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Abstract:  
The present numerical work describes the effect of the magnetohydrodynamic (MHD) free convective 
heat transfer flow along a vertical flat plate with temperature dependent thermal conductivity and 
heat conduction. The governing equations reduce to local non-similarity boundary layer equations 
using suitable transformation have been integrated by employing an implicit finite difference method 
together with the Keller box technique. Comparison with previously published work is performed and 
excellent agreement is observed. Profiles of the dimensionless velocity and temperature distributions 
as well as the local skin friction coefficient and surface temperature distribution are shown 
graphically for various values of the magnetic parameter M, thermal conductivity variation 
parameter  and Prandtl number Pr.  

Keywords: Implicit finite difference method, free convection flow, vertical flat plate, temperature dependent 
thermal conductivity. 

 

NOMENCLATURE 
 

Greek symbols 
b plate thickness vu ,  velocity components  

Cx local skin friction coefficient u, v  dimensionless velocity components 

cp specific heat at constant pressure yx,  cartesian coordinates  

f dimensionless stream function  x,y dimensionless cartesian coordinates 

g  acceleration due to gravity   co-efficient of thermal expansion 

Gr Grashof number  vector differential operator 
h dimensionless temperature  dimensionless similarity variable 

0 strength of the magnetic field  (x,0) surface temperature distribution 
l length of the plate f thermal conductivity of the fluid 
M magnetic parameter s thermal conductivity of the solid 

 thermal conductivity variation parameter  thermal conductivity of the ambient fluid 

P conjugate conduction parameter  ,  dynamic and  kinematic viscosities  

Pr Prandtl number  density of the fluid    

T temperature of the interface  electrical conductivity  

Tb temperature at outside surface of the plate w shearing stress 

Tf temperature of the fluid  stream function  

 fluid asymptotic temperature    
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1. Introduction 
The most common type of body force, which acts on a fluid is due to gravity so that the body force can be 
defined as in magnitude and direction by the acceleration due to gravity. The electric and magnetic fields 
themselves must obey a set of physical laws, which are expressed by Maxwell’s equations. The solution of such 
problems requires the simultaneous solution of the equations of fluid mechanics and of electromagnetism. One 
special case of this type of coupling is the field known as MHD. The interaction of the magnetic field and the 
moving electric charge carried by the flowing fluid induces a force, which tends to oppose the fluid motion. And 
near the leading edge the velocity is very small so that the magnetic force, which is proportional to the 
magnitude of the longitudinal velocity and acts in the opposite direction, is also very small. Consequently, the 
influence of the magnetic field on the boundary layer is exerted only through induced forces within the 
boundary layer itself, with no additional effects arising from the free stream pressure gradient. 
Magnetohydrodynamic flow is an important research area due to its potential   applications in engineering and 
industrial fields. Magnetohydrodynamic power generators and accelerators, cooling of nuclear reactors and 
crystal growth are included in this area.  Accordingly, a considerable amount of research has been accomplished 
on the effects of electrically- conducting fluids such as liquid metals water mixed with a little acid and others in 
the presence of transverse magnetic field on the flow and heat transfer characteristics over various geometries. 
The effect of magnetic field on free convection heat transfer has studied by Sparrow and Cess (1961). Kuiken 
(1970) studied the problem of MHD free convection in a strong cross field. Hossain et al. (1990, 1997, and 
1998) discussed the both forced and free convection boundary layer flow of an electrically conducting fluid in 
the presence of magnetic field. Moreover, MHD free convection flow of visco-elastic fluid past an infinite 
porous plate was investigated by Chowdhury and Islam (2000). Elbashbeshy (2000) also discussed the effect of 
free convection flow with variable viscosity and thermal diffusivity along a vertical plate in the presence of 
magnetic field.  

In all the above studies the effects of temperature dependent thermal conductivity has not been considered. But, 
thermal boundary layer in liquid metals with variable thermal conductivity studied by Arunachalam and Rajappa 
(1978). The Combined convection from a vertical flat plate with temperature dependent viscosity and thermal 
conductivity was investigated by Hossain et al. (2002).  Hossain et al. (2004) have considered the problem of the 
natural convection laminar flow with temperature dependent viscosity and thermal conductivity along a vertical 
wavy surface. Moreover, the natural convection flow from an isothermal sphere with temperature dependent 
thermal conductivity has studied by Molla et al. (2005). 

Therefore the objective of the present work is to investigate the numerical study on MHD free convection flow 
along a vertical flat plate with temperature dependent thermal conductivity and heat conduction. In our study, 
we have considered the conductivity of the fluid to be proportional to a linear function of temperature as 
considered by Charraudeau (1975) .The governing partial differential equations are reduced to locally non-
similar partial differential forms by adopting appropriate transformations. The transformed boundary layer 
equations are solved numerically using very efficient finite difference scheme known as Keller box technique 
(1978). Numerical results of the velocity, temperature, local skin friction coefficient and the surface temperature 
distribution for the thermal conductivity variation parameter, the magnetic parameter and Prandtl number are 
presented graphically. 

2. Mathematical Formulation 
We consider a steady two-dimensional laminar free convection flow of an electrically conducting, viscous and 
incompressible fluid along a vertical flat plate of length l and thickness b. It is assumed that the temperature at 
the outer surface of the plate is maintained at a constant temperature Tb, where Tb > T. Here T the temperature 
of the fluid outside the boundary layer. The coordinates system and the configuration are shown in Fig. 1 

The governing equations for continuity, momentum and energy take the following form   
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Fig.1: Physical model and coordinate system 
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Here we will consider the form of the temperature dependent thermal conductivity, which is proposed by 
Charraudeau [1975]  

)](1[   TT ff     (4) 

where  is the thermal conductivity of the ambient fluid and  is a constant. 

The appropriate boundary conditions to be satisfied by the above equations are (Luikov 1974, Merkin & Pop 
1996, Pop & Ingham 2001, Cheng 2006) 
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The non-dimensional governing equations and boundary conditions can be obtained from Equations (1) - (5) 
using the following non-dimensional quantities 
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where l is the length of the plate, Gr is the Grashof number,   is the non-dimensional temperature. 

Equations (1) to (3) we get the following non -dimensional equations 
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where Pr    kc p / is the Prandtl number,  )(  TTb , is the dimensionless thermal conductivity 

variation parameter and 2122
0 GrlHM  is the dimensionless magnetic parameter. 

The corresponding boundary conditions (5) then take the following form 
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where     4/1/ Grlkbkp s  is the conjugate conduction parameter. This coupling parameter determines the 

significance of the conduction resistance within the wall. In the present investigation we have considered p = 1. 

To solve the Equations (8) and (9) subject to the boundary conditions (10) the flowing transformations are then 
introduced 
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here   is the similarity variable and  is the non-dimensional stream  function which satisfies the continuity 

equation and is related to the velocity components in the usual  way as yu    and  xv   . 

Moreover h (x,) represents the dimensionless temperature. The momentum and energy equations (Equation (8) 
and (9), respectively) are transformed for the new coordinate system. Thus we get 
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where prime denotes partial differentiation with respect to . The boundary conditions as mentioned in Equation 
(10) then take the following form 
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3. Numerical Method of Solution 
In the present investigation implicit finite difference method has been used to integrate Equations (12) to (13).   

3.1 Implicit Finite Difference Method 
We employed implicit finite difference method together with Keller box elimination technique, which was first 
introduced by Keller (1978) and widely used by Hossain et al. (1992, 1999).  

To apply the aforementioned method, we first convert Equations (12) and (13) into the following system of first 
order equations with dependent variables ),(),,(),,(  pvu and g ),(  as 
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Now we consider the net rectangle on the (,) plane shown in the Fig. 2 and denote the net points by 
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here n and j are just sequence of numbers on the ( ,) plane, nk and jh are the variable mesh widths. 
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Fig. 2: Net rectangle for difference approximations for the Box scheme.  
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The finite difference approximations according to box method to the three first order ordinary differential 
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The difference approximation to Equations (16)-(17) become 
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The coefficients of momentum equation are 
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The boundary conditions (28) become 
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Which just express the requirement for the boundary conditions to remain during the iteration process. Now the 
system of linear equations (34), (35), (36), (37) and (38) together with the boundary conditions (41) can be 
written in a black matrix form a coefficient matrix. The whole procedure, namely reduction to first order 
followed by central difference approximations, Newton’s Quasi-linearization method and the block Thomas 
algorithm, is well known as Keller-box method. 

4. Local skin friction coefficient and surface temperature distribution 
From the process of numerical computation, in practical point of view, it is important to calculate the values of 
the surface shear stress in terms of the skin friction coefficient. This can be written in the non-dimensional form 
as 

    wf lGrC /24/3    (42) 

where ])([ 0 yw yu  is the shearing stress. Using the new variables described in Equation (6), the 

local skin friction co-efficient can be written as 

)0,()1( 20/35/2 xfxxC xf  
   43) 

The numerical values of the surface temperature distribution are obtained from the relation 

)0,()1()0,( 5/15/1 xhxxx     (44) 

We have also discussed the velocity profiles and the temperature distributions for different values of the thermal 
conductivity variation parameter, the magnetic parameter and the Prandtl number.  

5. Comparison with previous work and programme validation 
A comparison of the surface temperature and local skin friction coefficient obtained in the present work with 

5

1

x , M=0 and  = 0 and obtained by Merkin and Pop (1996) and Pozzi and Lupo (1988) have been 
shown in Table 1 and Table 2, respectively. It is clearly seen that there is an excellent agreement among the 
respective results.  
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Table 1: Comparison of the present numerical results of surface temperature with Prandtl number            Pr = 
0.733, M = 0 and   = 0 

 (x,0) 

5

1

x  
Pozzi and Lupo (1988) Merkin and Pop (1996) Present work 

0.7 0.651 0.651 0.651 

0.8 0.684 0.686 0.687 

0.9 0.708 0.715 0.716 

1.0 0.717 0.741 0.741 

1.1 0.699 0.762 0.763 

1.2 0.640 0.781 0.781 
 

Table 2: Comparison of the present numerical results of local skin friction coefficient with Prandtl number Pr = 
0.733, M = 0 and   = 0 

Cfx 

5

1

x  
Pozzi and Lupo (1988) Merkin and Pop (1996) Present work 

0.7 0.430 0.430 0.424 

0.8 0.530 0.530 0.529 

0.9 0.635 0.635 0.635 

1.0 0.741 0.745 0.744 

1.1 0.829 0.859 0.860 

1.2 0.817 0.972 0.975 

6. Results and Discussion 
Here we have investigated numerically MHD free convection flow along a vertical flat plate with temperature 
dependent thermal conductivity and heat conduction. In simulation, the values of the Prandtl number are 
considered to be 0.70, 1.70, 2.97 and 4.34 that corresponds to helium, sulfur dioxide, methyl chloride and water, 
respectively. Numerical results have been obtained for different values of the magnetic parameter, thermal 
conductivity variation parameter and Prandtl number are presented graphically. 

 

 

 

 

 

 

 

 

                                       (a)                                                                                       (b) 

Fig: 3 (a) Variation of velocity profiles and (b) temperature profiles against  for varying of M with  = 0.12 and 
Pr = 4.34 
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                                      (a)                                                                                        (b) 

Fig.  4 (a) Variation of velocity profiles and (b) temperature profiles against  for varying of  with M = 0.12 
and Pr = 4.34 

 

 

 

 

 

 

 

 
 

                                      (a)                                                                                         (b) 

 Fig.  5 (a) Variation of velocity profiles and (b) temperature profiles against  for varying of Pr with  = 0.12 
and M = 0.12 
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Fig.  6 (a) Variation of local skin friction coefficients and (b) surface temperature distribution profiles against x 
for varying of M with   = 0.12 and Pr = 4.34 
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                                      (a)                                                                                        (b)                                

Fig.  7 (a) Variation of local skin friction coefficients and (b) surface temperature distribution profiles against x 
for varying of  with M = 0.12 and Pr = 4.34 
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Fig.  8 (a) Variation of local skin friction coefficients and (b) surface temperature distribution profiles against x 
for varying of Pr with  = 0.12 and M = 0.12 

From Fig. 3 (a) it can be observed that the magnetic field normal to the flow in an electrically conducting fluid 
introduces a Lorentz force, which acts against the flow. The peak velocity decreases with the increase in 
magnetic parameter M due to this retarding effect. From Fig. 3 (b), it can be seen that the temperature within the 
boundary layer increases with the increase in M. Temperature at the interface also varies since the conduction is 
considered with in the plate. 

Fig. 4 (a) and 4(b) display the numerical results of the velocity and the temperature, respectively obtained from 
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Fig. 7 (a) and Fig. 7 (b) illustrate the effect of the thermal conductivity variation parameter on the local skin 
friction coefficient and surface temperature distribution against x with M = 0.12 and Pr = 4.34. It is also seen 
that the local skin friction coefficient increases with the increase in . From Fig. 7 (b), it is seen that the surface 
temperature increases with the increase in . This is to be expected because the higher value for the thermal 
conductivity variation parameter accelerates the fluid flow and increases the temperature as mentioned in Fig. 4 
(a) and Fig. 4 (b), respectively. 

Fig. 8 (a) and Fig. 8 (b) plot the effect of Prandtl number on the local skin friction coefficient and surface 
temperature distribution against x with M = 0.12 and  = 0.12. It can be observed from Fig. 8 (a) that the local 
skin friction coefficient decreases with the increase in Pr. This is expected behavior because the fluid velocity is 
decreased due to the increase in Pr. From Fig. 8 (b), it can be conclude that the surface temperature distribution 
decreases for the increase in values of Pr. 

7. Conclusion 
In this paper effect of temperature dependent thermal conductivity on MHD free convection flow along a 
vertical flat plate have been studied numerically. Implicit finite difference method together with Keller box 
scheme is employed to integrate the equations governing the flow. Comparison with previously published work 
is performed and excellent argument has been observed. From the present numerical investigation, following 
conclusions may be drawn:  

 For increased value of magnetic parameter, the velocity profile decreases but the temperature profile 
increases slightly. 

 The local skin friction coefficient decreases as well as the surface temperature distribution increase with 
the increase in values of the magnetic parameter. 

 The velocity and the temperature within the boundary layer increases for increasing values of the thermal 
conductivity variation parameter.  

  Increasing values of the thermal conductivity variation parameter leads to increase the local skin friction 
coefficient and also the surface temperature distribution. 

 The velocity, temperature, local skin friction coefficient and surface temperature distribution within the 
boundary layer decreases with the  increase in values of the Prandtl number.  
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