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Abstract:  
The objective of this paper is to analyze the effect of constant suction and sinusoidal injection on 
three dimensional couette flow of a viscous incompressible electrically conducting fluid through a 
porous medium between two infinite horizontal parallel porous flat plates in presence of a transverse 
magnetic field. The stationary plate and the plate in uniform motion are, respectively, subjected to a 
transverse sinusoidal injection and uniform suction of the fluid .The flow becomes three dimensional 
due to this type of injection velocity distribution. The governing equations of the flow field are solved 
by using series expansion method and the expressions for the velocity field, the temperature field, skin 
friction and the rate of heat transfer in terms of Nusselt number are obtained. The effects of the flow 
parameters on the velocity field, temperature field, skin friction and the Nusselt number have been 
studied and analyzed with the help of figures and tables. It is observed that a growing magnetic 
parameter (M) retards the main velocity (u) and accelerates the cross flow velocity (w1) of the flow 
field and a growing permeability parameter (Kp) or suction / injection parameter (Re) reverses the 
effect. Both Prandtl number (Pr) and the suction / injection parameter have retarding effect on the 
temperature field. Further, a growing suction / injection parameter diminishes both the components 
of skin friction at the wall while the permeability parameter enhances the x-component and reduces 
the z-component of the skin friction at the wall. The effect of increasing permeability parameter is to 
enhance the magnitude of rate of heat transfer at the wall while a growing Prandtl number (Pr) 
reverses the effect. 
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NOMENCLATURE       

B0    uniform magnetic field 

K *      permeability of the medium 
Kp      permeability parameter    
l       distance between the plates 
M     magnetic parameter 
Nu     Nusselt number 
Pr     Prandtl number 
p*     pressure 

   Re      Reynolds number 
T*     temperature 
T       dimensionless temperature 
T0      temperature at the lower plate 
Tw      temperature at the upper plate 
U       uniform velocity of the upper plate 

 u, v, w dimensionless velocity components 
 u*, v*, w*   velocity components along  
 x*, y*, z* direction respectively 
 V           constant suction velocity 
 v*(z*)   sinusoidal injection velocity 
 x, y, z     dimensionless Cartesian coordinates 
x*, y*, z* Cartesian coordinates 

Greek Symbol 
           thermal diffusivity 

            a small positive constant (0<<<1) 

           density 

           coefficient of kinematic viscosity 

           electrical conductivity 

1. Introduction 

The phenomenon of magnetohydrodynamic couette flow with heat transfer has been a subject of growing 
interest in view of its possible applications in many branches of science and technology and also in industry. 
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Channel flows through porous media have several engineering and geophysical applications, such as, in the field 
of chemical engineering for filtration and purification processes; in the field of agricultural engineering to study 
the underground water resources; in petroleum industry to study the movement of natural gas, oil and water 
through the oil channels and reservoirs.   
 
In recent years flow through porous media has become a subject of general interest of many researchers. A 
series of investigations have been made by different scholars where the porous medium is either bounded by 
horizontal or vertical surfaces. In view of its varied theoretical and practical interests, Gulab and Mishra (1977) 
applied the equations of motion derived by Ahmadi and Manvi (1971) to study the unsteady MHD flow of a 
conducting fluid through a porous medium. Gersten and Gross (1974) studied the effect of periodic variation of 
suction velocity on flow and heat transfer along a plane wall. Raptis (1983) analyzed the unsteady free 
convective flow through a porous medium. Kaviany (1985) presented the laminar flow through a porous channel 
bounded by isothermal parallel plates. Singh and Verma (1995) investigated the three dimensional oscillatory 
flow through a porous medium with periodic permeability. Attia and Kotb (1996) discussed the MHD flow 
between two parallel plates with heat transfer. Chamkha (1996) analyzed the unsteady hydromagnetic natural 
convection in a fluid saturated porous channel. 
 
Three dimensional free convective flow through a porous medium in presence of heat transfer was studied by 
Ahamed and Sharma (1997). Attia (1997) discussed the transient MHD flow and heat transfer between two 
parallel plates with temperature dependent viscosity. Krishna et al. (2004) presented the hydromagnetic 
oscillatory flow of a second order Rivlin-Ericksen fluid in a channel. Sharma and Yadav (2005) analyzed the 
heat transfer through three dimensional Couette flow between a stationary porous plate bounded by porous 
medium and a moving porous plate. Sharma et al. (2005) explained the steady laminar flow and heat transfer of 
a non-Newtonian fluid through a straight horizontal porous channel in the presence of heat source. Vershney and 
Singh (2005) presented the effect of periodic permeability on three dimensional free convective flow with heat 
and mass transfer through a porous medium. Jain et al. (2006) investigated the three dimensional couette flow 
with transpiration cooling through a porous medium in the slip flow regime. Recently, Das et al. (2008) 
analyzed the three dimensional couette flow and heat transfer in presence of a transverse magnetic field. 
   
The study reported herein analyzes the effect of constant suction and sinusoidal injection on three dimensional 
couette flow of a viscous incompressible electrically conducting fluid through a porous medium between two 
infinite horizontal parallel porous flat plates in presence of a transverse magnetic field. The stationary plate and 
the plate in uniform motion are, respectively, subjected to a transverse sinusoidal injection and uniform suction 
of the fluid .The flow becomes three dimensional due to this type of injection velocity distribution. The 
governing equations of the flow field are solved by using series expansion method and the expressions for the 
velocity field, the temperature field, skin friction and the rate of heat transfer i.e. the heat flux in terms of 
Nusselt number are obtained. The effects of the flow parameters on the velocity field, temperature field, skin 
friction and heat flux have been studied and analyzed with the help of figures and tables. 

2. Formulation of the Problem 

Consider the three dimensional flow of a viscous incompressible electrically conducting fluid through a porous 
medium bounded between two infinite horizontal parallel porous plates in presence of a uniform transverse 
magnetic field B0. A coordinate system is chosen with its origin at the lower stationary plate lying horizontally 
in x*-z* plane and the upper plane at a distance l from it is subjected to a uniform velocity U. The y*-axis is taken 
normal to the planes of the plates. The lower and the upper plates are assumed to be at constant temperatures T0 
and Tw, respectively, with Tw > T0. The upper plate is subjected to a constant suction velocity V whereas the 
lower plate to a transverse sinusoidal injection velocity of the form: 
 v*(z*) = V (1+cosz* / l),                                                                                                  (1) 
where  (<<1) is a very small positive constant quantity, l is taken equal to the wavelength of the injection 
velocity. Due to this kind of injection velocity the flow remains three dimensional. All the physical quantities 
involved are independent of x* for this fully developed laminar flow. Denoting the velocity components u*, v*, 
w* in x*, y*, z* directions, respectively, and the temperature by T *, the problem is governed by the following 
equations: 

,0
*

*

*

*









z

w

y

v
                                                                                                                       (2)       



S. S. Das/ Journal of Naval Architecture and Marine Engineering 6(2009) 41-51 
 

Effect of suction and injection on MHD threed dimensional couette flow and heat transfer through a porous medium 43

,u
B

u
Kz

u

y

u

z

u
w

y

u
v **

**

*

*

*

*

*
*

*

*
*




























 2

0
2

2

2

2

                                                        (3) 

,v
Kz

v

y

v

y

p

z

v
w

y

v
v *

**

*

*

*

*

*

*

*
*

*

*
* 






























2

2

2

21
                                                              (4)  

,w
B

w
Kz

w

y

w

z

p

z

w
w

y

w
v **

**

*

*

*

*

*

*

*
*

*

*
*


































 2

0
2

2

2

21
                                           (5) 

,
z

T

y

T

z

T
w

y

T
v

*

*

*

*

*

*
*

*

*
*
























2

2

2

2

                                                                                (6) 

where   is the density,  is the electrical conductivity, p*is the pressure, K * is the permeability of the porous 
medium,   is the coefficient of kinematic viscosity and   is the thermal diffusivity. 
The initial and the boundary conditions of the problem are  

u* = 0, v* = V (1+cosz* / l), w* = 0, T * = *T0  at  y* = 0,                     

u*=U,  v* = V,   w*=0,  T *=
*
wT   at  y* =l.                                                                                          (7) 

Introducing the following non-dimensional quantities 
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Equations (2) - (6) reduce to the following forms: 
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where  

   Re = 

Vl

(Reynolds number), 





22
02 lB

M  (Magnetic parameter), 



rP  (Prandtl number), 

   
2l

K
K

*

p  (Permeability parameter).                                                                                    (14) 

The corresponding boundary conditions now reduce to the following form:  
u = 0,   v = 1+cosz,   w = 0,   T = 0 at  y = 0,    
u=1,     v= 1,                 w= 0,    T=1 at y =l.                                                                                   (15)                             
 
3. Method of Solution 
 
In order to solve the problem, we assume the solutions of the following form because the amplitude ε (  1) of 
the permeability variation is very small: 
 u (y, z) = u0(y) + ε u1 (y, z) + ε2 u2 (y, z) +……                                                          (16) 
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v (y, z) = v0(y) + ε v1 (y, z) + ε2 v2 (y, z) +……                                                           (17) 
w (y, z) = w0(y) + ε w1 (y, z) + ε2 w2 (y, z) +……                                                        (18) 
p (y, z) = p0(y) + ε p1 (y, z) + ε2 p2 (y, z) +……                                                           (19) 
T (y, z) = T0(y) + ε T 1 (y, z) + ε2 T 2 (y, z) +……                                                        (20)  
When ε =0, the problem reduces to the two dimensional free convective MHD flow through a porous medium 
with constant permeability which is governed by the following equations: 
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The corresponding boundary conditions become  
u0 = 0,    v0 =1,   T 0 = 0 at y = 0,    
 u0= 1,      v0 =1,     T 0 = 1 at y =1.                                                                                    (24)                             
The solutions for u0(y) and T0(y) under boundary conditions (24) for this two dimensional problem are 
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with   v0 = 1,  w0 =0,   p0 =constant,                                                                                              (27) 
where 
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When   ε ≠0, substituting Equations (16)-(20) into Equations (9) - (13) and comparing the coefficients of like   
powers of ε, neglecting those of ε2, we get the following first order equations with the help of Equation (27): 
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The corresponding boundary conditions are  
u1 = 0,    v1 = cosz,    w1=0,   T 1 = 0 at y = 0, 
u1=0,     v1=0,             w1=0,   T 1 = 0 at y =1.                                                                    (33) 

Equations (28) - (32) are the linear partial differential equations which describe the MHD three-dimensional flow 
through a porous medium. For solution, we shall first consider three Equations (28), (30) and (31) being 
independent of the main flow component u1 and the temperature field T1. Following Das et al. (2008), we assume 
v1, w1 and p1 of the following form: 
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zcos)y(v)z,y(v  111
,                                                                                                    (34)    

zsin)y(v)z,y(w 


 111

1 ,                                                                                              (35) 

zcos)y(p)z,y(p  111
,                                                                                                 (36) 

where the prime in )(11 yv  denotes the differentiation with respect to y.  Expressions for v1(y, z) and w1(y, z) have 

been chosen so that the equation of continuity (28) is satisfied. Substituting these expressions (34) - (36) into (30) 
and (31) and solving under corresponding transformed boundary conditions, we get the solutions of v1, w1and p1 
as: 
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To solve Equations (29) and (32) for u1 and T1, we assume 

zcos)y(u)y(u  111 ,                                                                                                    (40)                             

zcos)y(T)z,y(T  111 .                                                                                                    (41) 

Substituting the values of u1 and T1 from Equations (40) and (41) into Equations (29) and (32), we get 
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where the primes denote the differentiation with respect to y. 
The corresponding boundary conditions are  
u11=0,   T11=0 at y =0,  
u11=0,   T11=0 at y =1.                                                                                                          44) 
Solving Equations (42) and (43) under the boundary conditions (44) and using Equations (40) and (41), we get 
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Substituting the values of u0, u1, T0 and T1 from Equations (25), (45), (26) and (46) in Equations (16) and (20), the 
solutions for velocity and temperature are given by 
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3.1. Skin friction 

The x- and z- components of skin friction at the wall are given by  
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3.2. Rate of heat transfer 

The rate of heat transfer i.e. heat flux at the wall in terms of Nusselt number (Nu) is given by  
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4. Results and Discussion  
 
The magnetohydrodynamic three dimensional couette flow of a viscous incompressible electrically conducting 
fluid through a porous medium between two infinite horizontal parallel porous flat plates with heat transfer has 
been analyzed. The flow becomes three dimensional due to the injection of a transverse sinusoidal velocity 
distribution. The governing equations of the flow field are solved by using series expansion method and the 
expressions for the velocity field, temperature field, skin friction and heat flux in terms of Nusselt number are 
obtained. The effects of the flow parameters on the velocity field, temperature field have been studied and 
discussed with the help of velocity profiles shown in Figs. (1)- (5) and temperature profiles shown in Figs. (6)- 
(7) and the effects of the pertinent parameters on the skin friction and heat flux have been discussed with the help 
of Tables (1)-(4). 
 
4.1. Main velocity field (u) 
 
The main velocity of the flow field suffers a change in magnitude due to the variations in the values of magnetic 
parameter (M), permeability parameter (Kp) and suction / injection parameter (Re). The magnetic parameter 
influences the main velocity of the flow field to a greater extent than the other parameters of the flow field. The 
effects of these parameters appear in Figs. (1)- (3) respectively. 
 

 
  

   
   

   
   

   
   

   
 u

 

 

   y 
 

y 

Fig. 1: Velocity profile against y for different values 
of M with z=0, ε=0.002, K=0.2, Re=0.2 

Fig. 2: Velocity profile against y for different values 
of Kp with z=0, ε=0.002, M=1, Re=0.2 
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4.1.1. Effect of magnetic parameter (m) 

The effect of the magnetic parameter on the main 
velocity of the flow field is shown in Fig. (1). 
Curve with M=0 corresponds to the case of non-
MHD flow. For a given value of M, the main 
velocity increases slowly from zero to its 
maximum value as we proceed from the inlet 
section. But in case of non-MHD flow (M=0), there 
is a rapid increase in velocity. Comparing the 
curves of Fig. (1), it is observed that the effect of 
growing magnetic parameter is to retard the main 
velocity of the flow field due to the magnetic pull 
of the Lorentz force acting on the flow field.  
Higher this value, the more prominent is the 
reduction in velocity.  Our results closely match 
with those obtained in case of Das et al. (2008). 

 

 

4.2.2. Effect of suction / injection parameter (re) 

The effect of suction / injection parameter (Re) on the cross velocity of the flow field is shown in Fig. (5) for 
three different values of the suction / injection parameter (Re=0, 0.5, 1).The cross flow velocity is found to 
decrease with the increase of suction / injection parameter.  
 
4.3. Temperature field (T) 
 
The major change in the temperature field is due to the variation of Prandtl number and the suction / injection 
parameter. These variations are shown in Figs. (6) and (7) respectively. Both suction / injection parameter and 
the Prandtl number have substantial effect on the temperature field. The temperature profiles agree with the 
results of Das et al. (2008). 
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Fig. 3: Velocity profile against y for different values 
of Re with z=0, ε=0.002, M=1, KP=0.2 

   
 w

1 

 

 
y y 

Fig. 4: Cross flow velocity  profile against y for 
different values of M with z=0.5, ε=0.2,
Kp=0.2, Re=1 

Fig. 5: Cross flow velocity profile against y for 
different values of Re with z=0.5, ε=0.2, 
M=1, Kp =0.2 
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4.3.1. Effect of Prandtl number (Pr)              
 
In Fig. (6) we analyze the effect of Prandtl number (Pr) on the temperature of the flow field. Fig. (6) is a plot of 
temperature against the non-dimensional distance for different values of Pr (= 0.71, 1, 2, 7). A comparison of the 
curves of the said figure shows that a growing Prandtl number decreases the temperature of the flow field at all 
points. With the increase of Prandtl number, the molecular motion of the fluid elements is lowered and 
therefore, the flow field suffers a decrease in temperature at all points.  
 
4.3.2. Effect of suction / injection parameter (re) 
 
Fig. (7) depicts the effect of suction / injection parameter on the temperature of the flow field. In presence of 
growing suction / injection, the temperature of the flow field is found to decrease. Further, in absence of suction / 
injection (Re=0) the temperature profile becomes very much linear.  

 

4.4. Skin friction () 
 
The skin friction at the wall for different values of suction / injection parameter (Re) and the permeability 
parameter (Kp) are presented in Tables (1) and (2) respectively.  A growing suction / injection parameter reduces 
both the components of skin friction at the wall while the permeability parameter enhances the x-component and 
decreases the z-component of the skin friction at the wall. 
 
Table 1: Values of skin friction at the wall for 
different values of suction / injection parameter (Re) 
with M=1, Kp=0.2, z=0 & =0.002 

 Re x z 

0 0.4261 0.8589 

0.01 0.4238 0.8579 

0.2 0.3805 0.8376 

0.5 0.3121 0.8062 

1.0 0.1782 0.7540 
 

Table 2: Values of skin friction at the wall for 
different values of permeability parameter (Kp) with 
Re=0.2, M=1, z=0 & =0.002 

 Kp  x z 

0.2 0.3805 0.8376 

0.4 0.5871 0.6991 

0.6 0.6599 0.5897 

0.8 0.7009 0.4387 

1.0 0.7271 0.2063 

4.5. Rate of heat transfer (Nu) 
 
The rates of heat transfer i.e. the heat flux in terms of Nusselt number (Nu) for different values of permeability 
parameter (Kp) and the Prandtl number (Pr) are entered in Tables (3) and (4) respectively. The permeability 

T

 

y y 
Fig. 6: Temperature  profile against y for different

values of Pr with z=0, ε=0.002, M=1, 
Kp=0.5, Re=0.2 

Fig. 7: Temperature profile against y for different 
values of Re with z=0, ε=0.002, M=1, 
Pr=0.71 
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parameter is found to enhance the magnitude rate of heat transfer at the wall while the Prandtl number (Pr) 
shows the reverse effect. 
 
Table 3: Values of rate of heat transfer at the wall 
for different values of permeability parameter (Kp) 
with Re=0.5, M=1, Pr=0.71, z=0 & =0.002 

 Kp  Nu 

0.2 -1.5152 

0.4 -1.5170 

0.8 -1.5238 

1.0 -1.5284 

 

Table 4: Values of rate of heat transfer at the wall 
for different values of Prandtl number (Pr) with Re= 
0.5, M =1, Kp=0.2, z=0 & =0.002 

Pr Nu 

0.71 -1.552 

1 -0.7744 

2 -0.0152 

7 -0.0017 

5.  Conclusion 

The present investigation brings out the following interesting features of physical interest on the main flow 

velocity, cross flow velocity and temperature of the flow field: 

a) The magnetic parameter (M) retards the main velocity (u) at all points of the flow field due to the 

magnetic pull of the Lorentz force acting on the flow field and accelerates the cross velocity (w1) of 

the flow field.      

b) A growing permeability parameter (Kp) and the suction / injection parameter (Re) accelerate the main 

velocity of the flow field while the effect reverses for cross flow velocity of the flow field. 

c) The effect of increasing suction / injection parameter (Re) and the Prandtl number (Pr) is to reduce 

the temperature of the flow field at all points. 

d) A growing suction / injection parameter diminishes both the components of skin friction at the wall 

while the permeability parameter enhances the x-component and reduces the z-component of the skin 

friction at the wall.  

e) The effect of increasing permeability parameter is to enhance the magnitude of rate of heat transfer 

at the wall while a growing Prandtl number (Pr) reverses the effect. 
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