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Abstract

Laminar free convection flow from an isothermal sphere immersed in a fluid with thermal conductivity
proportional to linear function of temperature has been studied. The governing boundary layer
equations are transformed into a non-dimensional form and the resulting nonlinear system of partial
differential equations is reduced to local non-similarity equations, which are solved numerically by
very efficient implicit finite difference method together with Keller box scheme. Numerical results are
presented by velocity and temperature distribution of the fluid as well as heat transfer characteristics,
namely the heat transfer rate and the skin-friction coefficients for a wide range of thermal
conductivity parameter y (= 0.0, 0.5, 1.0, 2.0, 3.0, 5.0) and the Prandtl number Pr (= 0.7, 1.0, 3.0,

5.0, 7.0).
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NOMENCLATURE:

a Radius of the sphere Greek symbols

C, Specific heat at constant pressure . .

C Skin-friction coefficient S Volumetric  coefficient of thermal
f Dimensionless stream function expansion

g Acceleration due to gravity y  Stream function

Gr  Grashof number 7,  Shearing stress

K(T)  Thermal conductivity of the fluid »  Conductivity-variation parameter
Nu Nusselt number 7 Constant

Pr Erandftll numbﬁr ; p  Density of the fluid

G ngztll rggiitsto? tshuer si)crfere v Reference kinematic viscosity

v . R R

T Temperature of the fluid in the p Viscosity of the fluid

@  Dimensionless temperature function

I
boundary layer Subscript

Temperature of the ambient fluid
Temperature at the surface w Wall conditions
u, v The dimensionless x and y- component
of the velocity

u,0 The dimensional X and y component

of the velocity . . .
xy  Axis in the direction along and normal ' Differentiation with respect to y
to the surface

f Film temperature of the fluid
0 Ambient temperature
Superscript

1. Introduction:

Natural convection flow of viscous incompressible fluid from an isothermal sphere represents an
important problem, which is related to numerous engineering applications. Conjugate effect heat and
mass transfer in natural convection flow from an isothermal sphere with chemical reaction has been
investigated by Molla et al. (2004). The natural convection flow from an isothermal horizontal circular
cylinder and sphere with temperature dependent viscosity has been investigated by Molla et al. (2005).
Nazar et al. (2002) have considered the problem of natural convection flow from lower stagnation point
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to upper stagnation point of a horizontal circular cylinder and an isothermal sphere immersed in a
micropolar fluid. Chiang et al. (1964) investigated the laminar free convection from a sphere by
considering prescribed surface temperature and surface heat flux. Natural convection from a sphere
with blowing and suction studied by Huang and Chen (1987). Analysis of mixed forced and free
convection about a sphere studied by Chen and Mucoglu (1977).

Sparrow and Lee (1976), looked at the problem of vertical stream over a heated horizontal circular
cylinder. They obtain a solution by expanding velocity and temperature profiles in powers of x, the co-
ordinate measuring distance from the lowest point on the cylinder. The exact solution is still out of
reach due to the non-linearity in the Navier-Stokes equations. It appears that Merkin (1977), was the
first who presented a complete solution of this problem using Blasius and Gortler series expansion
method along with an integral method and a finite-difference scheme. Also the problem of free
convection boundary layer flow on cylinder of elliptic cross-section was studied by Merkin (1977).
Ingham (1978) investigated the boundary layer flow on an isothermal horizontal cylinder. Hossain and
Alim (1997) have investigated natural convection-radiation interaction on boundary layer flow along a
vertical thin cylinder. Hossain et al. (1999), have studied radiation-conduction interaction on mixed
convection from a horizontal circular cylinder.

All the above studies were confined to the fluid with constant thermal conductivity. However, it is
known that this physical property may change significantly with temperature. To predict accurately the
flow behavior, it is necessary to take into account this variation of thermal conductivity. A semi-
empirical formula for the variation of the thermal conductivity with temperature was used by
Arunachalam and Rajappa (1978). On assuming that the viscosity and thermal conductivity of the fluid
are linear functions of temperature, two semi-empirical formulae were proposed by Charraudeau
(1975). Following him Hossain et al. (2000) investigated the natural convection flow past a permeable
wedge, a flat plate and a wavy surface for the fluid having temperature dependent viscosity and thermal
conductivity.

In the present study it is proposed to investigate the natural convection flow of a viscous
incompressible fluid having thermal conductivity 4(7) depending on temperature from an isothermal
sphere. The surface temperature 7, of the sphere is higher than that of the ambient fluid temperature
T.. In formulating the equations governing the flow the conductivity of the fluid has been assumed to
be proportional to a linear function of temperature, a semi-empirical formula for the conductivity (7),
as Charrudeau (1975). The governing partial differential equations are reduced to locally non-similar
partial differential forms by adopting appropriate transformations. The transformed boundary layer
equations are solved numerically using very efficient finite-difference scheme known as Keller box
technique (1978). Effect of conductivity-variation parameter y , on the velocity and temperature
distribution of the fluid as well as on the rate of heat transfer in terms of the Nusselt number and the
skin-friction are shown graphically for fluids having Prandtl number Pr ranging from 0.7 to 7.0.

2. Formulation of problem

A steady two-dimensional laminar free convective flow from a uniformly heated sphere of radius a,
which is immersed in a viscous and incompressible fluid having temperature dependent thermal
conductivity, is considered. It is assumed that the surface temperature of the cylinder is T, where
T,>T.. Here T, is the ambient temperature of the fluid, the configuration considered is as shown in
Figure 1.

The equations governing the flow are
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Figure 1: Physical model and coordinate system.
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The boundary conditions of equation (1) to (3) are

u=0v=0, T=T,

u—>0, T—>T,6 a J—> o

where (ﬁf)) are velocity components along the (i,)?)axes, g is the acceleration due to gravity, p is

the density, « is the viscosity of the fluid, £ is the coefficient of thermal expansion, C, is the specific
heat at constant pressure, & (7) is the thermal conductivity of the fluid depending on the fluid

temperature 7. Here r(%) = asin (¥/a)
Here we will consider the form of the temperature dependent thermal conductivity which is proposed
by Charraudeau (1975), as follows

(4a)
(4b)

at y=0

k=k L+ (-1, (52)
where £, is the thermal conductivity of the ambient fluid and 5 is defined as follows
*DLQQ (b)
kA / orT ) s

We now introduce the following non-dimensional variables:

X = i, y = GrlM(lj, u=PL%q 12,

a a 7
3
X T-T oplr -1
vzﬁGr_le, f=—> Gr= ( W 5 °°)a (6)
H TW_TOO v

where v (=ulp) is the reference kinematic viscosity and Gr is the Grashof number and & is the non-
dimensional temperature.

Substituting variables (6) into equations (1)-(3) leads to the following non-dimensional equations

ou v _ W
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With the boundary conditions (4) become

u=v=0, &d=1lat x=0, forany y (10a)
u=v=0, =1 at y=0, x>0 (10b)
u—>0, 6 >0 a y—> o, x>0 (10c)

In equation (9) the conductivity-variation parameter yand Prandtl number Pr are defined as

ucC
y = i(%j (TW - TOO) and Pr =—2 (11)
k 7 or ) s k.,
To solve equations (7)-(9), subject to the boundary conditions (10), we assume the following functions
v =xf(x,y) 0=0(xy) (12)
where wis the non-dimensional stream function defined in the usual way as
u=ltoy o _ 1oy (13)
r Oy r 0x

Substituting (12) into equations (8)-(9) we get, after some algebra, the following transformed equations

@3f+(1+ x cosxj ﬁ_(%]2+m:x(%ﬁ_%ﬁj (14)

3 i 2

Ay sin x dy oy x dy Oxdy  Ox gy?
2 2
L(1+y9)g+iy(%] +(1+ £ x]f%:x(@%_%g] (15)
Pr dy Pr oy sin x Oy dy Ox Oy Ox
Along with boundary conditions
=% 0 p-1at x=0 ay (16a)
Oy
=Y _0, 6-1 a y-0 x>0 (16b)
Oy
Z‘—f—>0, g >0, a y—o> oo, x>0 (16¢)
y

Now we calculate the important quantities for the experimentalists are the shearing stress in terms of
the skin-friction coefficient and the rate heat transfer in terms of the Nusselt number, which can be
written, in non-dimensional form as

Gr 314,42 aGr ~114 17
c, =9 4 . Nu= g (17)
S uv v ke, -71,)"
where T, :,u[atfj .q, :—k(a{wj (18)
6y y=0 6y 7=0
Using the variables (6),(12) and the boundary condition (16b), get
2 .
¢, - 22/0) (19)
Oy
Ny = 26 (x,0) (20)
oy

3. Solution Methodology

In the present investigation we have integrated the equations (14) to (15) for all x by implicit finite
difference method.
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Implicit finite difference method (IFDM)

In the present analysis, we shall employ a very efficient solution method, known as implicit finite
difference method, which was first introduced by Keller (1978) and elaborately describe by Cebeci and
Bradshaw (1984). An elaborate discussion on the development of algorithm of implicit finite difference
method together with Keller-box elimination scheme is given below.

To apply the aforementioned method, we first convert the equations (14) and (15) into the following
system of first order equations with dependent variables, U(x, y), V(x, y) and p(x, y) as

Ay W, 2

R R (e (21b)
0x 0x
1 o1 06 of
?P4P+?P5P2+P1ﬁ7:x[l]§—ﬁg] (21c)
where
_ X _
P1—1-+ SinxCOSx, P, =1, 21d)
P3:SInTX, P4:l+7/0,P5:]/
And the boundary conditions (16) reduce to
f(x,0)=0, U(x,0)=0, 6(x,0)=1.0
U(x,©) >0, fO(x,0)—>0
(22)
We consider the net rectangle on the (x, y) plane and denoted by the net points
yO =01 yJ =yj,1 +hj |j:1121"'1<]
x°=0, x"=x""+k, ,n=12,---,N 23)

Here n and j are just sequence of numbers on the (x, y) plane, k, and #; be the variable mesh widths.

We approximate the quantities (f, U, ¥, 6) at the point (x", y;) of the net by (f,-" Uy Jwhich

J

we call net function. We also employed the notation ’J’ for the quantities midway between net points

and for any net function as

n— l n n-—. 1
L2 :E(x + X 1)! Yij-112 :E(yj+yj—l)
(24a)
n=1/ 1 n n- n n n—
e Y +m ), m (m," +m,, D)

(24b)

Now we write the difference equations that are to approximate equations (21a)-(21d) by considering
one mesh rectangle for the mid point (x", m;_,,,) to obtain

fr-rr . ur-u" 0 -0 .

AV R b S Ul A i S S A b S P

J J j (25)

Similarly equations (21c)-(21d) are approximated by centering about the mid points (x"*“2 Vi )
Centering the equations (21c) and (21d) about the point (x n-ilz y) without specifying y to obtain the
algebraic equations. The difference approximation to equations (21c)- (21d) become
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1 n n-1 n-1 -t U" —Un_l n-1 fn — fn_l
—(L = 2 2 _ 2 .
g )= {U )V )
(26)
1 n n=1y _ n-1 n-1 0" — 9”71 n-1 fn - fn71
E(M M )= 2|:U Z(T)*P Z(T)
(27)
Rearranging these equations and using equation (24), we can write
V) +a,(fV) —az(Uz)" + P,0" o

+a(vn—lfn _ann—l): R

1 r\n 1 7 n n— n nn— n— n n o n— n—
P—(P4p) -I——(P5p2) +al(fp) —a(U tor —U"0 l+f 1p - f"p l)=T !

r Pr (29)
Where
aozx 2, o,=P+a,, a,=P +a,

n (30a)
R = -1 a7y - ()7 (30b)
rr=vieprm-rut+prolt (30c)
" =M b a, l(ﬁ’ Y- (UH)HJ (30d)
n-1

M= [:—rP4p'+ Pl—rPSpZ + Plﬁy} (30€)

The corresponding boundary conditions (22) become
fo =0, U;=0 6y=1
Uj;=6;=0

(31)

If we assume fj”‘l, Uj'7‘1, Vj"‘l, 9/’7‘1 and p;?‘l to be known for 0 < j <J, equations (30) are a

system of 5J/+5 equations for the solutions of 5/+5 unknowns (fj",U.;.’ , V].” , 49]'.’ , p;?),j=0,1,2,...,J.

These nonlinear systems of algebraic equations are then linearized by Newton’s quasi-linearization
method.

i i ; (@) @ @ gl 0Oy .— i it
We define the iterations (fj UV, ,Gj \D; ), i=0,1,2,...,IMAX with initial values equal to
those at the previous t station (which is usually the best initial guess available). For higher iterates we
get

fj(i+1) — fj(i) + 6)(}_(1’ ) (32a)
Ul =yl +sul (32b)
v =y g syl (32¢)
0\ =0 + 50" (32d)
Pt = pll 4 gl (32¢)

We then insert the right hand side of the expressions (32) in place of fj, Uj., Vj., 9j and p; in

equations (26)-(30) dropping the terms that are quadratic in @ff(i), 5UJ(.i), 5Vj(i), 50;” and 5p(§").
This procedure yields the following linear system of algebraic equations:
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- e, - U,)= (),
h,
5U_/ _5Uj—1 2 (5V 5V ) (’”4),-71
h.
00, -0, , _7](51’_/ _51’/—1): (75) 4
(Sl)Wj +(S2)5V,>1 +(Ss)éfj +(S4)éfj4 +(Ss)§”j +(Se)5U
+(S7 )501‘ +(S8 )59j—1 =(ry);

(tl)ép] ( )épj a7t (ts)éfj +(t4)éf,>1 +(t5)5Uj +(t6)5Uj—1
(6o, + (e )0V o +(15)50, + (21000, = (1),

(n), =4 -1 +hU L,
(), =U"-U"+nU",,
(

(

j-1

”5),-71 = ej(i)l 9(1) +h, P§ )1/2
1), =R O =V )+ e (7)), -, (U?))
2); 12~ 4 1 e T 112
+ D3 (‘9)/ ‘up tag(V };_i/zf ('1-1/2_ fj'j/szzl/z)]

(ra)j =T']1-:1,2—[Pr‘1th1( 7 pgl)l)""P(p ), 1/2+a1(ﬁ9)§l)1/2

-1 6) -1 (1) n-1 (#) (i)

+a, (9';'71/2(];71/2 Ul; 20 11,2+p; 1/2f_;l71/2 j 1/2[7 ,l 2]
The coefficients of momentum equation are

_pt 1[ 0) ]
(Sl)j =n; +E a,f; _aof 12

—_pt 1[ (i) ]
(Sz)_/ =-n; "'E afh - f 12

_ 1[ YO Loyt ]
(53)_,- —E oy eV,

_ 1[ V(i) V’l*l ]
(54)_,- —E oV TV,

(SS)j = _azUj(‘i)
(‘Sﬁ)j = _azU_f'l—)1

(s;)=0
(sg) =0
The coefficients of energy equation are
P 1 1 n
(11) = +PI’ ()+ [Otf() aof—ll/z]
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P - P i l i n—
(tZ)j = _P_T,hjl +P_T‘p‘5_)l +§[“1Ff(—i - aoF;—ll/z] (35b)
1 [ (i) n-1 ]
(t3)j = E ap; +ayp; (35¢)
1 [ ) n-1 ]
t,), = 2 4P TP (35d)
1 (i) n-1
(tS)j = _an [‘9, - ‘9_,'71/2] (35€)
1 (i) n—1
(tﬁ)j = _an [gj—l - 9(/71/2] (35f)
(#;)=0 (359)
()=0 (35h)
l i n— 1 - i i -
(19),- = _an [Uj( : + Uj—lllz] +Epshjl(p§) - Pﬁ‘—)l) (351)
1 o) n-1 1 -1( @ ) .
(tlo)j :_EaO[Uj—l+Uj—1/2]+EP5hj P _pj—l) (35))

The boundary conditions (31) become
&, =0, U,=0, 86,=1 oU,=0, 660, =0 (36)

which just express the requirement for the boundary conditions to remain during the iteration process.
Now the system of nonlinear equations (33)-(35) together with the boundary conditions (36) can be
written in matrix/vector form where the coefficient matrix has a block tri-diagonal structure. Such a
system is solved using a block-matrix version of well known Thomas or tri-diagonal matrix algorithm.
The whole procedure, namely reduction to first order form followed by central difference
approximations, Newton's quasi-linearization method and the block Thomas algorithm, is well known
as the Keller-box method. To initiate the process at the leading edge x = 0.0 we first prescribed guess
profiles for the functions f and & and their derivatives from the exact solutions of the following
equations:

2" - f2+6=0 (37)

1 1
—[A+70)0"+—%0"*+270'=0
Pr( y0) it f
(38)

Satisfying the boundary conditions
/(0)=1"(0)=0,6(0)=1
f'(2)=6(=)=0

These solutions are then employed in the Keller-box scheme with second order accuracy to march step
by step along the boundary layer. For a given value of x, the iterative procedure is stopped when the
maximum change between successive iterates is less than 10~°. A uniform grid of 2001 points are used
in the x-direction with the step size Ax = 0.01 and another non-uniform grid in the y-direction has been

(39)
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incorporated, considering y;= sinh{(j-1)/a} where j = 1, 2, 3, ..., N with N = 301 and a = 100 to get
quick convergence and thus save computational time and memory space.

4. Results and Discussion:

In this paper we have investigated in the problem of laminar natural convection flow and heat transfer
from an isothermal sphere with temperature dependent thermal conductivity. Here we have considered
the thermal conductivity of the fluid is proportional to the linear function of temperature that means if
the temperature of the fluid increase then the conductivity of the fluid increases. The thermal
conductivity of air is 0.009246 W.m™*°K*, 0.013735 W.m™*.°K?, 0.03003 W.m™.°K™* and 0.05779
W.mt 2K at 100°K, 200°K, 400°K and 800°K temperature respectively. (See Cebeci and Bradshaw
(1984)).

Table 1. Compares the present numerical values of Nu for the values of Prandtl number Pr (= 0.7, 7.0)
without effect of conductivity variation parameter with those obtained by Nazar et al. (2002) and
Huang and Chen (1987).

xin Pr=0.7 Pr=7.0
degree Nazar et Huang Present Nazar et Huang Present
al. [5] and Chen  results al. [7] and Chen results

[7] [5]

0 0.4576 0.4574 0.4576 0.9595 0.9581 0.9582
10 0.4565 0.4563 0.4564 0.9572 0.9559 0.9558
20 0.4533 0.4532 0.4532 0.9506 0.9496 0.9492
30 0.4480 0.4480 0.4479 0.9397 0.9389 0.9383
40 0.4405 0.4407 0.4404 0.9239 0.9239 0.9231
50 0.4308 0.4312 0.4307 0.9045 0.9045 0.9034
60 0.4189 0.4194 0.4188 0.8801 0.8805 0.8791
70 0.4046 0.4053 0.4045 0.8510 0.8518 0.8501
80 0.3879 0.3886 0.3877 0.8168 0.8182 0.8161
90 0.3684 0.3694 0.3683 0.7774 0.7792 0.7768

Equations (14)-(15) subject to the boundary conditions (16) are solved numerically using a very
efficient implicit finite finite-difference together with Keller box, which is described in above section.
The numerical solutions start at the lower stagnation point of the sphere, x ~ 0, with initial profiles as
given by equations (37)-(38) along with the boundary conditions (39) and proceed round the sphere up
to the upper point, x ~ 772. Solutions are obtained for fluids having Prandtl number Pr (= 0.7, 1.0, 3.0,
5.0, 7.0) and for a wide range of values of the variable conductivity parameter » (= 0.0, 0.5, 1.0, 2.0,
3.0, 5.0.). Since the values of f " (x,0) and 6 "(x,0) are known from the solutions of the coupled
equations (14) and (15), numerical values of the shearing stress in terms the skin-friction coefficients C,
from (19) and the heat transfer rate in terms of Nusselt number Nu from (20) are calculated from lower
stagnation point to upper stagnation point of the circular cylinder. Numerical values of Crand Nu are
entered in Table 1 and depicted by figures 2 and 3. It should be noted that for constant thermal
conductivity we recover the problem that discussed by Nazar et al. (2002) in absence of micro polar
parameter and Huang and Chen (1987) in absence of suction and blowing.

The numerical values of the skin-friction coefficient C, and the local Nusselt number Nu, against the
curvature parameter x for different values of conductivity variation parameter y (= 0.0, 0.5, 1.0, 2.0,
5.0) while Pr = 0.7 (air at 20°C and 1 atm. pressure) are depicted in Fig. 2(a)-(b). With the increasing
values of the conductivity-variation parametery, it can be observed that the values of skin-friction
coefficient C; increases and the Nusselt number Nu decreases. For increasing values of y, the
temperature of the fluid within the boundary layer increases and hence the viscosity of the air increases
and the corresponding skin-friction coefficient C,increases. Since the temperature of the fluid increases
and hence the corresponding temperature difference between the surface and the fluid enhances. Due to
higher temperature of the fluid, the rate of heat transfer that means the Nusselt number Nu decreases. It
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can also be calculated at x = /4, the values of skin-friction coefficient C, increases by 25.32% and the
Nusselt number Nu decrease by 59.20% respectively for increasing values of  from 0.0 to 5.0.

The effect of Prandtl number Pr (= 0.7, 1.0, 3.0, 5.0, 7.0) on the skin-friction coefficient C, and the
Nusselt number Nu against the curvature parameter x<[0, #/2] for y = 2.0 is shown in Fig. 3(a)-(b). It
is found that values of the skin-friction coefficient C, decreases and the Nusselt number Nu increases
for increasing values of the Prandtl number Pr. For example, at x = 7/4, the values of the skin-friction
C, decreases by 31.88% and the Nusselt number increases by 120.17% while Pr increasing from 0.7 to
7.0. According to definition of Pr, for increasing values of Pr the thermal conductivity of the fluid
decreases and the viscosity of the fluid increases. Then in any one point on the surface, the shearing
stress that means the skin-friction coefficient is larger and the heat is not able to conduct easily into the
fluid as Pr increases and therefore the thermal boundary layer becomes thinner, hence the
corresponding temperature gradients are larger and the surface rate of heat transfer increases.

Attention is now given to the effect of pertinent parameter on the dimensionless velocity /7 (x, y) = u/x
and the dimensionless temperature distribution & (x,y) in the flow field are shown graphically in Fig. 4.
Fig. 4(a)-(b) illustrate the velocity and temperature distribution against the variable y for different
values of the conductivity-variation parameter y (= 0.0, 0.5, 1.0, 2.0, 3.0, 5.0) at x = #/3 while Pr = 0.7.
It can be observed that the velocity and temperature distribution increases with the increasing values of
the conductivity-variation parameter, . It should be noted that at each value of the conductivity-
variation-parameter 7, the velocity profile has a local maximum value within the boundary layer.
The maximum values of the velocity are 0.32806, 0.35586, at y = 1.1144 for y = 0.0, 0.5 respectively
and fory = 1.0, 2.0 the maximum values of the velocity are 0.37855, 0.41383 respectively at y = 1.1752.
And the corresponding temperature at that location are 0.53497, 0.59759, 0.62240, 0.68437, 0.70813
and 0.75963 for = 0.0, 0.5, 1.0, 2.0, 3.0, 5.0 respectively. Here it can be seen that for large values of y
the location of the maximum values of the velocity are shifted. The maximum velocity and temperature
increase by 26.14% and 41.99% respectively as y increases from 0.0 to 5.0. It also be concluded that
the velocity boundary layer and the thermal boundary layer thickness increase for large values of y.

5. Conclusions:

The effect of temperature-dependent thermal conductivity on the natural convection boundary layer
flow from an isothermal sphere has been investigated theoretically. Numerical solutions of the
equations governing the flow are obtained by using the very efficient implicit finite difference method
together with Keller box scheme. From the present investigation the following conclusions may be
drawn:

e Increasing the value of the thermal conductivity- variation parameter y leads to increase the
local skin-friction coefficient Crand a decrease the local Nusselt number Nu.

e The velocity distribution and the temperature distribution increase for increasing value of
thermal conductivity- variation parametery.

e It is seen that the skin-friction coefficient C; decrease as well as the rate of heat transfer
increase with the increasing values of Prandtl number Pr.

e The results have demonstrated that the assumption of constant fluid properties may introduce
severe errors in the prediction of the surface shearing stress and the rate of heat transfer.
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Figure 2: (a) Skin-friction coefficient (b) Rate of heat transfer for different values of y while Pr=0.7
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