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Abstract:  
The points of separation of magneto-hydrodynamic mixed convection boundary layer flow along a 
vertical plate have been investigated. The free stream velocity is considered decreasing exponentially 
in the stream wise direction. The governing boundary layer equations are transformed into a non-
dimensional form and the resulting nonlinear system of partial differential equations are reduced to 
local non-similar boundary layer equations, which are solved numerically by implicit finite difference 
method known as Keller box scheme. Here we have focused our attention to find the effects of suction, 
magnetic field and other relevant physical parameters on the position of boundary layer separation. 
The numerical results are expressed in terms of local shear stress showing the effects of suction, 
buoyancy, Prandlt number and magnetic field on the shear stress as well as on the points of 
separation. 

Keywords: Separation points, magneto-hydrodynamic, mixed convection, boundary layer, suction, finite 
difference method, Keller box scheme. 

 

NOMENCLATURE 
 

Greek symbols 
B0 magnetic field strength  α suction parameter 
g acceleration due to gravity β volumetric coefficient of thermal expansion 
k coefficient of thermal diffusivity γ0 transpiration (suction) velocity 
M Magneto-hydrodynamic parameter η similarity variable 
Pr Prandtl number θ dimensionless temperature function 
Re Reynolds number ν coefficient of viscosity 
T temperature of the fluid ξ a scaled stream wise coordinate 
Tw temperature of the heated surface ρ density of the fluid 
T∞ temperature of the ambient fluid σ electric conductivity  
u,v velocity along the x & y direction ψ stream function 
x stream wise coordinate measuring distance 

along the surface 
  

y stream wise coordinate measuring distance 
normal to the surface 

  

 

1. Introduction 

The phenomenon of separation is one of the most interesting features of the motion of an incompressible fluid 
past a solid body at high Reynolds number. In the presence of an adverse pressure gradient, the thin boundary 
layer grows in thickness and eventually breaks away from the solid surface. The point, at which separation of 
boundary layer occurs, for steady flow over a stationary surface, is generally taken as coinciding with or very 
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near the point at which the skin friction vanishes. The determination of the separation point in boundary layer 
flow has been the subject of many investigations over the past few decades. The usual procedure is to apply 
numerical methods to the governing partial differential equation, compute the full-field solution, and thereby 
obtain the stream wise station at which the wall shear stress becomes zero. Brown & Stewartson (1969) and 
Laura et al. (1990) investigated the points of separation in their works. Curle (1981) investigated the 
development of a steady two-dimensional incompressible laminar boundary layer when the external flow 

velocity is given by 0 1( )eu u eξε= − , 0 <ε <1. When ε is very small and ξ is not too large then εeξ is also 
small and ue is approximately constant and hence the flow is just a perturbation of the Blasius flow. However, as 
ξ increases the effect of ξεe is felt more and more. As ξ approaches log(ε 

-1), ue falls rapidly causing the 
boundary layer to separate. This type of problem was analyzed by Curle (1981) and he used the equation 

( ) )1(22 ξξ
ξηηηηξηηηηη εεξξ eeFFFFFFF −=−++ . This is obtained from two-dimensional boundary 

layer equation after introducing the variable 
1 / 2

0

2
u y

x
η

ν
⎡ ⎤= ⎢ ⎥⎣ ⎦

 and the stream function 

1/2
0(2 ) ( , )u x Fψ ν ξ η=   

 
Curle solved the above equation by writing 2 2

0 1 1( , ) ( ) ( , ) ( , )F F e F e Fξ ξξ η η ε ξ η ε ξ η= + + +L  
where F0(η) satisfies the Blasius equation. For small ξ, F1(ξ,η) is further expanded as  

L+++= )()()(),( 1
2

101 ηξηξηηξ fffF  
 

and the results were used to calculate the skin friction and displacement thickness. For large ξ inner and outer 
asymptotic expansions were determined and matched. The skin friction is expressed in a power series as: 

2 / 3 2 / 30.1110187 0.00983X eξεξ ξ −= = + +L  
 
Chiam (1998) numerically solved quite similar type of problem for no suction and for uniform suction at the 
plate.  
 
A study of the flow of electrically conducting fluid in presence of magnetic field is also important from the 
technical point of view and such types of problems have received much attention by many researchers. The 
specific problem selected for study is the flow and heat transfer in an electrically conducting fluid adjacent to 
the surface. The interaction of the magnetic field and the moving electric charge carried by the flowing fluid 
induces a force, which tends to oppose the fluid motion. And near the leading edge the velocity is very small so 
that the magnetic force, which is proportional to the magnitude of the longitudinal velocity and acts in the 
opposite direction, is also very small. Consequently, the influence of the magnetic field on the boundary layer is 
exerted only through induced forces within the boundary layer itself, with no additional effects arising from the 
free stream pressure gradient. Magneto-hydrodynamic was originally applied to astrophysical and geophysical 
problems, where it is still very important, but more recently to the problem of fusion power, where the 
application is the creation and containment of hot plasmas by electromagnetic forces, since material walls would 
be destroyed. Astrophysical problems include solar structure, especially in the outer layers, the solar wind 
bathing the earth and other planets, and interstellar magnetic fields. The primary geophysical problem is 
planetary magnetism, produced by currents deep in the planet, a problem that has not been solved to any degree 
of satisfaction.  
 
The hydrodynamic behavior of boundary layers along a flat plate in the presence of a constant transverse 
magnetic field was first analyzed by Rossow (1958), who assumed that magnetic Reynolds number was so small 
that the induced magnetic field could be ignored. MHD free convection flow of visco-elastic fluid past an 
infinite porous plate was investigated by Chowdhury and Islam (2000). Raptis and Kafoussias (1982) 
investigated the problem of magneto-hydrodynamic free convection flow and mass transfer through a porous 
medium bounded by an infinite vertical porous plate with constant heat flux. Moreover, Hossain et al. (1997) 
discussed both forced and free convection boundary layer flow of an electrically conducting fluid in presence of 
magnetic field. The magneto-hydrodynamic boundary layer flow and heat transfer on a continuous moving 
wavy surface was investigated by Hossain & Pop (1996). 
 
The present work considered the magneto-hydrodynamic boundary layer flow along a vertical plate, with 
exponentially decreasing free stream velocity and has solved the problem numerically using the implicit finite 
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difference method together with the Keller-Box scheme (1978). This method is described in details by Cebeci & 
Bradshaw (1984) and used by Hossain et al. (1997, 1998 and 1999). The purpose of this paper is to study the 
MHD boundary layer flow and to show the effect of MHD on the points of separation.  The numerical results 
are expressed in terms of local shear stress showing the effects of suction, buoyancy, Prandlt number and 
magnetic field on the shear stress as well as on the points of separation and some results are compared with 
those of Chiam (1998). 

2. Formulation of the problem 

A steady two-dimensional incompressible boundary layer flow along a vertical plate with external velocity is 
considered.  It is assumed that the surface temperature of the plate is Tw and the temperature of the ambient fluid 
is T∞, where Tw >T∞. The physical coordinates (x, y) are chosen such that x is measured from the leading edge in 
the stream wise direction and y is measured normal to the surface of the plate. The flow configuration and the 
coordinate system are shown in Fig.1.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
The governing equations for mass continuity, momentum and energy take the following forms:  
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where, u and v are velocity components in the x and y directions respectively,ν is the coefficient of viscosity, ρ 
is the density of ambient fluid, g is the acceleration due to gravity, σ is the electric conductivity, B0 is the 
magnetic field strength, β is the volumetric coefficient of thermal expansion, κ is the coefficient of thermal 
conductivity and T is the temperature of the fluid. The boundary conditions for the present problem are: 

00 :  0, ,  
: ( ) ,   

w

e

y u v v T T
y u u x T T∞

= = = =
→∞ → →   and  0 (1 )eu u eξε= − , 0 < ε < 1 (4) 

 

Fig. 1: The co-ordinate system and the physical model 
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In equation (4), v0 represents the suction velocity of fluid through the surface of the plate. Here, for suction or 
withdrawal of fluid the transpiration velocity v0 is negative whereas for blowing or injection of fluid v0 > 0.  
Near the leading edge, the boundary layer is very much like that of the free convection boundary layer in the 
absence of suction. Therefore the following group of transformations may be introduced:  

1/ 2
1/ 2 Re ,e
x

u y x
y

x x L
η ξ

ν
= = =⎛ ⎞

⎜ ⎟
⎝ ⎠

 (5) 

( )1 / 2( , ) ( , )ex y u x fψ ν ξ η=  (6) 

 ( , )=
w

T(x, y) - T
T T

θ ξ η ∞

∞−
 (7) 

where the stream function ψ(x, y) satisfies the mass conservation equation with 
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Equations (2) and (3) can be transformed into  
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where m is a dimensionless pressure gradient parameter and M is magnetic parameter defined respectively by 

e

e

dux
m

u dx
=   and   0

e

B LM
u

νσ
ρ

=  (11) 

And Pr = ν/κ is the Prandtl number. Equations (9)-(11) are the local non-similarity equations governing the flow 
under consideration. The boundary condition (4) takes the form 

0, 1 at 0
 1,  0 as
f
f
η

η

θ η

θ η

= = =

= = →∞
 (12) 

which leads to 
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where the suction parameter      0

0
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L
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u
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(13) 

Chiam (1998) assumed   

1
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and obtained the solution numerically.  

The solutions of Equations (9)-(11) enable us to compute the local shear stress ( , 0) fηη ξ  and the local rate of 

heat transfer ( ,0)ηθ ξ from the wall values of  

( , )fηη ξ η  and ( , )ηθ ξ η  (15) 

In this paper only the effect of Γ on shear stress as well as separation point is considered. 
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3. Method of solution 

The numerical method used here is finite difference method known as Keller box Scheme (1978) which has 
been described in details by Cebeci and Bradshow (1984). The method has been used successfully by Hossain & 
Alim (1997) and Hossain et al. (1998, 1999) and it has also been used by many authors in a wide variety of 
boundary layer problems. To employ the finite difference method, the system of partial differential equations 
(9)-(10) are first converted into a system of first order differential equations. The discretization of momentum 
and energy equations carried out with respect to non-dimensional coordinates ξ and η to express the equations 
in finite difference form by approximating the functions and their derivatives in terms of the central differences 
in both coordinate directions. Denoting the mesh points in the ξ,η-plane by ξi and ηj  where i = 1, 2, . . . , M and  
j = 1, 2, . . . , N, central difference approximations are made, such that those equations involving ξ  explicitly are 

centered at (ξi-1/2 , ηj-1/2) and the remainder at (ξi , ηj-1/2), where 
1/ 2 1

1 ( )
2j j jη η η− −= +  etc. The above central 

difference approximations reduces the system of first order differential equations to a set of non-linear 
difference equations for the unknown at ξi in terms of their values at ξi-1. The resulting set of nonlinear 
difference equations are solved by using the Newton’s quasi-linearization method. The Jacobian matrix has a 
block-tridiagonal structure and the difference equations are solved using a block-matrix version of the Thomas 
algorithm; the details of the computational procedure have been discussed further in the book by Cebecci and 
Bradshow  (1984). 

4. Results and Discussion  

Equations (9 - 11) subject to the boundary conditions (12) are solved numerically using implicit finite difference 
method of Keller (1978), which is described by Cebeci and Bradshow (1984). The numerical results of fηη(ξ,η) 
for η = 0 denoted by fηη(ξ,0) are obtained for representative values of the suction parameter 

0 02 /v L uα ν= −  between 0.0 and 1.0 for different values of Prandtl number Pr, the buoyancy parameter 

Gr/Re2, magneto-hydrodynamic parameter M and for several values of ε. Fig.2 shows the results of separation 
points for Pr=1.0, M = 0.0, ε =0.1 and Gr/Re2 = 0.0 considering the effect of Γ (Eqn 14) and compares with the 
results of Chiam (1998). The effect of Γ is clearly demonstrated in the figure. At α = 0.0 the effect of Γ is 
insignificant thus the present solution gives the identical result as Chiam (1998). As the value of α increases, the 
effect of Γ  becomes prominent as shown in the figure. It is well known that suction tends to delay separation. 
This can readily be seen from Table 1 where ξs is shown for three representative values of the suction parameter 
α for each ε. The percentage shift of ξs to higher values is more pronounced for larger values of ε. 
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Fig. 2:  Plot of the wall values of  fηη(ξ ,η) Versus ξ  for 
different values of the  suction parameter α  when 
Pr=1.0, Gr/Re2=0.0,  M=0.0 and ε =0.1 

Fig. 3:  Plot of the wall values of fηη(ξ,,η) Versus 
ξ  for different  values of the   suction parameter α  
when Pr= 1.0, Gr/Re2 =0.0, M=0.5,  and ε =0.1 

 

Figs. 3-5 show plots of the wall values of fηη(ξ,η) against ξ, the stream wise coordinate. The behavior of the 
curves can be understood on the basis of the interplay of two effects: the adverse pressure gradient tending to 
bring about separation and suction tending to delay it.  Fig. 3 show the effect of the suction parameter α for 
Pr=1.0, M=0.5, Gr/Re2 =0.0 when ε = 0.1. The effect of α  is also shown for ε  = 0.05 and 0.01 for the same 
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parameter in Fig. 4 and Fig. 5 respectively.  For all values of ε, the distance of separation point from the leading 
edge increases with increase in α. On the other hand, the distance of separation point from leading edge 
increases when the value of ε decrease for a particular value of α. Figs. 6-7 describe the effect of buoyancy 
parameter Gr/Re2 on skin friction and on the points of separation. We observe that the points of separation occur 
for Gr/Re2 less than 0.5 and at above this value there is no point of separation. Fig. 8 shows the effect of Prandtl 
number Pr on fηη(ξ,η) as well as that on the points of separation for the suction parameter α = 0.2 when Gr/Re2 
= 0.0, M = 0.5, and ε = 0.1. It is seen that, the lengths of separation points from the leading edge decrease when 
the Prandalt number increases. 
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Fig. 4:  Plot of the wall values of fηη(ξ ,η) Versus ξ  for  
different  values of the suction parameter α when  ε 
=0.05, Pr= 1.0, M=0.5 and Gr/Re2 =0.0 

Fig. 5:  Plot of the wall values of  fηη(ξ ,η) Versus 
ξ for different values of the suction parameter α  
when  ε =0.01, M=0.5, Pr= 1.0, Gr/Re2 =0.0 
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Fig. 6:  Plot of the wall values of  fηη(ξ ,η) Versus ξ for 
different  values  of the   buoyancy parameter Gr/Re2  
when ε =0.1, M=0.5  and α=0.2 

Fig. 7:  Plot of the wall values of fηη(ξ,,η) Versus 
ξ  for different  values of the   buoyancy parameter 
Gr/Re2  when ε =0.1, M=0.5 and α=0.2 

 
Finally, Fig. 9 exhibiting the effect of magnetic parameter M on fηη(ξ,η) as well as that on the points of 
separation for α = 0.2 when Gr/Re2 = 0.0, Pr = 0.72 and ε = 0.1. From this figure, it can easily be seen that an 
increase in the magnetic parameter M leads to decrease in the local skin friction coefficient. This phenomenon 
can easily be understood from the fact that when the magnetic parameter M increases the temperature of the 
fluid rises and the thickness of the velocity boundary layer grows i.e. the thermal boundary layer becomes 
thinner than the velocity boundary layer. Therefore the skin friction coefficient decreases. As a result, the 
separation becomes faster with the increase of M. Table-1 depicts the comparisons of the present numerical 
results of the separation points for different values of ε  and α with those obtained by Chiam (1998).  The 
present results agreed well with the solutions of Chiam (1998) in absence of Magnetic field, i.e., for M = 0.0. 
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Fig. 8:  Plot of the wall values of  fηη(ξ ,η) Versus ξ for 
different  values  of the Prandtl number Pr  when  ε 
=0.1, α=0.2, M=0.5 and Gr/Re2  = 0.0 

Fig. 9:  Plot of the wall values of  fηη(ξ ,η) 
Versus ξ for different  values  of M when  ε 
=0.1, α=0.2, Pr=0.72 and Gr/Re2  = 0.0 

 

Table 1: Effect of suction on the position of separation ξs  [ fηη (ξs ,0) less than 0.0001)] for Pr= 1.0, M=0.0 and 
Gr/ Re2  = 0.0 
ε Suction 

parameter α 
Position of separation ξs 

 
Present result Chiam’s result 

 
0.1 

0.0 0.6352  
0.1 0.6705 0.6930 
0.5 0.7865 0.9475 

 
0.05 

0.0 0.9986  
0.1 1.0477 1.0916 
0.5 1.2132 1.4565 

 
0.01 

0.0 2.0458  
0.1 2.1453 2.2380 
0.5 2.3613 2.8203 

 
0.001 

0.0 3.8750  
0.1 3.9950 4.1796 
0.5 4.1627 4.9418 

 

5.  Conclusion 

The numerical results of the skin friction coefficients for different values of the pertinent parameter considering 
the effect of Γ have been shown. The results on the position of separation have been presented for the boundary 
layer flow in the presence of buoyancy with exponentially decreasing free stream velocity. The effects of 
suction parameter, Prandtl number, buoyancy parameters and magnetic parameter on the separation point are 
described and the results are compared with those of Chiam (1998). From this investigation, following 
conclusions can be drawn:  
 

i) At α = 0.0, the effect of Γ  is insignificant thus the present solution gives the identical result as Chiam 
(1998). 

ii) As the magnitude of α increases, the effect of Γ  becomes prominent. 
iii) For all values of ε, the distance of separation point from the leading edge increases with increase in α. 
iv) For a particular value of α, the distance of separation point from leading edge increases for lower 

values of ε. 
v) As M increases, the point of separation becomes closer to the leading edge, i.e., separation becomes 

faster with the increase in M. 
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