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Abstract:  
The paper presents the semi-numerical solution for the magnetohydrodynamic (MHD) viscous flow 

due to a shrinking sheet caused by boundary layer of an incompressible viscous flow. The governing 

three partial differential equations of momentum equations are reduced into ordinary differential 

equation (ODE) by using a classical similarity transformation along with appropriate boundary 

conditions. Both nonlinearity and infinite interval demand novel mathematical tools for their analysis. 

We use fast converging Dirichlet series and Method of stretching of variables for the solution of these 

nonlinear differential equations. These methods have the advantages over pure numerical methods for 

obtaining the derived quantities accurately for various values of the parameters involved at a stretch 

and also they are valid in much larger parameter domain as compared with  HAM, HPM, ADM and 

the classical numerical schemes. 
 

Keywords: Magneto-hydrodynamics (MHD), boundary layer flow, shrinking sheet, Dirichlet series, Powell’s       
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NOMENCLATURE 

 
 

a  shrinking constant    z  co-ordinate normal to the sheet [m] 

 
f  similarity function 

wf  suction parameter 

0B  strength of the magnetic field [
2wm ] W  suction velocity 

M Hartmann number    Greek symbols 

m shrinking parameter   amplification factor 

u  velocity component along the x-axis [m 
1s ]   kinematic viscosity [

12 sm ] 

v  velocity component along the y-axis [m 
1s ] 

 

  electrical conductivity [
-1m mho ] 

w  velocity component along the z-axis [m 
1s ] 

 

  density [
3 mkg ] 

x  coordinate along the sheet [m] 

 
  dynamic viscosity 

 y  coordinate across the sheet [m] 

 
  similarity variable 

 

1. Introduction 
 

The boundary layer of viscous flow induced by a moving boundary has important applications in many 

engineering fields (Crane, 1970, Fisher, 1976, Altan et al., 1979). Such flows occur in the extrusion of a 

polymer sheet from a die or in the drawing of plastic films. In the manufacture of these sheets, the melt issues 

from a slit and is subsequently stretched to achieve the desired thickness. The mechanical properties of the final 

product strictly depend on the stretching and cooling rates in the process. The pioneering works of Sakiadis 

(1961a and 1961b) give various aspects of boundary layer flow on a continuously stretching surface with 

constant speed and later other aspects have been investigated by several authors in the field. Specifically Crane’s 

problem (1970) for flow of an incompressible viscous fluid past a stretching sheet has become classic in the 

literature. It admits an exact analytical solution. The Uniqueness of the exact analytical solution is discussed by 

Mcleod and Rajagopal (1987). Gupta and Gupta (1977) examined the stretching flow subject to suction or 

injection. The flow inside a stretching channel or tube has been analyzed by Brady and Acrivos (1987) and the 

flow outside the stretching tube by Wang (1988). In another paper, Wang (1984) extended the flow analysis to 

the three dimensional axi-symmetric stretching surface. The unsteady flows induced by stretching film have 

been also discussed by Wang (1990) and Usha and Sridharan (1995). 
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All the above mentioned investigations deal with the stretching flow problems. The phenomena of velocities on 

the boundary towards a fixed point are known as shrinking phenomena, which often occur in the situation such 

as rising shrinking balloon. These studies are initiated by Wang (1990).Miklavcic and Wang(2006) proved the 

existence and uniqueness for steady viscous hydrodynamic flow due to a shrinking sheet for a specific value of 

the suction parameter. From the continuity of Cranes stretching sheet solution would induce far field suction 

towards the sheet, while the shrinking sheet would cause velocity away from the sheet. On the physical ground 

vorticity of the shrinking sheet is not confined within the boundary layer and the flow is unlikely to exist unless 

adequate suction on the boundary is imposed. The purpose of the present article is to study the properties of the 

flow due to a shrinking sheet with suction. 

 

Recently, Nadeem and Hussain (2009) presented the MHD flow of viscous fluid on a nonlinear porous shrinking 

sheet with homotopy analysis method. A closed form exact solutions of MHD viscous flow over a shrinking 

sheet is given by Fang and Zhang (2009). Sajid and Hayat (2009), investigated, MHD viscous flow due to a 

shrinking sheet. The cases of two dimensional and axi-symmetric shrinking sheet have been discussed using 

homotopy analysis method (HAM). Ali et al. (2010) discussed boundary layer flow and heat transfer due to 

permeable shrinking sheet with prescribed surface heat flux using Keller-box method.      Noor et al. (2010) 

examined the simple non-perturbative solution for MHD viscous flow due to a shrinking sheet by series solution 

using Adomain decomposition method (ADM). Raftari and Yildirim (2011) examined the MHD viscous flow 

due to a shrinking sheet by employing  homotopy perturbation method (HPM) and Pade’ approximants. 

Bhattacharyya (2011) analyzed the effects of heat source/sink on the steady two dimensional MHD boundary 

layer flow and heat transfer over a shrinking sheet with wall mass suction using finite difference method. Swati 

and Gorla (2012), examined the unsteady MHD boundary layer flow of an upper convicted Maxwell fluid past a 

stretching sheet with first order constructive / destructive chemical reaction. Ali et al.(2013), have discussed the 

dual solutions for MHD flow on a non-linear porous shrinking sheet in a viscous fluid.  Aman et al. (2013), have 

analysed the steady two-dimensional stagnation point flow over a linear stretching /shrinking sheet in a viscous 

and incompressible fluid in the presence of magnetic field. Kumar (2013), have discussed MHD boundary layer 

flow on heat and mass transfer over a stretching sheet with slip effect. Vajravelu and Prasad (2014) have 

analysed various aspects of MHD stretching/ shrinking sheet problems involving boundary layer theory. Ahmad 

et al. (2015), considered the numerical solution of MHD flow and heat transfer through a porous medium over a 

stretching/ shrinking surface with suction. Sandeep and Sulochana (2015) have discussed the dual solutions for 

unsteady mixed convection flow of MHD micropolar fluid over a stretching/shrinking sheet with non-uniform 

heat source /sink. Vishwanath et al. (2015) have discussed semi-numerical solutions of MHD flow over a 

linearly stretching sheet. 

 

The present investigation is to analyze the magneto-hydrodynamic (MHD) viscous flow caused by a shrinking 

sheet. The solution of the resulting third order nonlinear boundary value problem with an infinite interval is 

obtained using Dirichlet series method and method of stretching of variables. We seek solution of the general 

equation of the type 
2   0f A ff B f C f                   (1) 

with the relevant boundary conditions  

     1 10 ,       0 ,       0wf f f f      
 
(2) 

whereA, B and C are constants and prime denotes derivative with respect to the independent variable  .  

 

This equation admits a Dirichlet series solution; necessary conditions for the existence and uniqueness of these 

solutions may also be found in [(1965, 1972)]. For a specific type of boundary conditions i.e.   0f    , the 

Dirichlet series solution is particularly useful for obtaining solution and the derived quantities exactly. A general 

discussion of the convergence of the Dirichlet series may also be found in Riesz (1957). The accuracy as well as 

uniqueness of the solution can be confirmed using other powerful semi-numerical schemes. Sachdev et al. 

(2005) have analyzed various problems from fluid dynamics of stretching sheet using this approach and found 

more accurate solution compared with earlier numerical findings. Recently, Vishwanath et al. (2011, 2011) and 

Ramesh et al. (2011) have analysed the problems from MHD boundary layer flow with nonlinear stretching 

sheet using these methods and found more accurate results compared with the classical numerical methods. In 

this article, we present Dirichlet series solution and an approximate analytical method-method of stretching of 

variables. This method is quite easy to use especially for nonlinear ordinary differential equations and requires 
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less computer time compared with pure numerical methods and easy to solve compared with other approximate 

methods(for example, Homotopy perturbation method (HPM) Pade’ technique, Adomain decomposition 

methods (ADM). 

 

The present paper is structured as follows. In section 2 the mathematical formulation of the proposed problem 

with relevant boundary conditions is given. Section 3 is devoted to the solution of the problem using Dirichlet 

series.  Section 4 gives the solution by means of method of stretching of variables. In Section 5, detailed results 

obtained are compared with the corresponding numerical schemes and Section 6 is about the conclusion. 

 

2.    Mathematical Formulation of the problem 

 
The continuity and momentum equations of viscous incompressible fluid in the presence of body forces are  

 . 0                                                                                                             (3)V
t





 


 

  2.  .                                                                                       (4)
V

V V f p V
t

 
 

      
 

where p is the pressure,   is the density of the fluid and       zyxwzyxvzyxuV ,,,,,,,,  is the 

velocity field of the fluid.  

 

The governing equations for steady laminar three-dimensional MHD viscous flow due to shrinking sheet are 

derived from three-dimensional momentum equations (4) which consists of a continuity equation (3) which 

reflects the viscous incompressible flow. The fluid is electrically conduction in the presence of magnetic field of 

strength 0B is applied in the z-direction and induced magnetic field is neglected.The electromagnetic body force 

is given as  2

0 , , 0 .f   B u v  Under the above assumptions, Equations (3) and (4) become the resulting 

three-dimensional boundary layer equations (Sajid & Hayat (2009)) 

0                                                                                                                     (5)
u v w

x y z

  
  

  
22 2 2

0

2 2 2

1
                                                  (6)

Bu u u p u u u
u v w u

x y z x x y z




 

       
        

       
22 2 2

0

2 2 2

1
                                                    (7)

Bv v v p v v v
u v w v

x y z y x y z




 

       
        

       
2 2 2

2 2 2

1
                                                            (8)

w w w p w w w
u v w

x y z z x y z




       
       

       
 

where /    is the kinematic viscosity,(i.e.  is the dynamic viscosity) and  is the electrical conductivity 

of the fluid. The relevant boundary conditions for the present flow are 

 ,       v 1 ,         ,   at   0                                               

0   as                                                                                                  

u ax a m y w W y

u y

       

                      (9)

 

in which 0a   is the shrinking constant, W is the suction velocity. For m=1 the sheet shrinks in x-direction 

only for m=2 it shrinks axi-symmetrically. Eq. (5)-(8) along with the boundary conditions Eq. (9) admit 

similarity solution. We use following similarity variables   

       ,    1 ,   ,   .                                          (10)
a

u xaf v ya m f w m a f z    


      

The continuity Eq. (5) is identically satisfied and Eq. (8) can be integrated to get 
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2

 constant                                                                                                         (11)
2

p w w
v

z


  


The Eq. (5)-(7) and (9) using Eq. (10) are reduce to the following nonlinear ordinary differential equation (2009) 

2 2 0,f m ff f M f       '
d

d
 ,       (12) 

and the boundary conditions are 

,      1,       at =0                                                                                  

0  as                                                                               

wf f f

f





  

                                       (13)

where

2
2 0 and  M .w

BW
f

am a




   

 

3.   Dirichlet Series Solution  
 

We use Dirichlet series which is an elegant semi-numerical scheme, to solve the problem exactly. We seek 

Dirichlet series solution of Eq. (1) satisfying last boundary condition   0f automatically in the form 

(Kravchenko&Yablonskii [(1965, 1972)]) 

1

1

6
  i i

i

i

f b a e
A









            (14) 

where   and a are parameters which are to be determined. Substituting Eq. (14) into Eq. (1), we get  

    
2 1

2 3 2 2

1

1 2 1

6
 0

i
i iy i iy

i k i k

i i k

i A i Ci b a e Ak Bk i k b b a e
A

 
 

  
 



  

          (15) 

For i=1, we have 

2

1

C

A





  .        (16) 

Substituting Eq. (16) into Eq. (15) the recurrence relation for obtaining coefficients is given by 

  
 

2 1
2

2
1

6
( )

1

i

i k i k

k

b Ak Bk i k b b
Ai i i C











  
 

       (17) 

For i=2, 3, 4,..... . If the Eq. (14) converges absolutely when 0   for some 0 , this series converges 

absolutely and uniformly in the half plane 0Re   Re  and represents an analytic 
2


 periodic function 

 0f f  such that   0f (Kravchenko&Yablonskii (1965)). 

The Eq. (14) contains two free parameters namely a and . These unknown parameters are determined from the 

remaining boundary conditions of  Eq. (2) at 0   

 
2

1

1

6
0   i

i

i

C
f b a

A A

 









           (18) 

and 

   
2

1

1

6
0 i

i

i

f i b a
A








              (19) 

The solution of the above transcendental Eq. (18) and Eq. (19) yield constants a and  . The solution of the 

above transcendental equations is equivalent to the unconstrained minimization of the functional   

 
2 2

2 2

1 1

1 1

6 6
   i i

i i

i i

C
b a i b a

A A A

  
 



 

 

   
       

   
       (20) 
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We use Powell’s method of conjugate directions (Press et al. (1987)) which is one of the most efficient 

techniques for solving unconstrained optimization problems. This helps in finding the unknown parameters a 

and   uniquely for different values of the parameters A, B, C, 1 and 1 . Alternatively, Newton’s method is 

also used to determine the unknown parameters a and  accurately. 

The shear stress at the surface of the problem is given by 

   
2

1

6
0  i

i

i

f b a i
A








            (21) 

The velocity profiles of the problem is given by 

 
2

1

6
 ( ) i i

i

i

f i b a e
A









            (22) 

 

4.   Method of Stretching of Variables  
 

Many nonlinear ODE arising in MHD problems are not amenable for obtaining analytical solutions. In such 

situations, attempts have been made to develop approximate methods for the solution of these problems. The 

numerical approach is always based on the idea of stretching of variables of the flow problems. Method of 

stretching of variables is used here for the solution of such problems. In this method, we have to choose suitable 

derivative function H   such that the derivative boundary conditions are satisfied automatically and integration 

of H   will satisfy the remaining boundary condition. Substitution of this resulting function into the given 

equation gives the residual of the form  ,R   which is called defect function. Using Least squares method, 

the residual of the defect function can be minimized (for details see Ariel, (1994)).Using the transformation 

Fff w   into Eq. (1), we get 

  2 0,wF A f F F BF CF         
d

d
'        (23) 

and the boundary conditions  (2) become 

     0 0,    0 1,     0F F F              (24) 

We introduce two variables   and G in the form 

( ) ( )G F   and           (25) 

where >0, is an amplification factor. In view of Eq. (25), the system (23)-(24) are transformed to the form  

 2 2 0,                 'w

d
G A f G G BG CG

d
 


               (26)   

and the boundary conditions in Eq. (24) become 

(0) 0,   G (0) 1,    G ( ) 0G               (27) 

We choose a trail velocity profile 

exp( )G               (28) 

which satisfies the derivative conditions in Eq. (27). Integrating Eq. (28) with respect to   from 0 to   using 

conditions (27), we get 

exp( ) 1G    .           (29) 

Substituting Eq. (29) into Eq. (26), we get the residual of defect function 

   2( , ) exp( ) exp( 2 )wR Af A C A B              .    (30) 

Using the least squares method as discussed in Ariel (1994), the Eq. (30) can be minimized for which 

  

 2

0

, 0R d  






  .          (31) 

Substituting Eq. (30) into Eq. (31) and solving cubic equation in  for a positive root, we get 
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 2 21
3  3 4 8 12 3

6
w wA f A B C A f        .      (32) 

Once the amplification factor is calculated, then using Eq. (23), original function f can be written as 

 
1

exp( ) 1wf f 


    .         (33) 

with  defined in Eq. (32). Thus Eq. (33) gives the solution of Eq. (1) for all A ,  B  and C.  

 

5.   Results and Discussion 
 

The third order nonlinear boundary value problems with infinite domain are solved semi-numerically using 

powerful techniques which are Dirichlet series method and an approximate analytical method by method of 

stretching of variables. In this method it is important that the edge boundary layer  automatically 

satisfied. Numerical computations are performed for various values of the physical parameters involved in the 

equation viz. the Hartmann number M, the mass suction parameter ws f . The present solution is also 

validated by comparing it with the previously published work of Sajid and Hayat (2009), Ali et al. (2010) and 

Raftari & Yildirim (2011) as shown in Tables 1 and 2.  

 

Table 1: Comparison of the values of  0f  obtained by the Dirichlet series method, Method of stretching of 

variables and other applied methods when 
2C M  and s =1. 

 

 

A = m 
Dirichlet Series Method Sajid& Hayat 

(2009) 

Raftari&Yildiri

m  (2011) 

Method of 

stretching of 

variable 

a     0  f   

1 0.03143 2.30278 2.30277 2.30277 2.30277 2.30278 

2 0.04197 2.74674 2.89228 2.89160 2.89161 2.91485 

 

 

Table 2: Comparison of the values of  0f  obtained by the Dirichlet series method, Method of stretching of 

variables and Keller-box method for various values of s when A = m = 1, 2 and C= -M
2 
= 0.25 and 5.0. 

 

A=m 
2C M 

 
1s   

Dirichlet Series Method Ali et al. 

(2010) 

Method of 

stretching of 

variable 
a     0  f   

1 

 

-0.25 1.75 0.16667 1.00000 1.00000 1.00000 1.00000 

1.80 0.127138 1.14495 1.14495 1.1449 1.14495 

1.85 0.10667 1.25000 1.25000 1.25000 1.25000 

1.90 0.09275 1.34051 1.34051 1.3405 1.34051 

 

 

-2 

 

 

2.0 

 

 

0.02859 

 

 

2.41421 

 

 

2.41421 

Bhattacharyya 

(2011) 

2.41421 

 

 

2.41421 

3.0 0.01528 3.30278 3.30278 3.30278 3.30278 

4.0 0.00929 4.23607 4.23608 4.23607 4.23607 

 

2 

 

-5 

 

2.0 

 

0.01510 

 

4.64964 

 

4.74662 

Ali et al (2010) 

4.7461 

 

4.76887 

2.3 0.01220 5.18217 5.27083 5.2705 5.29277 

3.0 0.00788 6.46572 6.53881 6.5387 6.55903 

3.5 0.00602 7.40624 7.47093 7.4708 7.489957 

The graphs for the function  f   i.e. velocity profiles which corresponds to velocity component u and v are 

drawn against  for different values of the parameters ws f and M. In all cases Figure (a) corresponds to the 
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two-dimensional shrinking sheet and (b) corresponds to the axi-symmetric shrinking. Figs. 1and 2 presents 

velocity profiles which match very well with that of earlier findings depicted in their figures. 

 

  

Fig. 1a: The velocity profiles for M=2 and several 

values of s: A=m=1 

Fig. 1b: The velocity profiles for M=2 and several 

values of s: A=m=2 

  
Fig. 2a: The velocity profiles for s=2 and several 

values of M: A=m=1 
Fig. 2b: The velocity profiles for s=1 and several 

values of M: A=m=2 
 

In Figs. 1 and 2, which demonstrate the effects of the suction parameter ws f and Hartmann number M on the 

velocity profiles for A = m =1 and A = m =2. The effect of the suction parameter ws f and Hartmann number 

M is to increase the velocity and decrease the boundary layer thickness by increasing the suction parameter

ws f for both two dimensional and axi-symmetric shrinking. The above computations work very well using 

Dirichlet series and method of stretching of variables. It is also susceptible to the computer’s memory 

limitations and it takes very less computer memory. In this work we use Mathematica and FORTRAN compiler 

running on a personal computer with Pentium processor. 

 

6.   Conclusions 
 

In this article, we describe the analysis of boundary value problem for third order nonlinear ordinary differential 

equation over an infinite interval arising in MHD boundary layer. The semi-numerical schemes described here 

offer advantages over solutions obtained by HAM, HPM and numerical methods etc. The convergence of the 

Dirichlet series method is given. The results are presented in Tables and graphically, the effects of the emerging 

parameters are discussed. 
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