divided into three components such as diffraction pressure, 

hydrostatic pressure, and radiation pressure. 

Total pressure, rPd sP P P             (21) 

 
1

d m G IP F F F


   

3s wP gu             (22) 

r d sp p p p    
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The wave pressure can be calculated as explained in Eqn. (22), Vice-versa is also possible i.e with wave forces 

as known parameters the displacement can be calculated. 

 

2.1. Free-Free edge condition 

In the case of Free-Free beam, the floating plate is allowed to move freely in the vertical direction with no 

support at the ends. Due to this type of support condition, the movement in vertical direction is not restrained 

and they are always in contact with the fluid. The boundary conditions (Force and Kinematic) satisfy the 

following relations at their ends given by Shirkol et al (2016). 
2 3

2 3
0  and  0

d w d w

dx dx
   at x = 0 and x = L       (23) 

 

By applying the structure boundary conditions given in Equation (23) we can formulate stiffness and mass 

matrix of the structure, 

3 2 3 2

2 2

3 2 3 3

2 3

12 / 6 / 12 / 6 /

6 / 4 / 6 / 2 /

12 / 6 / 12 / 6 /

6 / 2 / 6 / 4 /

k

EI L EI L EI L EI L

EI L EI L EI L EI L
S

EI L EI L EI L EI L

EI L EI L EI L EI L

 
 

 
   
 

 

     (24) 

2 2

2 2

156 22 54 13

22 4 13 3

54 13 156 22420

13 3 22 4

m

L L

L L L LAL
S

L L

L L L L



 
 


 
 
 
   

       (25) 

 

2.2. Simply-supported edge condition 

In the case of simply supported beam, the floating plate is allowed to move freely in the vertical direction but at 

the ends of the beam which is attached with the simple support. At the plate ends deflection and bending 

moment satisfies the following force boundary condition. 

2

2
0

d w

dx
 y = 0 at x = 0 and x = L          (26) 

Based on the vertical restrained the stiffness matrix (Equation 24) can be modified. 

 

2.3. Moored edge condition 

In the case of moored condition, the floating plate is allowed to move freely in the vertical direction but at the 

ends of the beam which is attached with the simple spring of certain stiffness. Due to this support the deflection 

in vertical direction is added with stiffness coefficients at the supports and they are always in contact with the 

fluid. The deflection and bending moment satisfies the relation.  
2 3

2 3
0  and  

m

d w d w
K

dx dx
w  at x = 0 and x = L        (27) 

where, Kmis moored stiffness 

3. Results and Discussion 

Hydroelastic analysis of the floating platform with different edge conditions is carried out for finite water depth 

condition. The resulting bending moment due to encountering waves and plate deflection are discussed here. In 

the present study, convergence test for the deflection is performed and it is observed that, convergence takes 

place for N ≥ 50. Numerical parameters considered in the computation are given in Table 1. 
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Table 1: Details of numerical models used to study the analysis  

Parameters Magnitude 

Length, L  10m 

Breadth, B 50cm 

Draft, d 38mm 

Youngs modulus, E 103Mpa 

Structural density, ρs 220kg/m
3
 

Density of water, ρw  1025 

Water depth, h 20m 

Wave periods 0.5 to 3s 
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Fig. 2: Amplitude of displacement: (a) T = 0.7s; (b) T = 1.429s; (c) T = 2.875s. 

 

In order to examine the code, the numerical results obtained are compared with the experimental and analytical 

results obtained by Wu et al. (1995). The trend in variation of displacement is found to be in agreement with 

experimental and analytical results for three different wave periods T = 0.7s (Fig.2a), T = 1.429s (Fig.2b) and T 

= 2.875s (Fig. 2c) and for free-free edge conditions. At the edges, non-dimensional displacements are 0.6637 

and 0.3365, and that of analytical values are 0.656 and 0.528 for the encountering wave period of T = 0.7s (Fig. 

2a). Further, it is observed that the numerical values at edges are 1.2019 and 1.2516, whereas analytical values 
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are 1.430 and 1.280 for T = 1.429s (Fig. 2b). It is learnt that the difference is due to the consideration of added 

mass and hydrodynamic damping in the analytical and experimental work. Both in analytical and in numerical 

models, the convergence is achieved for N ≥ 50. Bending moment for Free-Free beam condition is shown in 

Fig.3 for two different wave periods T = 0.7s (Fig.3a) and T = 2.87s (Fig. 3b). For validation of the numerical 

model, it should satisfy the boundary condition as mentioned in Equation (23) i.e  at the edges bending moment 

must become zero.  
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Fig. 3: Amplitude of bending moment: (a) T=0.7 s; (b) T=2.87 s. 

 

Fig.3a describes the experimental and numerical values for free-free conditions and at the edges, zero bending 

moment values are observed from the numerical model, whereas experimental values are 0.987 and 0. The 

variation of real and imaginary parts of hydrostatic, diffraction, radiation and total pressure over the plate length 

is reported in Fig.4. Computation is performed for the parameters explained in Table 1. Comparison of the 

results shows that the total pressure acting below the plate does not exhibit much oscillation than the individual 

radiation, diffraction and hydrostatic pressures. The effect of diffraction by the shallow draft beam does not 

cancels the incident wave but the magnitude of the total diffraction forces increases almost monotonically 

towards its maximum amplitude. 

 
Fig 4: Total, diffraction, hydrostatic and radiation Force on the floating plate (      Absolute, -------- Imaginary) 

 

The analysis is also performed by considering two different edge conditions such as simply -supported and 

moored support. The study showed that assembling of stiffness matrix in the numerical model plays a major role 
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in the calculation of deflection and bending moment of the floating structure. In the case of moored edge 

condition, added spring stiffness  Km = 10N/m [Equation (27)] is considered for the numerical computation. 

 
Fig. 5: Comparison of deflection for rectangular plate with moored and simple support conditions (L/= 12). 

 

Deflection of the floating elastic plate for moored and free-free support conditions is projected in Fig. 5. It is 

observed that plate deflection is less for moored edge condition as compared to simply-supported. 

 
Fig. 6: Comparison of moment for rectangular plate with moored and simple support conditions (L/= 12) 

 

Fig. 6 shows that bending moment in the plate with simply-supported edge is having lesser value than the plate 

with moored edge condition. For moored condition the restraint is only the spring attached to its ends so the 

moment is high as compared with simple support. For both the cases, the numerical model satisfies the force 

boundary conditions i.e zero moments at the supports. Fig. 7 shows the comparison of all three support 

conditions. It is observed that the maximum moments are 7.75x10
4 

Nm/m, 2x10
4
 Nm/m and 3.75x10

4
 Nm/m for 

Free-Free, simple support and moored conditions, respectively. Also, the moment reduces when edges of the 

floating plate is restrained.  
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Fig. 7: Comparison of moment for rectangular plate with all the support conditions (L/= 12, d/L=0.1) 

 

Further, floating plate is analysed for deflection and bending moment for all the support conditions by 

considering plate length to wave length ratio of higher magnitude (L/= 333) and parameters given in Table 2. 

 
Fig. 8: Comparison of deflection for rectangular plate with all the support conditions (L/=333, d/L=0.001) 

 

Table 2: Parametric Details of numerical models used to study the analysis  

Parameters Magnitude 

Length, L  1000m 

Breadth, B 100m 

Draft, d 1m 

Youngs modulus, E 5.789 

Structural density, s   8.5690 

Density of water, w   1025 

Water depth, h 20m 

Wavelength,    3m 

 

Fig. 8 and Fig. 9 depict the variation of deflection and bending moment throughout its length for an aspect ratio, 

L/= 333, respectively. It is observed that the profile of the deflection is almost same with values at the edges as, 

1.4 and 2.75 for free-free and 0.8 and -0.25 for both simple support and moored edge conditions, of aspect 

ratios, L/= 25 and L/= 12 (See Fig.2) for free-free condition. Further, it is observed that the deflection of 

moored and simple support conditions almost coincides. This gives an intuition that the restraints have less 



A. I. Shirkol, T. Nasar  / Journal of Naval Architecture and Marine Engineering, 14(2017) 115-133 

Wave interaction with Floating platform of different shapes and supports using BEM approach  126 

influence on magnitude of deflection for the restraints considered. Also, the deflection can be decreased either 

by applying greater restrained at edges i.e by adopting clamped support or by changing material properties. The 

maximum bending moment for free-free condition is 13.5x10
5 

Nm/m, 7.1x10
5
 Nm/m for moored condition and 

2.75x10
5
 for simple support which are higher in magnitude than that of L/= 25, L/= 12 and L/= 0.7.  Increase 

in bending moment of plate is due to increase in aspect ratio of floating plate. Bending moment in the plate can 

be minimized by increasing thickness of plate for all three support conditions. For moored condition, it can be 

reduced by incorporating the stiffer spring. 

 
Fig. 9: Comparison of moment for rectangular plate with all the support conditions (L/=333, d/L=0.001) 

 

Table 3: Parametric details of numerical models used to study the analysis  

Parameters Magnitude 

Length, L  1000m 

Breadth, B 100m 

Draft, d 5m 

Youngs modulus, E 5.789 

Structural density, ρs  8.5690 

Density of water, ρw  1025 

Water depth, h 20m 

Wavelength, λ  3m 

 

Fig. 10 shows comparison of deflection for three support conditions and for L/=333, d/L=0.005, The non-

dimensional displacement values at the supports are 0.27 and 0.4, 0.9 and -0.2 and -0.63 and -0.65 for free-free, 

simple support and moored conditions, respectively. These values are lesser in magnitude as compared with 

values (1.4 and 2.75 for free-free and 0.8 and -0.25 for both simple support and moored edge conditions) 

obtained for L/=333, d/L=0.001. The decrease in displacement is due to the increase in thickness of floating 

plate. In the case of free-free condition, it is observed that the deflection is lesser than other two edge conditions 

(simply support and moored) for d/L=0.005 as compared with the deflection obtained for d/L=0.001. This 

implies that thickness of plate plays significant role on the deflection of plate and subjected to further analysis.  

 

Results have been discussed for Rectangular plate in the foregoing sections. In our next step, different shapes of 

floating platform such as Circular and Triangular platforms have been considered in order to understand 

sophistication of the numerical model. In the same formulation, Moment of Inertia (both mass and area ) is used 

as key input for the different shapes and displacement of all the shapes with different type of support conditions 

were calculated.  
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Fig.10: Comparison of deflection for rectangular plate with all support conditions (L/=333, d/L=0.005) 

 

Table 4: Parametric Details of numerical models used to study the analysis  

Parameters Magnitude 

radius, r  100m 

Moment of Inertia 98.5x10
6
 mm

4
 

Draft, d 5m 

Youngs modulus, E 5.789 

Structural density, ρs  8.5690 

Density of water, ρw  1025 

Water depth, h 20m 

Wavelength, λ  3m 

 

Fig. 11 shows the deflection for Circular plate with free-free edge conditions for the parameters mentioned in 

Table 4. At the edges, deflections are observed similar to rectangular plate due to the free-free support condition 

and also it is seen that maximum non-dimensional deflection of 0.15 and 0.25 is obtained for D/=66 and 

d/D=0.025, where D is the diameter of the plate.  

 
Fig.11: Convergence Test and Deflection of circular plate with free-free edge condition (D/=66, d/D=0.025) 
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Fig. 12: Comparison of Deflection of circular plate with simple and moored edge condition (D/=66, 

d/D=0.025) 

 

The analysis is performed by considering three types of support conditions such as simple supported and 

moored edge and free-free (Fig.12). In the case of moored edge condition, the added spring stiffness, Km = 

10N/m is considered for the numerical computation. The trend in variation of deflection is similar for both 

moored and simple supported conditions. However, for simple support, the non-dimensional deflections at edges 

are 0.9 and -0.2. At moored supports, the deflections are 1.0 and -0.3. 

 

 
Fig. 13: Comparison of bending moment in circular plate with free-free, simple and moored edge conditions 

(D/=66, d/D=0.025) 

 

The variation of bending moment in circular plate is shown in Fig. 13 for free-free, simple and moored support 

conditions. It is observed that the trend in variation is highest for free-free edge condition and its maximum 

value is 2.25x10
7
Nm/mm. A similar trend in variation is observed for simple and moored edge conditions. The 

maximum bending moments are   5.50x10
6
Nm/mm and 1.150x10

7
Nm/mm for simple and moored edge 

conditions, respectively.  

 

An attempt has been made for triangular shape plate as well. The regular wave has been incident on triangular 

floating plate with wave parameters mentioned in the Table 5. The convergence is obtained at N  50 as it 

converged in rectangular plate. The convergence test and deflection for free-free condition is projected in Fig. 
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14.  The trend in variation of deflection (Fig.15) is similar for both moored and simple support conditions. Also, 

the deflections at edges are observed to be having either positive or negative values. The diffe rence between the 

deflections is less for moored and simple support conditions.  Further, it is observed that the free -free condition 

gives the least value of deflections at the edges and in its length wise as well. 

 

Table 5: Parametric Details of numerical models used to study the analysis  

Parameters Magnitude 

Length, L  1000m 

Breadth, B 10m 

Draft, d 5m 

Youngs modulus, E 5.789 

Structural density, ρs  8.5690 

Density of water, ρw  1025 

Water depth, h 20m 

Wavelength, λ 3m 

 

 
Fig. 14: Convergence test and deflection of triangular plate with free-free edge condition (L/=333, d/L=0.005) 

 

 
Fig. 15: Deflection of triangular plate with simple and moored edge condition (L/=333, d/L=0.005) 
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Fig. 16: Comparison of bending moment of triangular plate with free-free, simple and moored edge conditions 

(L/=333, d/L=0.005) 

 

Fig. 16. depicts the bending moment for Triangular floating plate with different sup port conditions.  The 

maximum bending moments are 2.9x10
9
Nm/mm, 1.4x10

9
Nm/mm and 0.75x10

9
Nm/mm for free-free, moored and 

simple support edge conditions, respectively.  

 

4. Conclusions 

In order to explore the structural behaviour of Very Large Floating Structu re (VLFS), a numerical model has 

been developed using Boundary Element Method (BEM) which is based on a Galerkin approximation and the 

same is validated both by analytical and experimental results of Wu et al (1995). The structure modelled as 

elastic thin plate by using Kirchoffs love theory. The fluid structure interaction is modelled without considering 

the added mass and potential damping.  

 

In the present study, the efficacy of the developed numerical model for analysing the wave - floating plate 

interaction with different support conditions (free-free, simple and moored) and shapes (rectangle, circular and 

Triangle) is studied. It is assumed that the floating plate is considered as a strip and wave incident is parallel to 

the strip. The thin plate deflection characteristics and wave induced bending moments are studied in detail and 

as a validation of the numerical model, the force boundary conditions due to restrained effects are checked.  

 

The convergence of plate deflection showed that minimum number of elements required for the convergence is 

50. The wave structure interaction problem is solved by using fluid structure coupling equations. In the present 

model, diffraction and radiation terms can easily be extracted from the coupled equations. The couple d equation 

satisfies all the boundary conditions for any shapes and for any support conditions, with proper Centre of 

Gravity system and Moment of Inertia and hence the deflection and bending moment of the plate can be 

analysed through this model.  

 

The following salient results/conclusions are drawn from the present study. It is observed that the individual 

diffraction, radiation and hydrostatic components are all much larger in magnitude than their combined effect. 

At the trough of the incident wave the effect of diffraction is very low due to small draft of the beam but at the 

crest of the incident wave the diffraction force increases tremendously. In the case of rectangular plate, three 

different aspect ratios L/=12 with d/L= 0.1, L/=333 with d/L= 0.001 and L/=333 with d/L= 0.005 are 

considered in order to validate the model with the available literature. However, for the comparison between 

rectangle and triangular shapes and for different support conditions, L/=333 with d/L= 0.005 is considered. In 

the case of rectangular plate, for an aspect ratio of L/=333 with d/L= 0.005, the maximum deflection at the 

edges are 0.27 and 0.4, 0.9 and -0.2 and -0.63 and -0.65 for free-free, simple support and moored conditions, 

respectively. However, the deflections  for triangle shape are 0.25 and 0.33, 0.9 and -0.2 and 1 and -0.3 for free-

free, simple support and moored conditions, respectively. In the case of circular plate, for an aspect ratio of 
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D/=66 with d/D= 0.025, it is observed that the deflections at the s upports are 0.15 and 0.25, 0.9 and -0.2 and 

0.9 and -0.2 for free-free, simple support and moored conditions, respectively.  

 

It is observed that the maximum bending moments for rectangular plate are 13.5x10
5 

Nm/m, 2.75x10
5
 Nm/m and 

7.1x10
5
 Nm/m for Free-Free, simple support and moored conditions, respectively. For triangular plate, the 

moments are 2.9x10
9
Nm/mm, 0.75x10

9
Nm/mm and 1.4x10

9
Nm/mm as in the same order of support conditions 

mentioned for rectangular plate. In circular plate the maximum moments are observed as 2.25x10
7
Nm/mm, 

5.50x10
6
Nm/mm and 1.150x10

7
Nm/mm.  

 

From the present study of limited analysis, the following qualitative statement can be made. In the case of 

rectangular plate with free-free edge condition and for an aspect ratio of L/=333 with d/L= 0.005, the 

maximum deflection is at the edges of the plate but for the case of simply -supported edge the deflection is zero. 

In the case of moored edge condition, the deflection is less as compared to free edge condition, but, the 

deflection of the plate is relatively high for simply-support and moored edge conditions. It is clear that the 

overall response of the floating plate is extremely sensitive to its support conditions and ratio of draft to plate 

length. But the limiting case where the plate width is extended to approach a case equivalent to the beam model 

has not been attempted, because based on the very simple numerical method described here the number of terms 

required to provide an adequate representation of the hydrodynamic behaviour in  the transverse direction would 

appear to be excessive. While considering three different shapes, circular plate with moored condition having 

stiffness, Km = 10N/m exhibits lesser value of deflection and bending moment than triangular and rectangular 

plate. Also, it is concluded that either rectangular shape with simple support or circular with moored support 

condition is best suited as floating platform in view analysis done based on deflection and bending moment 

characteristics.  
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