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Abstract 
 

An analysis of free convection and mass transfer unsteady magnetohydrodynamic flow of an 
electrically conducting viscous incompressible fluid past an infinite vertical porous plate is 
presented by taking into account the Dufour and Soret effects. With a goal to attain similarity 
solutions of the problem posed, similarity equations are derived by introducing a time 
dependent length scale. The non-linear similarity equations, which are locally similar, are 
solved numerically using shooting method. Dimensionless velocity, temperature and 
concentration profiles are displayed graphically for different values of the parameters entering 
into the problem. Finally, the corresponding local skin-friction, local Nusselt number and 
local Sherwood number, which are of physical interest are tabulated. 
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NOMENCLATURE: 
 

B0 
C 
Cp 
Cs 
Df 
Dm 
 f 
g 
Gr 
Gm 
Pr 
Sc 
Sr 
Sh 
Nu 
M 
kT 
 

Applied magnetic field 
Concentration 
Specific heat at constant pressure 
Concentration susceptibility 
Dufour number 
Mass diffusivity 
Dimensionless velocity 
Acceleration due to gravity 
Local temperature Grashof number 
Local mass Grashof number 
Prandtl number 
Schmidt number 
Soret number 
Sherwood number 
Nusselt number 
Magnetic parameter 
Thermal diffusion ratio 
 

T 
Tm 
U0 
u, v 
 
x, y 
 
α 
β 
β∗ 

σ 
ρ 
υ 
θ 
φ 
w 

Temperature 
Mean fluid temperature 
Constant plate velocity 
Velocity components in x and y direction 
respectively 
Cartesian coordinates along the plate and 
normal to it, respectively 
Thermal diffusivity 
Coefficient of thermal expansion 
Coefficient of concentration expansion 
Electrical conductivity 
Density of the fluid 
Kinematic viscosity 
Dimensionless temperature 
Dimensionless concentration 
Condition at wall 

 
1. Introduction: 
 
The phenomenon of free convection has many important technological applications such as in cooling a 
nuclear reactor and providing heat sinks turbine blades. In recent year, the subject of free convection 
has attracted many authors in view not only of its own interest but also of the applications to 
astrophysics and engineering. Soundalgekar (1977) studied the free convection flow past an 
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impulsively started infinite vertical plate, when it is cooled or heated by the free convection currents. 
Kafoussias et al. (1979) studied the effects of suction on the flow field, in the above problem. Nanousis 
et al. (1980) extended this problem to magnetohydrodynamics. 
 
In all the above studies, the Dufour and Soret effects were neglected on the basis that they are of a 
smaller order of magnitude than the effects described by Fourier’s and Fick’s laws. However, 
exceptions are observed therein. The thermal-diffusion (Soret) effect, for instance, has been utilized for 
isotope separation, and in mixture between gases with very light molecular weight (H2, He ) and of 
medium molecular weight (N2 , air) the diffusion-thermo (Dufour) effect was found to be of order of 
considerable magnitude such that it cannot be ignored [Eckert and Drake(1972)]. In view of the 
importance of this diffusion-thermo effect, Jha and Singh (1990) studied the free-convection and mass 
transfer flow about an infinite vertical flat plate moving impulsively in its own plane, taking into 
account the Soret effects. Kafoussias (1992) studied the same problem in the case of MHD flow. 
Recently, Kafoussias and Williams (1995) studied thermal-diffusion and diffusion-thermo effects on 
mixed free-forced convective and mass transfer boundary layer flow with temperature dependent 
viscosity. 
 
Consequently the aim of the present work is to investigate the thermal-diffusion (Soret) and diffusion-
thermo (Dufour) effects on magnetohydrodynamic free convection and mass transfer flow past an 
infinite vertical porous flat plate with variable suction and constant viscosity. 
 
2. Mathematical analysis: 
 
We consider two-dimensional, unsteady, magnetohydrodynamic, free convection and mass transfer 
flow, of a viscous incompressible and electrically conducting fluid past an infinite vertical porous flat 
plate. The x-axis is taken along the plate in the upward direction and the y-axis normal to it. A magnetic 
field of uniform strength is applied transversely to the direction of the flow. The induced magnetic field 
can be neglected since the magnetic Reynolds number of the flow is assumed very small. The fluid 
properties are also assumed to be constant in a limited temperature range except for the influence of the 
density variations with temperature and concentration, which are considered only in the body force 
term. Under the above assumptions, the physical variables are functions of y and t only and therefore 
the basic equations relevant to the problem are: 
Continuity equation 
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with initial and boundary conditions: 

for 0≤t : ∞∞ ==== CCTTvu ,,0  for all y 

for t >0: 

   ( ) ww CCTTtvvu ==== ,,,0 at 0=y                                                                                      (5a) 

   ∞∞ ==== CCTTvu ,,0,0      as ∞→y                                                                                (5b) 
where the variables and related quantities are defined in the Nomenclature. 
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The last term on the right-hand side of the energy equation (3) and concentration equation (4) signifies 
the Dufour or diffusion-thermo effect and the Soret or thermal-diffusion effect, respectively. 
Now in order to obtain a local similarity solution of the problem under consideration, we introduce a 
time dependent length scaleδ as 

( )tδδ = .                                                                                                                                               (6) 
In terms of this length scale, a convenient solution of the equation (1) is considered to be in the 
following form: 

( )
δ
υ

0vtvv == ,                                                                                                                                   (7) 

where 0v  is the suction velocity at the plate and the negative sign indicates that the suction velocity is 
directed towards the plate. 
Now, in order to non-dimensionalize equations (2), (3) and (4) the following dimensionless quantities 
are introduced: 
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and  
α
υ

=Pr  (Prandtl number).                                                                                                             (8) 

In view of  (7) and (8) equations (2), (3) and (4) become 

00 =−++′+′
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
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where primes denote differentiation with respect to η . 
The corresponding boundary conditions for t > 0 are obtained as: 

1,1,0 === φθf        at 0=η                                                                                                     (12a) 
0,0,0 === φθf       as ∞→η                                                                                                 (12b) 

Now the equations (9) - (11) are locally similar except the term 







dt
dδ

υ
δ

, where t appears explicitly. 

Thus the local similarity condition requires that 







dt
dδ

υ
δ

 in the equations (9)-(11) must be a constant 

quantity. 
Hence following the works of Hasimoto (1957), Sattar and Hossain (1992) and Sattar (1993), one can 
try a class of solutions of the equations (9) - (11) by assuming that 

k
dt
d

=





 δ
υ
δ

(a constant).                                                                                                                   (13) 
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Integrating (13) we have 
tkυδ 2= ,                                                                                                                                      (14) 

where the constant of integration is determined through the condition that 0=δ  when 0=t . From 

(14) choosing k = 2, the length scale ( ) tt υδ 2=  which exactly corresponds to the usual scaling 

factor for various unsteady boundary layer flows [Schlichting (1968)]. Sinceδ is a scaling factor as 
well as a similarity parameter, any value of k in (13) would not change the nature of the solutions 
except that the scale would be different. 
Now introducing (13) [with k = 2] in the equations (9) - (11) respectively, we obtain the following 
dimensionless ordinary differential equations which are locally similar. 

( ) 02 0 =−++′++′′ MfGmGrfvf φθη                                                                                 (15) 

( ) 0Pr2Pr 0 =′′+′++′′ φθηθ Dfv                                                                                                 (16) 

( ) 02 0 =′′+′++′′ θφηφ ScSrvSc                                                                                                  (17) 
Subject to the reduced boundary conditions follow from (12) 

1,1,0 === φθf     at 0=η                                                                                                        (18a) 
0,0,0 === φθf   as ∞→η                                                                                                     (18b) 

The set of equations (15) - (17) together with the boundary conditions (18) are solved numerically by 
applying Nachtsheim-Swigert (1965) shooting iteration technique along with Runge-Kutta sixth-order 
integration method. From the process of numerical computation, the skin-friction coefficient, the local 
Nusselt number and the local Sherwood number, which are respectively proportional to ( )0f ′ , 

( )0θ ′−  and ( )0φ ′− , are also sorted out and their numerical values are presented in tabular form. 
 
3. Results and Discussion: 
 
Numerical calculations have been carried out for different values of v0, M, Sr and Df and for fixed 
values of Pr, Sc, Gr and Gm. The values of Gr and Gm are taken to be both positive and negative, since 
these values represent respectively cooling and heating of the plate. The value of Prandtl number (Pr) 
is taken to be 0.71, which corresponds to air, and the value of Schmidt number (Sc) is chosen to 
represent hydrogen at 250C and 1 atm. The values of Dufour number Df and Soret number Sr are 
chosen in such a way that their product is constant provided that the mean temperature Tm is kept 
constant as well. However, the values of v0 and M are chosen arbitrarily. The numerical results for the 
velocity, temperature and concentration profiles are displayed in Figs.1 - 6. The effects of suction and 
magnetic parameters in the velocity field are shown in Fig. 1 for both cooling and heating of the plate. 
It is seen from this figure that the velocity decreases with the increase of both suction and magnetic 
parameters for cooling of the plate. In Fig. 2, the effects of Soret and Dufour number are shown for 
both cooling and heating of the plate. Quantitatively, when η = 0.45 and Sr decreases from 2 to 1 (or Df 
increases from 0.03 to 0.06), there is 8.33% decrease in the velocity value, whereas the corresponding 
decrease is 2.77%, when Sr decreases from 1 to 0.5. In all the figures mentioned above, compared to 
the case of cooling of the plate opposite effects are observed in the case of heating of the plate.  
 
The temperature profiles are shown in Figs. 3 and 4 for cooling of the plate. In Fig. 3 we see that the 
temperature decreases with the increase of suction parameter. From Fig. 4 when η = 0.50 and Sr 
decreases from 2 to 1 (or Df increases from 0.03 to 0.06), there is 68.77% increase in the temperature 
value, whereas the corresponding increase is 33.79%, when Sr decreases from 1 to 0.5. 
 
In Figs. 5 and 6, the concentration profiles are shown for cooling of the plate. It is observed from Fig. 5 
that the velocity increases with the increase of suction parameter close to the wall (approx. η<0.62) 
whereas for η>0.62, the concentration decreases with the increase of suction parameter. From Fig. 6, 
when η = 0.50 and Sr decreases from 2 to 1 (or Df increases from 0.03 to 0.06), there is 19.73% 
decrease in the concentration value, whereas the corresponding decrease, when Sr decreases from 1 to 
0.5, is 10.15%. 
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Fig. 1: Velocity profiles due to cooling and heating of the plate for different values of v0 and M. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Velocity profiles due to cooling and heating of the plate for different values of Sr and Df. 
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              Fig. 3: Temperature profiles due to cooling of the plate for different values of v0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 4: Temperature profiles due to cooling of the plate for different values of Sr and Df. 
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        Fig. 5: Concentration profiles due to cooling of the plate for different values of v0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Fig. 6: Concentration profiles due to cooling of the plate for different values of Sr and Df. 
 

 
Finally, the effects of the above-mentioned parameters on the local skin-friction coefficients, rate of 
heat and mass transfer are shown in Table 1. These effects are excellent agreement with those seen on 
the velocity, temperature and concentration profiles. The conclusions and discussions regarding the 
behavior of the parameters on skin-friction and rate of heat and mass transfer coefficients are self 
evident from Table 1. 
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Table 1: Numerical values of skin-friction coefficients, Nusselt number and Sherwood                   
              number for Pr = 0.71,v0 = 1.5, M = 0.2 and Sc = 0.22. 
 

  Gr   Gm    Df   Sr        Cf      Nu       Sh 

 +10  +4  0.03  2.0  5.123700  4.428883  -1.049408 

 +10  +4  0.037  1.6  5.060047  3.977430  -0.531617 

 +10  +4  0.050  1.2  5.002257  3.622623  -0.119442 

 +10  +4  0.075  0.8  4.952990  3.329626   0.219757 

 +10  +4  0.150  0.4  4.946084  3.05512   0.505906 

 +10  +4  0.600  0.1  5.281809  2.631941   0.693803 

 -10  -4  0.03 2.0 -5.123700  4.428883  -1.049408 

 -10  -4  0.037 1.6 - 5.060047  3.977430  -0.531617 

 -10  -4  0.050 1.2 -5.002257  3.622623  -0.119442 

 -10  -4  0.075 0.8 -4.952990  3.329626   0.219757 

 -10  -4  0.150 0.4 -4.946084  3.05512   0.505906 

 -10  -4  0.600 0.1 -5.281809  2.631941   0.693803 
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