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Abstract: 
The paper presents the application of artificial neural network for simulation and diagnostic 

purposes applied to a gas turbine powered marine propulsion plant. A simulation code for the 

propulsion system, developed by the authors, has been extended to take into account components 

degradation or malfunctioning with the addition of performance reduction coefficients. The above 

coefficients become input variables to the analysis method and define the system status at a given 

operating point. The simulator is used to generate databases needed to perform a variable selection 

analysis and to tune response surfaces for both direct (simulation) and inverse (diagnostic) purposes: 

two ANN are trained to reply simulator behavior in steady state conditions with considerably reduced 

calculation time (direct ANN), and to invert simulator inputs and outputs in order to obtain 

information on the system health state starting from measured variables (diagnostic ANN).  The 

application of the methodology to the propulsion system of an existing frigate version demonstrate the 

potential of the approach for simulation and diagnostics: the simulation model behavior is  replied  

with acceptable errors, while the health state of the propulsion system is successfully identified from 

the selected state variables by properly trained artificial neural networks. 

Keywords: Monitoring , diagnostics, artificial neural networks, simulation, ship propulsion. 

 

NOMENCLATURE 

 

Subscripts 

ANN     artificial neural network 

Avg      average 

BSFC    bore specific fuel consumption  

CPP      controllable pitch propeller 

eff        effective 

eta       efficiency 

GT gas turbine 

K          loss/fault coefficient 

M        mass flow rate 

MblC turbine cooling air mass flow rate 

MSE     mean square error 

p           pressure 

Q          shaft torque 

S           shaft speed 

T           temperature 

TCS      gas turbine control system 

TH        propeller thrust 

V         ship speed 

w         network weight 

x          neuron input 

y          neuron output 

θ          neuron threshold 

a  ambient 

bl  cooling  

C           compressor  

Eng        engine 

eta         efficiency 

Err         error 

Fr          friction loss 

f            fuel 

GG        gas generator 

GT         gas turbine 

HPT       high pressure turbine 

hp          high pressure 

Kq        propeller torque coefficient 

in           inlet 

lp           low pressure 

out         outlet 

PORT    portside 

Prop       propeller 

r            real 

req        required 

Sh         shaft 

STBD   starboard 

Kt         propeller thrust coefficient 

T           turbine 
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1. Introduction 

Real time operation monitoring and effective fault diagnosis are crucial issues in plant management, in order to 

increase safety and reliability: uninterrupted availability, even if a fault occurs, is a desirable feature in almost 

any engineering application field. Several monitoring and diagnostic techniques have been developed, especially 

for industrial power plants and aeronautic propulsion systems. The general purpose of these techniques is to 

monitor the plant’s operation through a number of experimental measures of an appropriate set of state 

variables, then to identify one or more diagnostic variables through a model, which can be based on various 

soft-computing techniques such as simulation, optimization algorithms, expert systems, response surfaces. This 

paper aims to present an analysis of a gas turbine powered ship propulsion plant, via simulation and response 

surface techniques using artificial neural networks. Gas turbine engines have found wide application in aircraft 

propulsion and power generation industry. Diesel engines are the most common engine type used in ship 

propulsion, however gas turbines (in two shafts configuration) are used for high performance applications, when 

a high power density and performance is required, mainly in military vessels and high speed ferries. Marine 

engines operate in aggressive corrosion conditions if compared to aeronautic or industrial applications: a 

diagnostic system can be useful to increase the reliability and safety of the ship. Moreover, a diagnostic system 

for ship propulsion needs to take into account effects due to gas turbine components corrosion, hull resistance 

increase, propeller performance decay, shaft line and gearbox wearing. In other words, the propulsion system 

needs to be considered in all its aspects in order to provide effective diagnoses. Simulation is a widely used 

method to obtain information in systems transient conditions. The authors have acquired significant experience 

in marine propulsion systems simulation and in developing computer codes to model the main marine engines 

(Benvenuto et al, 2005) and the overall ship propulsion plants (Benvenuto et al, 2000, Campora et al, 2003, 

Altosole et al, 2009).  

The use of simulation for faults and diagnostic analysis have been tested in previous applications to propulsion 

systems (Altosole et al, 2010, Campora et al, 2011, 2013). The modeling of governor and control systems is a 

crucial issue for accurate simulation of transient load analysis, steady analysis at off-design conditions or in case 

of faults (Benvenuto et al, 2000, 2008, Campora et al, 2013). Referring to the propulsion system of the frigate 

version considered in this paper, an analysis of over time performance decay due to components performance 

deterioration (including hull resistance increase due to fouling) has been presented in Altosole et al (2014). On 

the other hand the use of a simulator for diagnostic purposes has two major shortcomings: intensive CPU time 

not acceptable for real-time analysis and a rigid input/output set of variables that does not allow reverse analysis 

using specific input variables from the system.  

Artificial neural networks (ANN) are efficient function fitting tools that can be effectively used to speed up the 

simulation process when the numerical direct simulation is too expensive for real time analysis or for 

optimization purposes (Cravero et al, 2012, Cravero, 2013). ANN can also be effective for diagnostic purposes 

(Palmé et al, 2011) because of their ability in modeling the system as a black box without the need for specific 

and pre-defined relationships between input and output variables. In this paper, a ship propulsion system 

simulation model has been used to generate a database for ANN development. The model is able to simulate the 

plant operation in different fault and degradation conditions, through a set of fault coefficients implemented in 

the code as documented in literature (NATO RTO, 2007). For an effective ANN implementation, a design of 

experiment (DoE) analysis of the multivariate domain has been carried out to understand the effects of input 

variables to output data and to be able to make a selection of the most significant variables to reduce the 

problem dimensions. This target has been tackled with a Student’s t-test analysis of a database generated by 

1500 simulation runs with different input conditions, obtained with a pseudo-random domain filling algorithm. 

After having selected the optimum set of variables to describe the problem, the simulation data has been used to 

train two ANN, for simulation and diagnostic purposes respectively. Network sensitivity and robustness against 

random measure errors has been finally considered. 
 

2. Ship Propulsion Plant Simulation Model 

The main features of the ship are 140 meters of length, 5900 tons of displacement, and 27 knots of maximum 

speed. The ship propulsion plant scheme with the fundamental components is shown in Fig. 1. The main engine 

of the propulsion plant is the General Electric-AVIO LM 2500 gas turbine (GT), characterized by a two shafts 

arrangement. The gas generator is composed by the compressor (C in Fig. 1), the combustion chamber (CC) and 

the high pressure turbine (HPT). The MCR (maximum continuous rating) power, delivered by the power turbine 

(LPT), is 32 MW at 3600 rpm. This last moves, by a reduction gear (RG), two controllable pitch propellers 

(CPP). Fig. 2 shows the overall ship propulsion plant SIMULINK scheme. The simulator is organized in a 
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modular arrangement, where each block models the performance of the pertinent propulsion plant component, 

by means of the component’s geometrical data, performance characteristics maps, mechanical and 

thermodynamic equations (mainly: continuity, energy and momentum).  
 

 

LPT RG C HPT 

LM 2500 GAS TURBINE 

HULL 

CPP CC 

 

Fig. 1:  Frigate propulsion plant scheme 

The frigate propulsion plant is basically composed by a gas turbine (LM2500 GAS TURBINE block in figure) 

which drivers, through a reduction gear (GEAR), two controllable pitch propellers (STARBOARD and 

PORTSIDE PROPELLER blocks) for the ship propulsion. The performance of each system component, can be 

determined for different load conditions and components health status. This last is determined, for each 

component, by the value of the corresponding fault coefficient K (reported in red over the pertinent block in Fig. 

2). The fault coefficients K are reported and described in Table 1. A brief description of the main subsystems 

and of the overall propulsion plant simulator operation logic is reported. A  more detailed description of this 

plant and its components is given in Altosole et al (2014) and Capelli (2013). 
 

The overall system is governed by the MAIN PROPULSION PLANT CONTROLLER block in Fig. 2, starting 

by the telegraph value (green block). The required propellers pitch value signal Prop_STBD/PORT PITCH is 

generated according to the telegraph value by the combinatory table and transmitted to the 

STARBORD/PORTSIDE PROPELLER blocks. The propeller model has been generated following the classical 

approach for the propeller performance prediction described in Benvenuto et al (2000), using the open water 

CPP diagrams for the propulsion thrust and propeller torque of the considered frigate. The propellers thrust KT 

and torque KQ coefficients can be determined from the open water diagram with the procedure described in 

Benvenuto et al (2000), given the advance coefficient J and the propeller pitch diameter ratio P/D value. The 

thrust (TH in figure) of both the propellers are transmitted to the HULL DYNAMIC block, that determine the 

ship speed (V in Fig. 2) by the dynamic balance between the frigate hull resistance force, determined as function 

of the ship speed and the propellers thrust. 

Table 1: SIMULINK propulsion plant simulator fault components coefficients 

K_pin Compressor inlet filter fault coefficient 

K_Ceta Compressor efficiency reduction coefficient 

K_Cm Compressor mass flow rate coefficient 

K_Thp HP turbine fault coefficient 

K_Tlp LP turbine fault coefficient 

K_dpout GT outlet duct fault coefficient 

K_etam Mechanical efficiency gear coefficient 

K_FrShPort Friction increase due to bearing fault (portside shaft) 

K_FrShStbd Friction increase due to bearing fault (starboard shaft) 

K_Kt Propeller thrust loss fault coefficient 

K_Kq Propeller torque increase fault coefficient 

K_PortErr Portside propeller pitch actuator error [°] 

K_StbdErr Starboard propeller pitch actuator error [°] 

K_HullRes Hull resistance coefficient increase due to fouling 
 

The propellers resistance torques Q, determined in the STARBORD/PORTSIDE PROPELLER blocks, are 

transmitted to the STARBORD/PORTSIDE SHAFT DYNAMIC blocks together with the GT speed S_GT to 

compute the propellers shaft rotational speeds S by means of the dynamic momentum equation. The reduction 

gear is simulated by a simple ratio between the incoming and outgoing  rotating shafts speeds. In addition, the 

MAIN PROPULSION PLANT CONTROLLER block manages the GT load by the GT gas generator speed 

S_GT req signal, generated by a PID governor system. The LM2500 GAS TURBINE block, in blue in Fig. 1, is 

the most complex component, for this reason it is described referring a specific SIMULINK scheme reported in 
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Fig. 3. Once again the components health status is determined by the value of the fault coefficients K, reported 

in red over the pertinent block in the above figure. 
 

The main engine of the propulsion plant is the General Electric-AVIO LM2500 GT. It is arranged in a two 

shafts configuration. The gas generator is composed by compressor (COMPRESSOR in Fig. 3), combustion 

chamber (COMBUSTOR) and the high pressure turbine (HP TURBINE) blocks. 
 

Fig. 2: Overall ship propulsion plant SIMULINK scheme with components loss coefficients (in red) 

 

 

Fig. 3: Overall gas turbine SIMULINK scheme with components loss coefficients (in red) 

As mentioned, the GT delivered power is governed by the MAIN PROPULSION PLANT CONTROLLER 

block (Fig. 2), through the required GT gas generator speed (S_GG req in Fig. 3), which is an input of the 

LM2500 GAS TURBINE block. An increase of this variable increases the GT delivered power. This last is the 

input signal of the effective GT governor block, named TCS (turbine control system) in figure. By means of a 

PID controller scheme, the TCS controls the fuel valve position, in order to manage the fuel mass flow rate Mf 

value which is transmitted to the COMBUSTOR block. The GT power is governed as reported by Tortarolo 

(2000) in order to obtain the required GT power turbine speed S_GT. As shown in Fig. 3, the TCS governor 

monitors a series of GT parameters. In case one of the TCS monitored variables reaches the maximum allowable 

value, the GT governor reduces the fuel mass flow in the GT combustor in order to preserve the GT components 

from overloads or over temperatures. The GT propulsion components modeled in the SIMULINK environment 
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are briefly described while a detailed explanation is presented in Benvenuto et al, 2005. In the INLET module of 

Fig. 3, the GT inlet duct pressure loss is determined as function of air filter fouling, indicated by the pertinent 

constant loss (K_pin in red over the block). For the compressor simulation, typical steady state performance 

maps (Cohen et al, 1987) are used. In the COMPRESSOR module (Fig. 3), the component efficiency and the 

outlet air mass flow (M2 outlet of the block) are determined by the above mentioned steady state performance 

maps, as functions of the compressor pressure ratio and of the S_GG shaft speed.  The gas generator shaft 

bearings losses are evaluated as function of the compressor shaft speed. 
  

The performance and data regarding the two GT turbines (HP TURBINE and LP TURBINE blocks in Fig. 3) 

are determined in a similar way. For the combustor (COMBUSTOR and HP to LP INT. VOLUME modules in 

Fig. 3) performance estimation, the continuity and energy dynamic equations are used. The OUTLET block is 

simulated similarly to the INLET module. Finally, the AUXILIARY SYSTEM block takes into account the 

power absorbed by GT auxiliaries by means of a constant value that reduce the delivered GT torque Q_GT, that 

is the only output of the LM2500 GAS TURBINE block. 
 

The above described overall frigate propulsion plant simulator has been validated comparing the numerical 

results with sea trials data, measured during the on board test campaign of the vessel, referred to steady state 

load conditions for different telegraph lever positions. In Fig. 4 the percentage errors between calculated and 

reference values of the most significant propulsion plant characteristics are shown in absolute values, referred to 

five steady state load conditions (38%, 47%, 67%, 80% and 90% of telegraph setting position), in case of 

perfect status for every component (all the faults coefficients are set to one). As can be seen from the data 

reported in Fig. 4, the errors between numerical and experimental data are acceptable for all monitored 

parameters, particularly at high engine loads. Higher errors are observed at very low engine loads in the gas 

generator sections, mainly due to lack of information regarding compressor and turbines maps at low running 

conditions. However, the errors do not affect significantly the engine and ship performance prediction. 

Moreover, diagnostic applications of the simulation model are limited to high engine loads in this application. 

 

Fig. 4: Percentage errors between simulation model and sea trials experimental measures (absolute value) 

3. Variables Selection 

A variables selection analysis has been carried out in order to identify the minimum set of parameters which is 

able to provide the all the necessary information to define the status of the system. This target has been pursued 

through a design of experiments (DoE) analysis of the multivariate domain of the complete set of parameters. 

DoE techniques aim to extract as much information as possible from a limited number of experimental or 

computer experiments: the multivariate domain of the variables is filled with a number of points using pseudo-

random techniques (Giunta et al, 2003). Some commonly used pseudo-random space filling techniques are: 

pseudo-Monte Carlo Sampling, Sobol sequence, Latin Hypercube Sampling, Central Voronoi Tessellation, 

Orthogonal Arrays. In this particular case a Sobol sequence algorithm has been used to fill the input variables 

domain: 16 input variables have been spanned, and 1500 experiment points (simulator runs) have been selected.  

The complete set of input parameters is reported in Table 2 together with the considered range for each variable. 
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Note that the telegraph lever position is imposed as constant for each set of experiments and 4 values have been 

considered (4, 8, 9, 10, the last corresponding to the maximum continuous rating), leading to 6000 experiments 

(simulator runs). The telegraph lever value sets the system operating point and has therefore a major (and 

obvious) influence on the remaining input variables; separate DoE dataset are needed for a given telegraph 

position. In addition, compressor fault coefficient K_Ceta is computed from K_Cm according to the following: 
 

                        (1) 
 

Table 2: Input variables and their range 

Variable name Description Range 

T_C [°C] air temperature [-30 ; 40] 

K_pin Compressor inlet filter fault coefficient [.95 ; 1] 

K_Cm Compressor mass flow rate coefficient [.90 ; 1.05] 

K_Thp HP turbine fault coefficient [.93 ; 1.05] 

K_Tlp LP turbine fault coefficient [.93 ; 1.05] 

K_dpout GT outlet duct fault coefficient [1E-6 ; 5E-6] 

K_etam Mechanical efficiency gear coefficient [.9 ; 1] 

K_FrShPort Friction increase due to bearing fault (portside shaft) [1 ; 2] 

K_FrShStbd Friction increase due to bearing fault (starboard shaft) [1 ; 2] 

K_Kt Propeller thrust loss fault coefficient [.908 ; 1] 

K_Kq Propeller torque increase fault coefficient [1 ; 1.0928] 

K_PortErr Portside propeller pitch actuator error (°) [-1 ; 1] 

K_StbdErr Starboard propeller pitch actuator error (°) [-1 ; 1] 

K_HullRes Hull resistance coefficient increase [2E-4 ; 1E-4] 

Telegraph Telegraph lever position CONSTANT 

Table 3: Output parameters after variable selection test 

Variable name Description 

p_1 Compressor inlet pressure 

p_2 Compressor outlet pressure 

T_2r Compressor outlet pressure 

Eta_C Compressor efficiency 

n_gg Gas generator shaft speed 

M_f Fuel mass flow rate 

p_4 Low pressure turbine inlet pressure 

T_5 Low pressure turbine inlet temperature 

Pow_HPT High pressure turbine power 

Eta_LPT High pressure turbine efficiency 

p_6 LP turbine outlet pressure 

T_6 LP turbine outlet temperature 

M_1 Total mass flow rate 

Q_GT LP turbine torque 

Eta_LPT LP turbine efficiency 

n_Prop Propeller shaft speed (only for telegraph=10) 

QPropPort Propeller torque (portside) 

Q_PropStbd Propeller torque (starboard side) 

TH_PropPort Propeller thrust (portside) 

TH_PropStbd Propeller thrust (starboard side) 

V_ship Ship speed 

NOX NOX emissions 

Eta0_PropPort Open water propeller efficiency (portside) 

Eta0_PropStbd Open water propeller efficiency (starboard side) 

BSFC Brake specific fuel comsumption 
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A large number of output variables has been recorded for each of the 1500 simulations, in order to collect the 

maximum data useful for the variable selection process. This process has been pursued on the basis of a 

Student’s t-test analysis. Student’s t-test is commonly used to quantify the difference between two sets of data. 

In this particular case it provides an evaluation of the mutual influence between the input and output variables. 

According to the t-test results and to practical considerations (i.e. technological limits in measurement), a 

reduced number of effective output parameters has been obtained and listed in Table 3. For each telegraph lever 

position an exhaustive description of the system status is therefore provided by two sets of data: the input set, 

containing 1500 different pseudo-random generated working points, and the corresponding most effective 

output values. 
 

4. Response Surface Development 

The database obtained through the DoE provides an exhaustive description of the relationship between 

simulator’s input and response parameters. Such relationship can be seen as the solution of two different 

problems:  

- The direct problem, or simulation problem, consisting in the computation of the plant’s performance 

parameters starting from the input parameters. This problem is tackled by the simulator by numerically 

solving the physical and thermodynamic differential equations that models the physical system. This 

approach has the intrinsic limitations of the numerical model and it is not particularly efficient for real-

time analysis. 

- The inverse problem, or diagnostic problem, calculates a subset of input parameters starting from the 

remaining parameters: the subset is composed by the diagnostic variables, or fault coefficients, which 

determine the health state of the system. The remaining parameters, called state variables, from which 

the diagnostic information stem, are measured data from the system. The solution of the diagnostic 

problem cannot be achieved using the simulation model whose input/output parameters cannot be 

easily inverted. This would require completely different governing equations not easily derivable form 

the actual set of governing equations. 
 

A response surface method (RSM) is the most commonly used approach to model the relationship between a 

given set of input and output variables. RSM is usually associated to DoE analysis to explore the variables 

domain. In this work the  artificial neural networks (ANN) have been used as RSM technique. 
 

Artificial neural networks are mathematical models based on the human brain structure, which are useful to 

solve a large number of problems, for instance function fitting, clustering, classification, pattern recognition. 

The human brain is composed by a large number of elementary units (cells), which are called neurons 

interconnected one to another by synapses. A neuron is a sort of filter, which receives a number of signals and 

activates if the total signal is higher than a threshold, sending is own signal to the other neurons. The 

information speed is not very high, but the neurons are massively parallel-connected, so the result is a very fast 

processing unit. A neuron (Fig. 5) can be mathematically modeled as a weighted summation block and an 

activation block: the input signals are collected into the array            , while the vector             

contains the weights. The summation block simply computes the value of the scalar product      , which is 

compared to the threshold value θ. The output value          is calculated through the activation function 

f. There are several types of activation functions, the most commonly used are hard limit, sign function, linear, 

sigmoid, hyperbolic tangent. The choice of the activation function depends on the structure of the problem.  

In analogy to the human brain, an ANN is composed by a large number of interconnected neurons, organized 

into three or more layers. The number of input and output layer neurons corresponds to the number of 

input/output parameters of the problem, while the number of neurons in the hidden layer(s) can be chosen on the 

basis of many different criteria (Verbist et al, 2011). An example of a three layers ANN with three inputs and 

two outputs is shown in Fig. 6. The information flows from the input layer to the output layer, with no feedback. 

The advantage of using ANN is that there is no need to implement any description of the input/output 

relationship: the network ‘learns’ such relationship from data. 

The learning process consists into the identification of the optimum weight values for each neuron, which can be 

done using many different algorithms, mainly based on optimization techniques. Usually the Feed forward back 

propagation algorithm is used: the algorithm consists in a forward step, in which the neuron outputs are 

computed at fixed weights, and a backward step, in which the neuron weights are updated back-propagating the 

error obtained comparing predicted and target outputs. Once the learning algorithm is implemented, it is 

possible to train an ANN to solve a problem on the basis of known data. Notice that once it is trained, an ANN 
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is a black box that provides output values corresponding to any input pattern, so attention must be paid to ANN 

test and validation before trusting in network’s results. 

 

The performance of an ANN is usually evaluated 

through the mean square error (MSE) which 

expresses the difference between the predicted 

output vector o and target output vector t. If the 

considered set is made by N patterns, the MSE is 

given by: 

 

    
 

 
∑ |     |

  
                   (2) 

 
MSE can be referred to training, test or and 

validation data: a low training data MSE is 

symptom of a good fitting (even over-fitting), 

while a low test and validation MSE (calculated 

on data which has not been used in the training 

phase) indicates a good generalization. In both the 

considered cases, 70% of data has been used for 

training, leaving the remaining 30% for test and 

validation. 

4.1  Direct ANN – simulation 

problem 

The direct ANN is trained to solve the simulation 

problem, so the input parameters of the network 

are the same as for the simulator. On the basis of 

physical considerations, propeller fault 

coefficients K_Kt and K_Kq have been merged 

into one factor called F_prop, with range [0 ; 1]. 

In addition, only a subset of the output variables selected by the previous analysis has been considered: 

redundant variables have been eliminated. Finally, each variable has been normalized to [0 ; 1] according to: 

 

      
      

         
                    (3) 

 
Table 4: I/O variables for the direct ANN 
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Table 5: I/O variables for the inverse ANN 
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Fig. 5: Neuron model structure 

 

 

 
Fig. 6: 3 layers ANN structure 
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The network output can be easily un-normalized by the inverted equation: 

 
                              (4) 
 
The input/output variables are summarized in Table 4. The variable n_Prop is considered only for the maximum 

telegraph lever position. The ANN performance on validation data is shown in Fig. 7, in terms of MSE. The best 

performance is obtained at partial load (telegraph values 4 and 8), while at higher loads MSE increases: this 

effect is due to the strong non-linear effects introduced by the control system. 

4.2 Inverse ANN – diagnostic problem 

The inverse ANN is designed to compute the diagnostic parameters from a set of measured state parameters. A 

first approach is to simply invert direct ANN’s input and output variables (except from the external temperature, 

which is measurable and does not provide information on the health status and is an input variable). However, 

there are some redundancies in diagnostic parameters definition: there are more than one parameter operating on 

the shaft line components. In order to overcome  problems in training algorithm convergence, a more ‘general’ 

transmission fault coefficient has been defined. In particular: 

 

      
                   

     
           (5) 

 
In Eq. (5), i is the gear ratio. In addition, the coefficient K_dpout has been found not significant, so this variable 

has been neglected. 

 

The considered input/output variables are reported in Table 5. 

 

The ANN performance on validation data is shown in Fig. 7, in terms of MSE. Note that the diagnostic networks 

perform better than the direct ones. 

 
Fig. 7: Comparison between Direct/simulation and Inverse/diagnostic ANN performances (MSE) on validation 

data (logarithmic scale) 

5. Applications  

5.1 Propulsion system simulation using direct ANN 

The direct ANN is an effective simulation tool when a low computational effort is needed, and transient 

conditions are overlooked: in fact, the direct network is trained on a set of points corresponding to different 
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stationary working points of the plant, so it is designed to provide the steady state performance data 

corresponding to given input conditions. If transient data are required, for instance during engine acceleration, 

stopping and speed changes maneuvers,  the use of the simulator is preferable but it requires a computational 

time of  about 80 seconds on a standard laptop. The neural network is able to provide a simulation of a 

stationary condition in about 0.01 to 0.02 seconds on the same PC. A comparison between network and 

simulator results is presented for the following cases of component failure combinations: 

 

Case 1: compressor degradation and pitch error on starboard propeller; 

Case 2: hull and propeller degradation (for example due to fouling); 

Case 3: partial degradation of GT  main components (air filter, compressor, turbines). 

 

The fault coefficient values relative to the different cases are summarized in Table 6. All results are presented in 

in Fig 8 in terms of percentage errors, and are referred to telegraph lever in position 8: notice that the accuracy 

obtained with the ANN based simulation is very high with respect to the values from the numerical simulator. 

Table 6: Fault coefficients values in considered cases 

 Case 1 Case 2 Case 3 

T_C 25 25 25 

K_pin 1 1 0.98 

K_Cm 0.95 1 0.97 

K_Thp 1 1 0.98 

K_Tlp 1 1 0.98 

K_dpout 1.00E-6 1.00E-6 1.00E-6 

K_etam 1 1 1 

K_FrShPort 1 1 1 

K_FrShStbd 1 1 1 

F_prop 1 0.6 1.00E-6 

K_PortErr 1 0 0 

K_StbdErr 0 0 0 

K_HullRes 2.00E-4 3.00E-4 2.00E-4 

 

 

Fig.  8: Percentage errors (in absolute value) between SIMULINK simulation model and ANN outputs 

(logarithmic scale) 

10
-3

10
-2

10
-1

10
0

        p_1

        p_2

       T_2r

       n_gg

        M_f

        p_4

        T_5

        p_6

        T_6

        M_1

       Q_GT

 Q_PropPort

 Q_PropStbd

TH_PropPort

TH_PropStbd

     V_ship

% err.

 

 

Case 1

Case 2

Case 3



U. Campora, M. Capelli, C. Cravero, R. Zaccone/Journal of Naval Architecture and Marine Engineering, 12(2015) 1-14 

Metamodels of a gas turbine powered marine propulsion system for simulation and diagnostic purposes 11 

5.2 Propulsion system diagnostic using inverse ANN 

Three applications for diagnostic purposes of the inverse network (with telegraph position fixed to 8) are 

presented. The same three faulty conditions considered in the case of direct ANN have been simulated, and a 

random noise has been added to the simulation outputs in order to check for the network robustness. In order to 

handle uncertainty in measured date, the approach suggested in Verbist et. al, (2011) has been used: the 

predicted coefficients have been evaluated as the arithmetic mean of 50 predictions based on error affected 

measures. 

  
For each case a comparison between the measuring error-free output and the results obtained by introducing a 

population of measures affected by a random error is provided. The results obtained using an averaged value of 

the measures (affected by the same random error) over 50 samples have also been computed. The results are 

summarized in Figs. 9, 10, 11 in terms of percentage errors (except for the propeller pitch actuator error, where 

the absolute error is considered). The error-free prediction is accurate, as expected form the accuracy of the 

diagnostic ANN (Fig.  8). When the measuring errors are taken into account the accuracy is reduced and the use 

of the averaged value is preferred. The diagnostic network handles error affected measures with sufficient 

precision: in all the three cases the prediction on a single set of measures can be sufficient to make a plausible 

diagnosis. However, the evaluation of the fault coefficients is much more precise if the averaged value is 

considered (for instance, in case 2 the error on K_HullRes is reduced from about 30% to 6%). In some cases the 

error seems to increase using the averaged values (for instance in case 3 for K_Cm coefficient); this is due to the 

fact that a random error has been introduced into measures. If the MSE of all the predictions is computed (Fig. 

12) a significantly better performance using averaged measured data is highlighted in two out of the three 

considered cases. 

 

Fig. 9: Fault coefficients prediction errors using error – free input data (logarithmic scale) 
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Fig. 10: Fault coefficient prediction errors using Gaussian error affected input data (logarithmic scale) 

 

 

Fig. 11: Fault coefficient prediction errors using average value of 50 Gaussian error affected predictions 

(logarithmic scale) 
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Fig. 12: ANN Performance (MSE) comparison in presence of measurement errors (logarithmic scale) 

 

6. Conclusions  

Artificial neural networks have been used for either simulation or diagnostic purposes. Starting from a DoE 

analysis of a marine gas turbine powered propulsion plant simulation model, the most significant variables of 

the problem have been selected. A simulation ANN has then been developed: the obtained network is able to 

provide information about stationary working points of the considered plant in terms of physical and 

performance parameters, corresponding to given fault conditions, with very short run times with respect to the 

numerical simulator. On the other hand the developed ANN is not able to simulate transient operating 

conditions, so it is not suitable for dynamic simulations (speed change, acceleration, etc.). The direct ANN has 

been verified to be sufficiently precise in reproducing the simulator’s behavior, in terms of MSE. A diagnostic 

ANN has been also developed, in order to get information on the fault conditions of the system through a set of 

diagnostic variables (fault coefficients), which are computed from a given set of measurable state parameters. 

The diagnostic network performance has been evaluated through MSE calculation. In addition, three sample 

fault cases have been simulated in order to test the diagnostic capability of the ANN when the effects of 

measurement errors are introduced. The diagnostic ANN has shown good diagnostic properties in case of noise-

free input data, and a sufficient robustness against noise. Errors in fault coefficients prediction can be 

significantly reduced with the averaging of several predicted values from a set of error-affected computations. 

The presented approach is currently under development and research is oriented mainly to improve the 

diagnostic performances.  

 

References 

Altosole, M., Benvenuto, G., Campora, U., Figari, M. (2009): Real-Time Simulation of a COGAG Naval Ship 

Propulsion System, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for 

the Maritime Environment,Vol. 223, No. 1, pp. 47-62. http://dx.doi.org/10.1243/14750902JEME121 

Altosole M., Benvenuto G., Campora U. (2010): Numerical Modeling of the Engines Governors of a CODLAG 

Propulsion Plant, 20th BLACK-SEA International Congress, Varna, Bulgaria, 7-9 October. 

Altosole, M., Campora, U., Figari, M.. Martelli, M. (2014): Performance Decay Analysis of a Marine Gas 

Turbine Propulsion System, Journal of Ship Research, Vol. 58, No 3, pp.1-13. 

http://dx.doi.org/10.5957/JOSR.58.3.130037 

Case 1 Case 2 Case 3
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 

 

error-free meas.

random error meas.

avg. on 50 meas.

http://dx.doi.org/10.1243/14750902JEME121
http://dx.doi.org/10.5957/JOSR.58.3.130037


U. Campora, M. Capelli, C. Cravero, R. Zaccone/Journal of Naval Architecture and Marine Engineering, 12(2015) 1-14 

Metamodels of a gas turbine powered marine propulsion system for simulation and diagnostic purposes 14 

Benvenuto, G., Campora, U., Carrera, G., Figari, M. (2000): Simulation of Ship Propulsion Plant Dynamics in 

Rough Sea, 8
th

 International Conference on Marine Engineering Systems (ICMES/SNAME 2000), New York, 

USA, May 22-23. 

Benvenuto, G., Campora, U. (2005): A Gas Turbine Modular Model for Ship Propulsion Studies, HSMV, 7th 

Symposium on High Speed Marine Vehicles, Naples, Italy, 21 – 23 September. 

Benvenuto G., Campora U. (2008): Simulation of a Governed Marine Gas Turbine in Faulty Conditions, HSMV 

2008, 8th High Speed Marine Vehicles Conference, Naples, Italy, 22-23 May. 

Campora, U., Figari, M. (2003): Numerical Simulation of Ship Propulsion Transients and Full Scale Validation, 

Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime 

Environment, Vol 217, No. 1, pp.41-52. http://dx.doi.org/10.1243/147509003321623130 

Campora, U., Carretta, M., Cravero, C. (2011): Simulation of a Gas Turbine Engine with Performance 

Degradation Modeling, IMECE 2011, Proceeding of the ASME 2011 International Mechanical Engineering 

Congress and Exposition, Denver, Colorado, US, November 11-17. http://dx.doi.org/10.1115/IMECE2011-

62532 

Campora, U., Carretta, M., Cravero, C. (2013): Performance Decay Simulation of a Gas Turbine for Helicopter 

propulsion, Transaction on Control Mechanical Systems, Vol. 2, pp. 105-114. 

Capelli, M. (2013): Un approccio per il monitoraggio e la diagnostica di impianti di propulsione navale basato 

su simulazione e metamodelli, Marine Engineer and Naval Architect Graduate Thesis, Genoa University, 

Engineering Faculty, Dipartimento di Ingegneria Navale, Elettrica, Elettronica e delle Telecomunicazioni  

(DITEN), Italy, March 16. in Italian.  

Giunta, A., Wojktkiewicz Jr., S. F., Eldred, M. S. (2003): Overview of Modern Design of Experiment Methods 

for Computational Simulations, AIAA 2003 – 0649. http://dx.doi.org/10.2514/6.2003-649 

Cohen, H., Rogers, G. F. C., and Saravanamuttoo, H. I. H. (1987): Gas Turbine Theory, (Third Edition), 

Longman Scientific and Technical, Harlow, Essex, England. 

Cravero, C., Macelloni, P., Briasco, G. (2012) Three-Dimensional Design Optimization of Multi Stage Axial 

Flow Turbines Using a RSM Based Approach, ASME paper GT2012-68040, ASME Turbo Expo, Copenhagen 

(DK), June 11-5. 

Cravero, C. (2013): Turbomachinery Design Optimization Based on Metamodels, 4
th

 Inverse Problems Design 

and Optimization Symposium IPDO-2013, Albi (FR) June 26-28. 

Palmé, T., Breuhaus, P., Assadi, M., Klein, A., Kim, M. (2011): New Alstom Monitoring Tools Leveraging 

Artificial Neural Network Technologies, ASME paper GT2011 – 45990. 

Palmé, T., Breuhaus, P., Assadi, M., Klein, A., Kim, M. (2011): Early Warning of Gas Turbine Failure by 

Nonlinear Feature Extraction Using an Auto-Associative Neural Network Approach, ASME paper GT2011-

45991. 

NATO RTO, (2007): Performance Prediction and Simulation of Gas Turbine Engine Operation for Aircraft, 

Marine,Vehicular, and Power Generation, NATO RTO Technical Report TR-AVT-036. 

Rigoni, E., Lovison, A. (2007): Automatic Sizing of Neural Networks for Function Approximation, Inter. 

Conference of Systems, Man and Cybernetics, ISIC, IEEE, pp. 2005-2010, Montreal, Canada. 

http://dx.doi.org/10.1109/ICSMC.2007.4413933 

Tortarolo, F. (2000): Marine Gas Turbine Control System, Proceedings, The 33
rd

 WEGEMENT School Fast 

Ship Propulsion Plants, 22 – 26 May, Genoa, Italy. 

Verbist, M. L., Visser, W. P. J., van Buijtenen, J. P. (2011): Gas Path Analysis on KLM in-flight Engine Data, 

ASME paper GT2011-45625. http://dx.doi.org/10.1115/GT2011-45625 

http://dx.doi.org/10.1243/147509003321623130
http://dx.doi.org/10.1115/IMECE2011-62532
http://dx.doi.org/10.1115/IMECE2011-62532
http://dx.doi.org/10.2514/6.2003-649
http://dx.doi.org/10.1109/ICSMC.2007.4413933
http://dx.doi.org/10.1115/GT2011-45625

