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Abstract:  
This article numerically studies for multi-physical transport of an optically-dense, free convective 

incompressible non-Newtonian second grade fluid past an isothermal, impermeable horizontal 

circular cylinder. The governing boundary layer equations for momentum and energy transport, 

which are parabolic in nature, have been reduced to non-similarity non-linear conservation equations 

using appropriate transformations and then solved numerically by employing with most validated, 

efficient implicit finite difference method with Keller box scheme. The numerical code is validated 

with previously existing results and found to be very good agreement. Numerical results have been 

carried out for various values of the physical parameters; Deborah number (0 ≤ De ≤ 1.5), Prandtl 

number (0 ≤ Pr ≤ 100) and thermal radiation (0 ≤R ≤ 5) on flow velocity and temperature profiles. 

Furthermore, the effects of these parameters on non-dimensional wall shear stress (skin friction) and 

surface heat transfer rate (Nusselt number) are also investigated. Increasing the Deborah number 

reduces velocity profile, skin friction where as it enhances the temperature profile. Increasing Prandtl 

number decelerates the flow velocity, temperature and skin friction. Increase in radiation parameter 

retards the flow velocity, temperature profiles and skin friction. The rate of heat transfer (Nusselt 

number) enhances markedly with increase in radiation parameter and Prandtl number but 

depreciated for larger values of Deborah number. Increasing stream wise coordinate retards the 

velocity gradient whereas enhances rate of heat transfer. Applications of the model arise in polymer 

processing in chemical engineering, metallurgical material processing.  

Keywords: Non-Newtonian fluid; Second Grade fluid; Thermal Radiation; Prandtl number; Skin friction;  

Nusselt Number; Keller Box Scheme 

 

NOMENCLATURE 
 

Greek symbols 

u Velocity component in x-direction [m/s] 1 2,   Material fluid parameters 

v  
Velocity component in y-direction [m/s]   Fluid density [kg/m

3
] 

g Acceleration due to gravity [m/s
2
]   The dimensionless tangential coordinate 

f Non-dimensional stream function   The dimensionless radial coordinate 

a Radius of the cylinder [m]   Thermal expansion coefficient [1/K] 

Tw Surface temperature [K]   Stefan-Bolzmann constant 

T∞ Ambient fluid temperature [K] 
xx  Normal stress in x-direction 

x stream wise coordinate [m] 
yy  Normal stress in y-direction 

y Transverse coordinate [m] ,xy yx   Shear stresses 

Cf  Skin friction coefficient   Dimensionless Stream function 

Nu Nusselt number    Non-dimensional temperature 
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Gr Grashof number   Stream function 

De Deborah number   Angular Velocity about the y-axis 

A1, A2 Rivlin-Ericksen tensors   

k Thermal conductivity of the second grade 

fluid [m
2
/s] 

  

1. Introduction 

The study of flow and heat transfer generated by different geometries in non-Newtonian fluid plays a significant 

role in many engineering and industrial areas. Examples of such fluids are foods, fossils, fuels, pulps and molten 

polymers, several fluids in pharmaceutical formulations, synthetic lubricants, salvia, synovial fluid, jams, 

marmalades, sewage sludge, clay and coal in water and paints. During the last five years, the boundary layer 

flows of non-Newtonian fluids over different geometries with the influence of thermal radiation have been 

studied. This is in view of much importance in industrial, engineering, geo-physics and bio-science such as 

slurries, suspensions, dispersions, pharmaceutical formulations, paints, biological fluids, synthetic polymers, 

melts and solutions of naturally occurring high molecular weight, synthetic lubricants and food stuffs, naturally 

occurring fluids such as animal blood, behavior of exotic lubricants, liquid crystals and colloidal suspensions. 

Tai and Char (2010) studied the effects of Soret and Dufour on free convection flow of non-Newtonian fluids 

along a vertical plate embedded in a porous medium with thermal radiation. Hayat and Qasim (2011) analyzed 

the effects and radiation and magnetic fields on the unsteady mixed convection flow of a second grade fluid 

over a vertical stretching sheet. Mukhopadhyay et al (2012) investigated thermal radiation on forced convective 

flow and heat transfer past a permeable vertical surface in Darcy-Forchheimer porous medium. His results 

indicate that due to suction the skin-frinction increases while the rate of heat transfer increases due to suction. 

Due to thermal radiation, temperature is found to decrease. The combined effects of suction and thermal 

radiation can be used as means of cooling. Gireesha et al (2013) studied radiation effect on mixed convective 

heat and mass transfer of a dusty fluid past a stretching sheet with non-uniform heat source/sink. The radiation 

parameter is predicted to enhance the temperature profiles of both the fluid and dust phases for the VWT and 

VHF cases for larger values of radiation parameter. Rashad (2014) investigated the influence of radiation and 

variable viscosity on unsteady MHD flow of a rotating fluid over a stretching surface in a porous medium. 

Srinivasacharya et. Al (2015) studied radiation effect on heat and mass transfer flow of a viscous fluid over a 

vertical wavy surface in a porous medium with variable properties and reported results that increasing radiation 

parameter tends to increase flow velocity and temperature profiles whereas concentration profile is reduced. 

Rashad et.al (2016) investigated thermal radiation effects on convective boundary layer flow over a rotating 

cone in porous medium with thermophoresis. 

 

Previous studies indicate that not much has been presented yet regarding the flow over horizontal cylinder. Free 

convection around heated, horizontal cylinder for various fluids is of great importance due to its extensive 

industrial process and geological formulations applications. Such as the coating of wires or polymer-fiber 

spinning, in the assessment of aquifers, in the exploration and thermal recovery of oil, underground nuclear 

waste storage sites and geothermal reservoirs. Vasu et.al (2010) studied computational analysis of free 

convection heat and mass transfer from an isothermal horizontal circular cylinder in a micropolar fluid with 

Soret/Dufour effects. They reported the results that with increasing Soret number the rate of heat transfer is 

boosted considerably, with the converse response with increase in Dufour number. Hussain and Hussain (2010) 

numerically investigated natural convection in a uniformly heated circular cylinder embedded in square 

enclosure filled with air at different vertical locations. Nadeem et.al (2011) investigated boundary layer flow of 

Second grade fluid in a cylinder with heat transfer. Hussain and Hussain (2011) studied natural convection heat 

transfer flow in a differentially heated square enclosure with a heat generating-conducting circular cylinder at 

different diagonal locations. Hussain (2013) analyzed natural convection in a parallelogrammic cavity with a hot 

concentric circular cylinder moving at different vertical locations. Prasad et.al (2013) studied flow and heat 

transfer of Casson fluid from a horizontal circular cylinder with partial slip in non-Darcy porous medium. They 

reported that velocity increases for increasing values of Casson fluid parameter and is found to reduce the 

temperature profile. Tham et al (2014) studied mixed convective heat transfer flow of a nanofluid from a 

horizontal circular cylinder in a porous medium using Buongiorno-Darcy model. Prasenjit et al (2015) 

investigated unsteady mixed convection over circular cylinder in the presence of nanofluid. They found and 

reported results that mixed convection heat transfer of water based nanofluid can be analyzed correctly by both 

the artificial neural network and Gene expression programming (GEP), but GEP is found more efficient.  
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To the best of our knowledge, no one has studied the influence of thermal radiation on convective heat transfer 

flow of a non-Newtonian second grade fluid over a horizontal circular cylinder. The governing boundary layer 

equations are transformed into non-dimensional equations by using non-similarity transformation and then 

found the numerical solutions by employing implicit finite difference method with Keller box scheme. The 

numerical results are reported graphically and in tabular form for various physical parameters; Deborah number, 

Prandtl number and thermal radiation on flow velocity and temperature profile, as well as skin friction and 

Nusselt number. The obtained results are validated by comparing the results with previously published work. 

Excellent agreement has been obtained. 

2. Mathematical Formulation 

We consider the steady, incompressible, laminar free convective flow of non-Newtonian second grade fluid over 

an impermeable isothermal horizontal cylinder. Fig. 1 shows the configuration of the system and co-ordinate 

system. Where a is the radius of the cylinder. The cylinder is heated to temperature of Tw which is surrounded 

by the free stream temperature T , far away from the surface. The fluid is assumed to be a gray, absorbing-

emitting radiation but non-scattering medium. 

  

 
 

Fig. 1: Physical configuration and coordinate system 

 

The constitutive equation for the Cauchy stress tensor related to the deformation field in a second grade fluid is 
2

1 1 2 2 1pI A A A                  (1) 

where -pI is indeterminate spherical stress due to constraint of incompressibility, 1 2,   are the material moduli, 

and 1 2,A A are the first two Rivlin-Ericksen (1995) tensors such that 

1
TA L L  , 1

2 1 1
TDA

A A L L A
Dt

   ,                    (2) 

where L V , D/Dt is the material derivative, Fosdick and Rajagopal (1979) argue that the second grade fluid, 

modelled by Eq. (1), is to be thermodynamically compatible, in the sense that all motions of the fluid meet the 

Clausius – Duhem inequality together with Helmoltz free energy being at its minimum whenever the fluid is 

locally at rest. The thermodynamical constrains put some restriction on the sign and magnitude of the material 

moduli: 

1 1 20, 0, 0       .                (3) 

where V is the velocity field in two-dimensional i.e.    , , ,V u x y v x y    , u and v are its components in x and 

y – directions, V denotes the velocity gradient tensor. In our model we use the two-dimensional deformation 

rate tensor, in place of the A1, A2 and write the part of the stress tensor, i j as Beard and Walters (1964) 

1 22
i j

i j i j

Dd
d

Dt
    , where 

i j i j

k i k j k j i k

Dd d
L d L d

Dt t


  


           (4) 

Second grade fluid 

Cylinder 

a  

y 
x 

T 
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where i
i j

j

u
L

x





. Now x and y-momentum equations are written as: 

xyxxu u p
u v

x y x x y




    
     

     
              (5) 

yx yyv v p
u v

x y y x y

 


    
     

     
              (6) 

where ,xx yy  express the stresses in the perpendicular direction and the shear stresses are represented by 

,xy yx  . Under the boundary layer approximations and Boussinesq approximation, we consider the governing 

equations for the mass, momentum and energy equations  

0
u v

x y

 
 

 
                 (7) 

 
2 2 2 3

1
2 2 2 3

sin
u u u u u v u x

u v u v g T T
x y x y ay y y y


 




           
                      

          (8) 

2

2

1 r

p

T T T q
u v

x y c yy




   
  

  
               (9) 

The associated boundary conditions are 

0, 0, 0

0,

wu v T T at y

u T T as y

   

  
                 (10) 

Where ,u v are velocity components in x and y-directions. 1 is the material constant associated with second 

grade fluid,  is the fluid density,  is the kinematic viscosity, g is the acceleration due to gravity,  is the 

thermal expansion coefficient and cp is the specific heat at constant pressure. Second term in right hand side of 

Eq. (8) represents second grade fluid which consists of mixed derivates of third order derivates. Hence, 

momentum boundary layer equations attains higher order than the viscous (Newtonian) Navier-Stokes flow 

model. The impact of non-Newtonian effect takes place only on shear term of momentum equation but not on 

convection term. The last term on Eq. (8) represents thermal buoyancy force term which couples with 

temperature field of Eq. (9). The penultimate term in eq. (9) represents thermal radiative heat flux (qr), which is 

approximated for an optically thick boundary layer according to Rosseland approximation. The Rosseland 

diffusion flux model is an algebraic approximation and defined as follows: 

4

*

4

3
rq T

k


                  (11) 

where 
*, k are respectively the Stefan-Bolzmann constant and mean absorption coefficient. The term 

4T expressed as a linear function of the temperature and it is accomplished by expanding in a Taylor series 

about T and neglecting the higher order terms of T to yield 

4 3 44 3T T T T                  (12) 

Therefore, eq. (9) becomes 
2 3 2

2 2

16

3

T T T T T
u v

x y ky y


    

  
   

            (13) 

 

In order to transform the governing equations into non-dimensional form we introduce the following non-

dimensional variables 

 1/4

1/4
, , ( , ) , ,

w

x y T T
Gr f

a a T TGr


      








   


,           (14) 

where  is the stream function which satisfy Eq. (7) such that  , ,u v
y x

   
  

  
. By using Eq. (14), Eqs. 

(8) and (13) becomes 
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   
2 2 sin( )

2 iv

iv

f ff f De f f f ff

f f f f f f
f f De f f f f







     

            
  

          
          
       

     (15) 

4
1 Pr Pr

3

f
f f

R


   

 

   
         

    
            (16) 

The corresponding boundary conditions are 

0, 0, 1 0

0, 0

f f at

f as

 

 

    

   
             (17) 

where primes denotes the differentiation with respect to  , the dimensionless radial coordinate,   is the 

dimensionless tangential coordinate, 1 RU
De

a




 is the Deborah number, 

1/2

R

Gr
U

a


 is the reference velocity, 

  3

2

wg T T a
Gr






  is the free convection (Grashof) number, Pr




 is the Prandtl number, 

p

k

c



  is the 

thermal conductivity and 
*

34

Kk
R

T 

 is the radiation parameter. The physical interest of engineering design 

quantities is skin friction and Nusselt number, which are defined as  

0 0

w w

y y

u T
and q k

y y
 

 

    
    

    
            (18) 

In non-dimensional, skin friction Cf and Nusselt number Nu can be written as 

 
3/4

,0
fC

f
Gr

                (19) 

 
1/4

,0
Nu

Gr
                 (20) 

The location, 0 , corresponds to the vicinity of the lower stagnation point on the cylinder. Since 

sin 0

0




  i.e. 1. For this case the model defined by Equations (15) and (16) reduce to ordinary differential 

equations.  

   
2 2 sin( )

2 0ivf ff f De f f f ff





            
  

          

4
1 Pr 0

3
f

R
 

 
    

 
             

3. Numerical Method of Solution 

 

The set of differential equations (15) and (16) associated with boundary conditions (17) is highly nonlinear and 

therefore, it cannot be solved analytically, Hence implicit finite difference method with Keller box scheme has 

been used for solving it. The main ability of this implicit scheme is to solve systems of differential equations of 

any order as well as featuring second-order accuracy and attractive extrapolation features. For the implicit finite 

difference method with Keller box scheme one can refer to Cebeci and Bradshaw (1984) and Bhuvanavijaya et 

al (2014). We first converted the partial differential equations (15) and (16) into a system of first order 

differential equations. The resulting equations are written in finite difference forms by considering the functions 

and their derivatives in terms of center difference. The resulting central finite difference equations are to be 

linearized by using Newton’s method. The obtained linear algebraic equations can be expressed in block 

diagonal matrix. The solution procedure is given as: 
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Fig. 2: Grid meshing and a Keller box computation cell 

 

3.1 Convert the partial differential equations into system of first order equations 
 

To obtain a set of first order differential equation from (15) and (16) we introduce the new variables 

         , , , , , , , , ,u f v f w f s t s                   

f u            (21a) 

u v                (21b) 

v w                (21c) 

s t                (21d) 

 2 22
f u v f w u

w fv u De uw v fw sB u u De v w u w
     

        
              

        
  (21e) 

4
1 Pr Pr

3

s f
t ft u t

R


 

   
      

    
        (21f) 

The corresponding boundary conditions are 

0, 0, 1 0

0, 0, 0

u f s at

u v s as





   

   
          (21g) 

Where prime denotes differentiation with respect to  . 

 

3.2 Write the difference equation using central differences 

As shown in Fig. 2 the mesh points are represented in ,  -plane by ,n
j  where n=1, 2, …..N and j=1,2,….J 

and J  . The derivates are approximated by centered-difference gradients and averages centered at 

midpoints of the net, defined by 

         
0 1

1/2 1 1/2 1

0 1

0, , 1, 2, 3, ........... , ,

1 1
,

2 2

0, , 1, 2, 3, .........,

j j j

j j j j j j

n n
n

h j J

k n N

  

  

  



   



   

   

   

           (22) 

where ,n jk h are respectively ,   spacing. Therefore, 

1 1

2

n n n n
j j j j

j

f f u u

h

  
             (23a) 

1 1

2

n n n n
j j j j

j

u u v v

h

  
             (23b)  

1 1

2

n n n n
j j j j

j

v v w w

h

  
             (23c)  
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1 1

2

n n n n
j j j j

j

s s t t

h

  
             (23d)  

          
2

1 1 1 1 1 11 1 1
4 4 2

j j j
j j j j j j j j j j j j

h h h
v v f f v v u u De u u q q                    

          

         

2 1
1 1 1 1 1/2

1 11 1
1 1/2 1 1/2 1 11/2 1/2

1
1 1

4 2 2

2 2

j j n
j j j j j j j j j

n nj jn n
j j j j j j j j j j

h h
De v v De f f q q f f v

h h
v v f De q q f f f q R

  

 


    

  
      
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where 
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The boundary conditions are 

0 0 00, 0, 1, 0, 0, 0n n n n n n
J J Jf u s u v s              (23g) 

 

3.3 Linearize the resulting algebraic equations by Newton’s method 

To linearize the system of nonlinear equations (23) using Newton’s method, we introduce the following iterates  
1

1

1

1

1

1

,

,

,

,

i i i
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


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









 

 

 

 

 

 

              (24) 

By using Eq. (24), Eq. (23) becomes 

 1 1 1 1/2

1
( )

2
j j j j j jf f h u u r                       (25a) 

 1 1 2 1/2

1
( )

2
j j j j j ju u h v v r                (25b)  

 1 1 3 1/2

1
( )

2
j j j j j jv v h w w r                   (25c) 

 1 1 4 1/2

1
( )

2
j j j j j js s h t t r                (25d) 
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( )
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B
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 




 


   

To complete the system (25) we recall the boundary conditions (24g) , which can be satisfied exactly with no 

iteration. So, to maintain these correct values in all the iterates, we take 
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0 0 00, 0, 0

0, 0, 0.J J J
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u v s

  

  
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  
           (25g) 

 

3.4 Block elimination method 

The linear system (25) can now be solved by the block-elimination method, as it is explained in Na (1979). The 

linearized difference equations of the system (25) have a block tri-diagonal structure. In a matrix vector form, 

this can be written as  
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That is:  A r                 (26) 

where the elements are defined by  

   

       

     

1

1 1 1
1 1

1 1

8 2 3 11 1 1 1

2 3 11 1 1

0 0 0 1 0 0

0 0 0 0 0

1 0 0 0
,

0 0 0 0 2

0 0

0 0 0

d

d d h
A d

d d

a a a a

b b b

 
 
 
 
  
 
 
 
  

 

         

       

6 8 10 3 1

6 8 3 1

0 0 1 0 0

1 0 0 0 0

0 1 0 0 0
, , 20 0 1 0 0 2

0

0 0

j

j

j j
j j

j

j j j j j

j j j j

d

d

d h
A d j Jd

a a a a a

b b b b

 
 


 
 
         
 
 
 
 

   

   

   

4 2

4 2

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0
, , 20 0 0 0 0 2

0 0 0 0

0 0 0 0

j j
j j

j

j j

j j

d h
B d j Jd

a a

b b

 
 
 
 
         
 
 
 
 

    

     

   

5 7 9

5 7

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0 0
, ,10 0 1 0 0 0 2

0 0 0

0 0 0 0

j

j

j
j j

j j j

j j

d

d

h
C d j J

a a a

b b

 
 
 
 
         
 
 
 
 

    



R. Bhuvanavijaya and B. Mallikarjuna/ Journal of Naval Architecture and Marine Engineering, 13(2016) 63-78  

 

Natural convection on heat transfer flow of non-newtonian second grade fluid over horizontal circular cylinder … 

 
72 

 

 

 

 

 

 

 

1 1.2
1

0

2 1.210

31 1.20

1

1 4 1.2

1
5 1.2

1

6 1.2

, , 2 , , 1

j
j

jj

j j

j j

j j

j
j

j

j

r
uu

rvv

rss
j J r j J

ff r

w w r
t t

r






 



 

 






 







 
    
    
    
    
                    
    
    
       

  

,   

The coefficient matrix A in (26) has a block  tri-diagonal structure and the difference equations are solved using 

a block matrix version of the Thomas algorithm. The numerical results are strongly influenced by the number of 

mesh points in ,  -directions. After some trials in the η-direction a larger number of mesh points are selected 

whereas in the ξ-direction significantly less mesh points are necessary. ηmax has been set at appropriate position 

and this constitutes an adequately large value at which the prescribed boundary conditions are satisfied. ξmax is 

set at 2.5 for the simulations. Mesh independence has been comfortably attained in the simulations. The 

numerical algorithm is executed in MATLAB®.  
 

3.5 Grid independency test 

In order to check the effects of step size   we found the Nusselt number and Sherwood number with four 

different step sizes as 0.1, 0.01     and 0.001  . We observe from Table 1 that the results are 

independent with the step size    and exist with increasing CPU time (sec). Hence a step size 0.01   is 

selected to be satisfactory for a convergence criterion of 10
-5

 in all cases. 

 

3.6 Code validation 
In order to assess the present numerical method we compare present results with previously published work by 

Merkin (1977) and Yih (2000) and good agreement is obtained as shown in Table 2. 

 

Table 1: Grid-independence for Pr=10, De=1 and R=1 
 

 (Step size) ( , 0)f   0),(   CPU time (Sec) 

0.1 0.6711096013 0.52420031235 1.0140 

0.01 0.67110538432 0.52420013563 10.4833 

0.001 0.6711032946 0.52420009563 25.8026 

 

Table 2: Values of Nusselt number for different values of stream wise coordinate with De = 0, Pr = 10 and R = 0 
  

  Merkin 

(1977) 

Yih 

(2000) 

Present 

Results 

0.0 0.4212 0.4214 0.4213 

1.0 0.4025 0.4030 0.4031 

2.0 0.3443 0.3457 0.3458 

3.0 0.2252 0.2267 0.2261 

4. Results and Discussion 

Comprehensive solutions have been obtained and are presented in Figs. 3–14 and in Tables 2–4. Numerical 

calculations have been carried out for different values of Deborah number (De), Prandtl number (Pr) and 
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Radiation parameter (R) on flow velocity and temperature profiles, skin friction and Nusselt number. 

Throughout the calculation we have fixed the values of De = 1, Pr = 10 and R = 1.  

 

4.1 Variation of Deborah number 

         
Fig. 3: Velocity profile for different values of De Fig. 4: Temperature profile for different values of De 

 

   
Fig. 5: Skin friction coefficient for different values of De.    Fig. 6: Nusselt number for different values of De 

 

Table 3: Values of ( ,0)f  and ( ,0)  for different values of De for Pr = 10 and R = 1.0 

 0   0.5   1   1.5   

De ( ,0)f   ( ,0)   ( ,0)f   ( ,0)   ( ,0)f   ( ,0)   ( ,0)f   ( ,0)   

0.1 0 0.6734 0.2992 0.6645 0.5479 0.6407 0.7039 0.6007 

0.5 0 0.6444 0.2672 0.6373 0.4963 0.6179 0.6539 0.5853 

0.75 0 0.6309 0.2526 0.6243 0.4715 0.6065 0.6269 0.5766 

1.0 0 0.6195 0.2405 0.6133 0.4506 0.5967 0.6302 0.5687 

1.5 0 0.6010 0.2215 0.5954 0.4170 0.5803 0.5633 0.5551 

2.0 0 0.5863 0.2069 0.5811 0.3908 0.5671 0.5312 0.5436 

 

Figs. 3 & 4 represent velocity and temperature profiles for different values of Deborah number. We observe that 

increase in De tends to decrease maximum velocity profile near the surface, while it increases far away from the 

cylinder surface. It is because of increase in De means increase in elasticity and decrease in viscosity of the fluid 

reduces the velocity boundary layer thickness. Increase in Deborah number results an enhancement in 



R. Bhuvanavijaya and B. Mallikarjuna/ Journal of Naval Architecture and Marine Engineering, 13(2016) 63-78  

 

Natural convection on heat transfer flow of non-newtonian second grade fluid over horizontal circular cylinder … 

 
74 

temperature profile as shown in Fig. 4. Further it is clear that thermal boundary layer thickness increases with 

increase in De. For different values of Deborah number De, the skin friction coefficient and Nusselt number 

(rate of heat transfer) are shown in Figs. 5 & 6 and Table 3. Both skin friction coefficient and Nusselt number 

are decreased with increase in Deborah number. As explained above, increase in De results depreciation in 

velocity gradient. The numerical values of average Nusselt number for various values of Deborah number are 

shown in Table 4. This shows that increase in Deborah number leads to depreciation in the average Nusselt 

number.  

 

Table 4: Average Nusselt number for different values of De for R=2 and Pr=10 

De 0.1   0.5   1.0   1.5   2.0   

0.1 0.0560 0.2792 0.6627 1.0026 1.3182 

0.5 0.0538 0.2681 0.6373 0.9669 1.2763 

0.75 0.0527 0.2628 0.6250 0.9492 1.2549 

1.0 0.0518 0.2582 0.6145 0.9339 1.2360 

 

4.2 Variation of Prandtl number 
 

Figs. 7 & 8 illustrate velocity and temperature profile along the radial direction, which is normal to the circular 

cylinder, for different values of Prandtl number. From these figures it is observed that velocity and temperature 

profiles are reduced with increase in Pr, and therefore it turns to reduce velocity and thermal boundary layer 

thickness. The reason is that for higher values of Pr, heat is able to diffuse far away from the heated surface 

more rapidly and thermal boundary layer is thicker for smaller values of Pr. The numerical results of skin 

friction coefficient and Nusselt number are displayed graphically in Figs. 9 & 10 and table 5 for different values 

of Pr. It is noticed from the figures that increase in Prandtl number accelerates, i.e. increase in skin friction 

coefficient and decelerates the Nusselt number. The results of average Nusselt number for different values of 

Prandtl number Pr presented in Table 6. From these values we observed that there is an enhancement in average 

Nusselt number with increase in Pr.  

     
Fig. 7: Velocity profile for different values of Pr           Fig. 8: Temperature profile for different values of Pr  

       
Fig. 9: Skin friction coefficient for different values of Pr   Fig. 10: Nusselt number for different values of Pr  
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Table 5: Values of ( ,0)f  and ( ,0)  for different values of Pr for De = 1.0 and R = 1.0 

 0  5.0  1  5.1  

Pr ( ,0)f   ( ,0)   ( ,0)f   ( ,0)   ( ,0)f   ( ,0)   ( ,0)f   ( ,0)   

0.01 0 0.0945 0.3447 0.0943 0.6550 0.0940 0.9005 0.0934 

0.71 0 0.2428 0.3111 0.2406 0.5889 0.2346 0.8040 0.2247 

7.0 0 0.5509 0.2513 0.5456 0.4716 0.5311 0.6333 0.5068 

10 0 0.6195 0.2405 0.6133 0.4506 0.5967 0.6032 0.5687 

50 0 1.0218 0.1905 1.0105 0.3539 0.9798 0.4663 0.9278 

100 0 1.2522 0.1692 1.2376 0.3132 1.1980 0.4099 1.1309 

 

Table 6: Average Nusselt number for different values of Pr for De=1 and R=1 

 

Pr 0.1   0.5   1.0   1.5   2.0   

0.71 0.0182 0.0908 0.2164 0.3293 0.4369 

7 0.0413 0.2061 0.4907 0.7461 0.9885 

10 0.0465 0.2317 0.5516 0.8385 1.1103 

50 0.0766 0.3821 0.9086 1.3789 1.8210 
 
 

4.3 Variation of Radiation Parameter 
 

Figs. 11& 12 show the behavior of velocity and temperature for different values of Radiation parameter. It is 

noticed that increase in radiation (R) tends to depreciation in velocity and temperature profiles within the 

boundary layer, as well as reduced velocity and thermal boundary layer thickness. Figs. 13 and 14 and Table 7 

shows the results of skin friction coefficient and Nusselt number for different values of radiation parameter R. It 

is clear that the skin friction coefficient decreases, while Nusselt number increases with increasing values of 

radiation parameter R.  

   

Fig. 11: Velocity profile for different values of R            Fig. 12: Temperature profile for different values of R  

4.4 Variation of Stream Wise Coordinate (ξ) 
Figures 15 and 16 represent variation of transverse (stream wise) coordinate (ξ), on velocity and temperature 

distributions respectively. Generally velocity is noticeably lowered with increasing migration from the leading 

edge i.e. larger  values (Fig. 15).  The maximum velocity is computed at the lower stagnation point (~0) for 

low values of radial coordinate (). The transverse coordinate clearly exerts a significant influence on 

momentum development.  A very strong increase in temperature (), as observed in figure 16, is generated 
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throughout the boundary layer with increasing  values. The temperature field decays monotonically. 

Temperature is maximized at the surface of the cylindrical body (= 0, for all ) and minimized in the free 

stream (= 5).  Although the behavior at the upper stagnation point (~2.0) is not computed, the pattern in figure 

8b suggests that temperature will continue to progressively grow here compared with previous locations on the 

cylinder surface (lower values of ). It is an important to note that all the numerical results presented here 

should be claimed and are accurate and acceptable. These methods can easily be extended to more complicated 

heat transfer problems. 

 

   

Fig. 13: Skin friction coefficient for different values of R  Fig. 14: Nusselt number for different values of R  

 

Table 7: Values of ( ,0)f  and ( ,0)  for different values of R for De = 1.0 and Pr = 10 

 0   0.5   1   1.5   

R ( ,0)f   ( ,0)   ( ,0)f   ( ,0)   ( ,0)f   ( ,0)   ( ,0)f   ( ,0)   

0.5 0 0.5337 0.2541 0.5286 0.4771 0.5146 0.6412 0.4912 

1.0 0 0.6195 0.2405 0.6133 0.4506 0.5967 0.6032 0.5687 

1.5 0 0.6633 0.2341 0.6566 0.4380 0.6385 0.5852 0.6081 

2.0 0 0.6904 0.2302 0.6834 0.4305 0.6644 0.5745 0.6325 

2.5 0 0.7089 0.2276 0.7017 0.4255 0.6821 0.5673 0.6491 

 

 

 

Fig. 15: Velocity profile for different values of ξ  Fig. 16: Temperature profile for different values of ξ  
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5. Conclusion 

A mathematical model has been investigated for free convection boundary layer flow of non-Newtonian second 

grade fluid past an impermeable isothermal horizontal cylinder. The governing boundary layer equations for 

mass, momentum and energy are transformed into non-dimensional equations by using the non-similarity 

transformations and then found the numerical solutions by employing an efficient, validated implicit finite 

difference method. The results of various physical parameters have shown that: 

 Increasing the Deborah number reduces velocity profile, skin friction and Nusselt number where as it 

enhances the temperature profile. 

 Increasing Prandtl number decelerates the flow velocity, temperature and skin friction but Nusselt 

number enhances considerably. 

 Increase in radiation parameter retards the flow velocity, temperature and skin friction. But Nusselt 

number enhances markedly with increase in radiation parameter. 
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