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Abstract: 
This paper concerns with a steady two-dimensional flow of an electrically conducting incompressible 

dissipating fluid over an inclined semi-infinite porous surface with heat and mass transfer in presence 

of chemical reaction. The flow is permeated by a uniform transverse magnetic field. A scaling group 

of transformation is applied to the governing equations. The system remains invariant due to some 

relations among the parameters of the transformations. After finding three absolute invariants, a 

third-order ordinary differential equation corresponding to the momentum equation, two second-

order ordinary differential equations corresponding to energy and diffusion equations are derived. 

The coupled   ordinary differential equations along with the boundary conditions are solved 

numerically by using Runge-Kutta method along with shooting technique. The velocity and 

concentration is found to decrease gradually as the chemical reaction is increased. The results of the 

study are of great interest because flows on a vertical stretching surface play a predominant role in 

applications of science and engineering, as well as in many transport processes in nature. The effects 

of various parameters on velocity, temperature and concentration fields as well as skin-friction, 

Nusselt number and Sherwood number are presented graphically and tabulated form discussed 

qualitatively. 
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1. Introduction 

The study of free convection flow for an incompressible viscous fluid past an inclined porous surface has 

attracted the interest of many researchers in view of its important applications to many engineering problems 

such as cooling of nuclear reactors, the boundary layer control in aerodynamics, crystal growth, food processing 

and cooling towers.  Effect of porosity on the free convection flow along a vertical plate embedded in a porous 

medium was investigated by Beithou et al. (1998). Their results show that as the porosity is increased the 

temperature variation becomes steeper, that is, the heat transfer rate is increased. Chen (2004) studied the natural 

convection flow over a permeable inclined surface with variable wall temperature and concentration. The results 

show that the velocity is decreased in the presence of a magnetic field. Increasing the angle of inclination 

decreases the effect of buoyancy force. Heat transfer rate is increased when the Prandtl number is increased. 

Duwairi (2005), who investigated the effect of viscous and Joule heating on forced convection flow from 

radiative isothermal surfaces found that the heat transfer rate is decreased as the radiation parameter is 

increased. Radiative and magnetic effects on free convection and mass-transfer flow past a flat plate were 

studied by Ibrahim et al. (2005). They obtained similarity reductions and found analytical and numerical 

solutions using scaling symmetry. Kalpadides and Balassas (2004) also studied the free convective boundary 

layer problem using Lie group analysis. 

 

Lie group analysis is a classical method discovered by Norwegian mathematician Sophus Lie for finding 

invariant and similarity solutions [(1989, 1995, 1989, 1982, 1999)]. Yurusoy and Pakdemirli (2001) presented 

exact solution of boundary layer equations of a special non-Newtonian fluid over a stretching sheet by the 

method of Lie group analysis. They extended their work to creeping flow of second-grade fluid (2006). 

Sivasankaran et al (2006) studied the problem of natural convection heat and mass transfer flow past an inclined 

plate for various parameters using Lie group analysis without and with heat generation. Kumari et al (2001) 

investigated the mixed convection flow over a vertical wedge embedded in a porous medium. They found that 

the heat transfer is increased with the Prandtl number and the effect of permeability on the heat transfer is very 

small. Ramana Reddy et al (2011) studied the problem of MHD flow over a vertical moving porous plate with 
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heat generation by considering double diffusive convection, Lai and Kulacki (1994) studied the convection from 

horizontal impermeable surfaces in saturated porous medium. It is observed that the inertial term has a 

pronounced effect on the flow for higher values of parameter by the inertial effect on natural convection. Most 

recently, heat transfer problems for boundary layer flow concerning a convective boundary condition was 

investigated by Aziz (2009) for the Blasius flow. Similar analysis was applied to the Blasius and Sakiadis 

(2010) flow with radiation effects. Makinde (2010) studied the heat and mass transfer over a vertical plate with 

convective boundary conditions. Ishak (2010) studied the steady laminar boundary layer flow and heat transfer 

over a stationary permeable flat plate immersed in an uniform free stream with convective boundary condition. 

Kishan et al (2011) were investigated the effects of viscous dissipation on MHD flow with heat and mass 

transfer over a stretching surface with heat source, thermal stratification and chemical reaction. Ishak et al. 

(2011) studied the problem of steady laminar boundary layer flow and heat transfer over a moving flat surface in 

a parallel stream with convective boundary condition. Subhashini et al. (2011) investigated the simultaneous 

effects of thermal and concentration diffusions on a mixed convection boundary layer flow over a permeable 

surface under convective surface boundary condition. Recently, Hayat et al. (2012) studied the flow and heat 

transfer of Eyeing Powell fluid over a continuously moving surface in the presence of convective boundary 

conditions. Lie group analysis, also called symmetry analysis was developed by Sophius Lie to find point 

transformations which map a given differential equation to it. This method unifies almost all known exact 

integration techniques for both ordinary and partial differential equations Oberlack (1999). In the field of 

viscous fluids there are many papers dealing with aspect of group theory transformation [(1952, 1968, 1999, 

2006, 2009, 2011, 2012) ]. Shu and Pop (1997) numerically studied the natural convection from inclined wall 

plumes in a porous medium. The velocity is increased while the temperature is decreased with increasing the 

tilting angle. Parveen et al (2012) have studied the Joule heating effect on magnetohydrodynamic natural 

convection flow along a vertical wavy surface. Yurusoy and Pakdemirli (1997) studied the boundary layer 

equations for Newtonian / non-Newtonian fluids by using Lie group method. Gnaneswar Reddy (2013) was 

analyzed the scaling transformation for heat and mass transfer effects on steady MHD free convection 

dissipative flow past an inclined porous surface. So far no attempt has been made to study the heat and mass 

transfer in a porous medium using Lie groups, and hence we study the problem of MHD free convection 

dissipative fluid flow past an inclined porous surface with chemical reaction for various parameters using Lie 

groups. 

  

In this paper, application of scaling group of transformation for chemical reaction, heat and mass transfer effects 

on steady free convection flow in an inclined porous plate in the presence of MHD and viscous dissipation has 

been employed. This reduces the system of nonlinear coupled partial differential equations governing the motion 

of fluid into a system of coupled ordinary differential equations by reducing the number of independent 

variables. The system remains invariant due to some relations among the parameters of the transformations. 

Three absolute invariants are obtained and used to derive a third-order ordinary differential equation 

corresponding to momentum equation and two second-order ordinary differential equations corresponding to 

energy and diffusion equations. With the use of Runge-Kutta fourth order along shooting method, the equations 

are solved. Finally, analysis has been made to investigate the effects of thermal and Solutal Grashof numbers, 

magnetic field parameter, Prandtl number, Viscous dissipation parameter, Schmidt number and chemical 

reaction on the motion of fluid using scaling group of transformations, viz., Lie group transformations. 

 

2. Mathematical Analysis 

Consider the heat and mass transfer of a steady two-dimensional hydromagnetic flow of a viscous, 

incompressible, electrically conducting and dissipating fluid past a semi-infinite inclined plate with an acute 

angle α to the vertical. The flow is assumed to be in the x   direction, which is taken along the semi-infinite 

inclined porous plate and y   axis normal to it.  A magnetic field of uniform strength 0B  is introduced normal 

to the direction of the flow. In the analysis, we assume that the magnetic Reynolds number is much less than 

unity so that the induced magnetic field is neglected in comparison to the applied magnetic field. It is also 

assumed that all fluid properties are constant except that of the influence of the density variation with 

temperature and concentration in the body force term. The surface is maintained at a constant temperature wT  , 

which is higher than the constant temperature T  of the surrounding fluid and the concentration wC is greater 

than the constant concentration C . The level of concentration of foreign mass is assumed to be low, so that the 

Soret and Dufour effects are negligible. Then, under the usual Boussinesq’s and boundary layer approximations, 

the governing equations are  

Continuity equation  
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The boundary conditions for the velocity, temperature and concentration fields are 
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Substituting Eq.(6) into Eqs. (1) - (4) and dropping bars, we obtain, 
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The corresponding boundary conditions take the form 
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Finding the similarity solutions of Equations (12) - (14) is equivalent to determining the invariant solutions of 

these equations under a particular continuous one parameter group. One of the methods is to search for a 
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transformation group from the elementary set of one parameter scaling transformation. We now introduce the 

simplified form of Lie-group transformations namely, the scaling group of transformations. 
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The system will remain invariant under the group of transformations Γ, and we would have the following 

relations among the parameters, namely 
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Solving the above equations, we find the similarity transformations 
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3. Numerical Solution                                  
The set of nonlinear ordinary differential equations (21) - (23) with boundary conditions equation (24) have 

been solved by using the Runge-Kutta method of fourth order along with shooting technique. First of all, higher 

order non-linear differential equations (21) - (23) are converted into simultaneous linear differential equations of 

first order and they are further transformed into initial value problem by applying the shooting technique (Jain et 

al [(1985)]. The resultant initial value problem is solved by employing Runge-Kutta fourth order technique. The 

step size 0.01   is used to obtain the numerical solution with five decimal place accuracy as the criterion of 

convergence. In the next section, the results are discussed in detail. 
  

4. Results and Discussion 
To analyze the results, numerical computation has been carried out using the method described in the previous 

paragraph for various in governing parameters, namely, thermal Grashof number Gr, modified Grashof number 

Gc, magnetic field parameter M, permeability parameter K, Prandtl number Pr, Eckert number Ec, inclination 

angles α, Schmidt number Sc, chemical reaction parameter Kr. In the present study following default parameter 

values are adopted for computations: Gr = 2.0, Gc= 2.0, M = 1.0, K = 1.0, Pr = 0.71, Ec = 0.01, α = 30
0
, Sc = 

0.6, Kr = 0.5. All graphs therefore correspond to these values unless specifically indicated on the appropriate 

graphs.  
 

The influence of the thermal Grashof number on the velocity is presented in Fig. 1. The thermal Grashof number 

signifies the relative effect of the thermal buoyancy force to the viscous hydrodynamic force in the boundary 

layer. As expected, it is observed that there is a rise in the velocity due to the enhancement of thermo buoyancy 

force. Here, the positive values of Gr correspond to cooling of the plate. Also, as Gr increases, the peak values 

of the velocity increases rapidly near the porous plate and then decays smoothly to the free stream velocity. 

Fig. 2 presents typical velocity profiles in the boundary layer for various values of the solutal Grashof number 

Gc, while all other parameters are kept at some fixed values. The solutal Grashof number Gc defines the ratio of 

the species buoyancy force to the viscous hydrodynamic force. As expected, the fluid velocity increases and the 

peak value is more distinctive due to increase in the species buoyancy force. The velocity distribution attains a 

distinctive maximum value in the vicinity of the plate and then decreases properly to approach the free stream 

value.  
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Fig. 1: Velocity profiles for different values of Gr Fig. 2: Velocity profiles for different values of Gc 
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Fig. 3: Velocity profiles for different values of M. Fig. 4: Velocity profiles for different values of K 

For various values of the magnetic parameter M and permeability parameter K, the velocity profiles are plotted 

in Figs. 3 and 4 respectively. It can be seen that as M and K are increases, the velocity profiles are decreases. 
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This result qualitatively agrees with the expectations, since the magnetic field exerts a retarding force on the free 

convection flow.   
 

Figs. 5-9, 10-13, 14-15 show the velocity profiles, temperature profile and concentration profiles respectively 

for different parameters. Figs. 5 and 12 illustrate the velocity and temperature profiles for different values of the 

Prandtl number Pr. The Prandtl number defines the ratio of momentum Pr diffusivity to thermal diffusivity. The 

numerical results show that the effect of increasing values of Prandtl number results in a decreasing velocity 

(Fig. 5). From Fig. 12, it is observed that an increase in the Prandtl number results a decrease of the thermal 

boundary layer thickness and in general lower average temperature within the boundary layer. The reason is that 

smaller values of are equivalent to increasing the thermal conductivities, and therefore heat is able to diffuse 

away from the heated plate more rapidly than for higher values of .Hence in the case of smaller Prandtl numbers 

as the boundary layer is thicker and the rate of heat transfer is reduced.  
 

The effect of the viscous dissipation parameter i.e., the Eckert number Econ the velocity and temperature are 

shown in Figs 6 and 13 respectively. The Eckert number expresses the relationship between the kinetic energy 

in the flow and the enthalpy. It embodies the conversion of kinetic energy into internal energy by work done 

against the viscous fluid stresses. The positive Eckert number implies cooling of the plate i.e., loss of heat from 

the plate to the fluid. Hence, greater viscous dissipative heat causes a rise in the temperature as well as the 

velocity, which is evident from Figs 6 and13. 
 

The influences of the Schmidt number Sc on the velocity and concentration profiles are plotted in Figs 7 and 14 

respectively. The Schmidt number embodies the ratio of the momentum to the mass diffusivity. The Schmidt 

number therefore quantifies the relative effectiveness of momentum and mass transport by diffusion in the 

hydrodynamic (velocity) and concentration (species) boundary layers. As the Schmidt number increases the 

concentration decreases. This causes the concentration buoyancy effects to decrease yielding a reduction in the 

fluid velocity. The reductions in the velocity and concentration profiles are accompanied by simultaneous 

reductions in the velocity and concentration boundary layers. These behaviors are clear from Figs 7 and 14. The 

influences of chemical reaction parameter Kr on the velocity and concentration profiles across the boundary 

layer are presented in Fig.8 and Fig. 15. We see that the velocity as well as concentration distribution across the 

boundary layer decreases with increasing of Kr.
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Fig. 5: Velocity profiles for different values of Pr Fig. 6: Velocity profiles for different values of Ec 
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Fig. 7: Velocity profiles for different values of Sc Fig. 8: Velocity profiles for different values of Kr 
 

The effect of inclination of the surface for different parameters is depicted in Fig. 9. For fixed values of the all 

parameter the velocity is decreased with inclination angles as shown in Fig. 9. The fluid has higher velocity 

when the surface is vertical than when inclined because the buoyancy effect decreases due to gravity 

components cos as the plate is inclined. The fact is that as the angle of inclination increases the effect of the 

buoyancy force due to thermal diffusion decreases by a factor of cos . Consequently the driving force to the 

fluid decreases as a result velocity profiles decreases. For different values of the magnetic field parameter M on 

the temperature profiles are plotted in Fig.10. It is observed that the magnetic parameter increases, the 

temperature also increases. Fig. 11 represents the effect of the porosity parameter on the temperature profiles. 
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There are very small changes that occur in both momentum and thermal boundary layers when changes are 

made in the porosity parameter. The temperature is increased with increase in the porosity parameter.  

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

 /



 = 0
0
, 30

0
, 45

0
, 60

0

 

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0





M = 0.0, 1.0, 2.0,3.0

 

Fig. 9: Velocity profiles for different values of   Fig. 10: Temperature profiles for different values of M 
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Fig. 11: Temperature profiles for different values of K Fig. 12: Temperature profiles for different values of Pr 
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Fig. 13: Temperature profiles for different values of 

Ec 

Fig. 14: Concentration profiles for different values of 

Sc 
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Fig. 15: Concentration profiles for different values of Kr. 

 

Table 1: Computation showing 0.(0), (0) and (0) for 71,  0.01, 0.6,  0.5.Pr Ec Sf c Kr       
 

 

Gr Gc M K (0)f   (0)   (0)  

2.0 2.0 1.0 1.0 1.67872 0.37536 0.632846 

3.0 2.0 1.0 1.0 2.06767 0.404755 0.648809 

4.0 2.0 1.0 1.0 2.44141 0.429506 0.66312 

2.0 3.0 1.0 1.0 2.03459 0.399334 0.646135 

2.0 4.0 1.0 1.0 2.38237 0.420826 0.658602 

2.0 2.0 2.0 1.0 1.49761 0.348147 0.619813 

2.0 2.0 3.0 1.0 1.36399 0.327933 0.610413 

2.0 2.0 1.0 2.0 1.49761 0.348174 0.619813 

2.0 2.0 1.0 3.0 1.36399 0.327933 0.610413 
 

 

Table 1-3 indicate the values of skin-friction coefficient, the wall temperature gradient and the wall 

concentration gradient in terms of (0), (0)f    and (0)  respectively for various values embedded flow 

parameter. From Table 1 - 3, we have noticed that skin-friction coefficient, Nusselt number and Sherwood 



 

G.V.R. Reddy, S.M. Ibrahim and V.S.Bhagavan /Journal of Naval Architecture & Marine Engineering, 11(2014) 157-166 

Similarity transformations of heat and mass transfer effects on steady MHD free convection dissipative fluid flow… 164 

number are increases with an increasing of Grashof number or mass Grashof number, as increasing values of 

magnetic field parameter (M) or porosity parameter a reduces in the skin-friction, Nusselt number and 

Sherwood. The Nusselt number reduces as increase the values of dissipation Ec or inclination angle, while it is 

increases for increasing value of Prandtl number Pr. It is also observed that the increase in  Schmidt number Sc 

or chemical reaction parameter Kr parameter lead to the increase in the Sherwood number. 

 

Table 2: Computation showing, (0), (0) and (0) for 2.0, 2.0, 1.0, 1.0, 0.60.f Gr Gc M K Sc        
 

 

Pr Ec   (0)f   (0)  (0)  

0.71 0.01 30
0 1.67872 0.37536 0.632846 

1.0 0.01 30
0 1.64902 0.429375 0.629509 

2.0 0.01 30
0 1.57721 0.570278 0.622038 

0.71 0.1 30
0 1.68425 0.337882 0.633256 

0.71 0.2 30
0 1.69051 0.29549 0.633719 

0.71 0.01 45
0 1.39653 0.352877 0.621139 

0.71 0.01 60
0
 1.01526 0.318826 0.60434 

 

Table 3: Computation showing (0)f  , (0)  and (0)  for Gr = 2.0, Gc =2.0, M= 1.0, K = 1.0, Pr = 0.71, Ec = 

0.01, α  = 
030 . 

Sc Kr (0)f   (0)   (0)  

0.6 0.5 1.67872 0.37536 0.632846 

0.78 0.5 1.65106 0.369773 0.716312 

1.0 0.5 1.62341 0.364526 0.805778 

0.6 1.0 1.6253 0.36603 0.828406 

0.6 2.0 1.55591 0.355195 1.12767 

 

5. Conclusions 
 

The present work helps us understanding numerically as well as physically free convection flow in an inclined 

porous plate in the presence of MHD and viscous dissipation has been employed. This reduces the system of 

nonlinear coupled partial differential equations governing the motion of fluid into a system of coupled ordinary 

differential equations by reducing the number of independent variables. The similarity solutions are obtained 

using scaling transformations. The set of governing equations and the boundary condition are reduced to 

ordinary differential equations with appropriate boundary conditions. Furthermore the similarity equations are 

solved numerically by using Runge–Kutta fourth order method along shooting technique. A comparison with 

previously published work is performed and the results are found to be in good agreement. Based on the 

obtained results, the following conclusions may be drawn. 
 

From the numerical results, it is seen that the effect of increasing thermal Grashof number or solutalGrashof 

number is manifested as an increase in flow velocity. It is interesting to note that the temperature decreases 

much faster than the air temperature. In the presence of a magnetic field parameter, the permeability of porous 

medium, viscous dissipation is demonstrated to exert a more significant effect on the flow field and, thus, on the 

heat transfer from the plate to the fluid. The velocity and concentration is found to decrease gradually as the 

Schmidt number is increased. The velocity and concentration is found to decrease gradually as the chemical 

reaction is increased. The results of the study are of great interest because flows on a vertical stretching surface 

play a predominant role in applications of science and engineering, as well as in many transport processes in 

nature.
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