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Abstract 
 

The objective of this work is to study heat and mass transfer in an unsteady MHD free convective flow 
past an infinite vertical plate with constant suction numerically.  Dimensionless governing equations of 
the problem have been solved by using finite difference technique. Numerical solutions for temperature, 
velocity, concentration have been obtained for suitable parameters like Grashoff number, mass 
Grashoff number, Prandtl number and Schmidt number. Rate of heat transfer and mass transfer are 
studied. The results obtained are discussed with the help of graphs and tables to observe effect of 
various parameters concerned in the problem under investigation. Stability and convergence of the 
finite difference scheme is established. 
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NOMENCLATURE 
 

Cp         concentration near plate β  volumetric coefficient of thermal expansion  
B0         uniform magnetic field σ the scalar electrical conductivity 
C∞ concentration of the ambient fluid  ρ  density of the fluid  
g  acceleration due to gravity  ν  reference kinematic viscosity  
Gr  Grashof number  µ  Viscosity of the fluid  
k  thermal conductivity of the fluid  ω frequency of oscillation 
Nu  Nusselt number    
Pr  Prandtl number  p wall conditions  

Sc Schmidt number  Subscript  
 t dimensionless time ∞  ambient temperature  
T  
        

temperature of the fluid in the 
boundary layer  

p wall conditions  

T
∞
 temperature of the ambient fluid             Superscript  

T
p
 temperature at the plate ′  differentiation with respect to y  

u, v  The dimensionless x and y- 
component of velocity.  

  

 

1. Introduction 
  

Combined heat and mass transfer problems are important in many processes and have therefore received a 
considerable amount of attention. In many mass transfer processes, heat transfer considerations arise due to 
chemical reaction and often due to the very nature of the process. In processes, such as drying, evaporation at 
the surface of a water body, energy transfer in a wet cooling tower and the flow in a desert cooler, heat and mass 
transfer occur simultaneously. Unsteady free convection flow past a vertical porous plate was investigated by 
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Helmy (1998).  Acharya et al. (2000) have studied free convection and mass transfer flow through a porous 
medium bounded by vertical infinite surface with constant suction and heat flux. But in those studies they 
considered the flow to be steady. Coming back to unsteady case, Kim (2000) investigated unsteady MHD 
convection heat transfer past a semi- infinite vertical porous moving plate with variable suction.  Little extension 
to those problems has been done by Chamkha (2004). In this study author extended the problem for the case of 
mass transfer but restricted to the case of semi-infinite moving plate.  
  

Unsteady oscillatory free convection flow plays an important role in chemical engineering, turbo machines, and 
aerospace technology. Such flows arise due to unusual motion of boundary or boundary temperature. Recently 
Singh et al. (2003) have investigated the effect of oscillatory suction velocity on free convection and mass 
transfer flow of a viscous fluid past an infinite vertical porous plate. Sahoo et al. (2003) have analyzed MHD 
unsteady free convective flow past an infinite vertical plate with constant suction and heat sink.  Extension to 
this problem has been done by Muthucumaraswamy and Kumar (2004). In this study thermal radiation effect on 
moving infinite vertical plate in presence of variable temperature and mass diffusion is considered. 
 
Because of the importance of suction in the fields of aerodynamics and space science our present study is 
motivated towards this direction. Our main purpose is to investigate numerically the problem of combined heat 
and mass transfer of   an unsteady MHD flow past an infinite plate with suction.  None of the above stated 
studies discusses completely about this. This is our motivation to the present study. The results of this study 
discussed for various numerical values of the parameters.  
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 Fig. 1: Geometry of the problem 
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2. Mathematical Model 
 

Consider an unsteady two dimensional free convective flow of an electrically conducting viscous and 
incompressible fluid past an infinite, porous and vertical plate with constant suction. A magnetic field BB0B is 
applied perpendicular to the plate. A system of rectangular coordinate axes oxB1B yB1BzB1 B is taken such that yB1B=0 on 
the plate and zB1B is along its leading edge. All the fluid properties like density, velocity, pressure, temperature, 
concentration, and viscosity etc. are considered. 

The influence of the density variation with temperature is considered only in the body force term.  Its influence 
in other terms of the momentum and the energy equations is assumed to be negligible.  The variation of 
expansion coefficient with temperature is considered to be negligible. This is the well-known Boussinesq 
approximation. Thus, under these assumptions, the physical variables are functions of y B1B and tB1B only and the 
problem is governed by the following system of equations  

Continuity equation: 0
1
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∂
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,                                                                             (1) 

Momentum equations:
ρ

σ
β 1

2
0

2
1

1
2

1
1

1
1

1

1 )(
uB

y
uv

TTg
y
u

v
t
u

−
∂
∂

+−=
∂
∂

+
∂
∂

∞ ,             (2) 

Energy equation: 2
1

1
2

1

1
1

1

1

y
Tk

y
Tv

t
T

∂
∂

=
∂
∂

+
∂
∂

.                                                   (3) 

Mass transfer equation: 2
1

1
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+
∂
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The initial and boundary conditions of the problem are 
tB1B ≤0, uB1B(yB1B,tB1B) = 0,                                            
TB1B (yB1B,tB1B) = TB∞ B           (5) 
 CB1B (yB1B,tB1B) = CB∞   ;    
 

    tB1B  > 0,    uB1B(0, tB1 B ) = VB0 B,  
TB1B(0, tB1B )  = TBPB+ε(Tp-T∞)eiω

1t1,   at  yB1 B= 0 .         (6)
 CB1B(0, tB1B )  = CBPB+ε(Cp-C∞)eiω

1t1.   
 
tB1B  > 0,        
uB1B(∞, tB1B) → 0,                                                                                   
TB1B(∞, tB1B) →  TB∞ B,            (7) 
CB1B(∞, tB1B) →  CB∞ B,       as  yB1B → ∞.  
 

Since the plate is assumed to be porous and through it suction with uniform velocity occurs, Equation (1) 
integrates to 01 vv −=  is the constant suction velocity. Here, uB1B is the velocity of the fluid, TBpB the 
temperature of the fluid near the plate, TB∞B the temperature of the fluid far away from the plate, Cp the 
concentration near the plate, C∞ the concentration far away from the plate, g the acceleration due to gravity, β 
the coefficient of volume expansion for heat transfer, β' the coefficient of volume expansion for concentration, 
ν  the kinematic viscosity, σ the scalar electrical conductivity, ω the frequency of oscillation, BB0B the applied 
uniform magnetic field, ρB1B the density of the fluid, k the thermal conductivity and tB1B is the time.  
 
From Equation (1) we observe that 1v  is independent of space co-ordinates and may be taken as constant. We 
define the following non-dimensional variables and parameters. 
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Now taking into account Equations (5), (6), (7) and (8), Equations (2), (3) and (4) reduce to the following non-
dimensional form 
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With 
 
    tB B ≤  0,   

u(y, t) = 0,        (12) 
T (y,t) = 0;                

  
t   > 0,   
u (0, t) = 0,   
T (0,t) = tie ωε+1 ,        (13) 
C (0,t) = tie ωε+1 . y1 B → 0              

     
t   > 0,   
u (∞, t) = 0,        (14) 
T (∞,t) = 0  
C (∞,t) = 0. as y1 B → ∞. 

 
The Grashof number rG  > 0 represents external cooling of the plate and rG  < 0 denotes external heating of the 
plate. Gm the modified Grashof number , Sc the Schmidt number, and Pr the Prandtl number. 
 
3. Method of solution 
 
Here we sought a solution by finite difference technique of implicit type namely Crank- Nicolson implicit finite 
difference method which is always convergent and stable.  This method has been used to solve Equations (9) 
(10) (11) subject to the conditions given by (12) (13) and (14). To obtain the difference equations, the region of 
the flow is divided into a gird or mesh of lines parallel to y and t axes.  Solutions of difference equations are 
obtained at the intersection of these mesh lines called nodes. The values of the dependent variables T , u and C 
at the nodal points along the plane y = 0 are given by  T(0,t) and u(0,t) and C(0,t)  hence are known from the 
boundary conditions. 
 

(8)
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In the above Fig. 2, y∆ , t∆  are constant mesh sizes along y and t directions respectively. We need a scheme to 
find single values at next time level in terms of known values at an earlier time level. A forward difference 
approximation for the first order partial derivatives of u, T and C w.r.t.  t and y and a central difference 
approximation for the second order partial derivative of u , T and C w.r.t. y are used. On introducing finite 
difference approximations for:  

                                                

 

 

 

 

 

 

 

  

Fig. 2: Finite difference grid. 
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The finite difference approximation of Equations (9), (10) and (11) are obtained with substituting Equation (15) 
into Equations (9), (10) and (11) then 
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  Multiplying both sides of Equations (16) (17) and (18) by ( )t∆ and after simplifying, we obtain  
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Now for Crank- Nicolson implicit method, let 2)( y
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4. Numerical solutions and their accuracy 
 
To get the numerical solutions of the temperature T, velocity u and concentration C, Necessary code is 
developed in code in Mathematica5.0. The logic of the program is divided into 4 modules as follows: 

Module 1: Main, initially it creates three tables to hold the Numerical Solutions of Temperature, Velocity and 
concentration whose coefficients are allotted in the Module 2. After this, it calculates the numerical values at the 
next time step level. In order to do this, it uses another sub module named, Tridiagonal, which solves the tri-
diagonal matrix by using Gauss-Elimination method. Further it moves to the Module 3, for comparison of the 
numerical solutions with analytical solutions. 

Module 2: Coeff Mat, we know that all the terms and their coefficients on RHS of Equations (22), (23) and (24) 
are known values from initial and boundary conditions. At every time step, for different values of ‘i’, the finite 
difference approximation of Equation (24) gives a linear system of equations. Then, for j = 0 and i  = 1,2,. n-1, 
Equation (24) gives a linear system of (n-1) equations for the (n-1) unknown values of ‘C’ in the first time row 
in terms of known initial and boundary values. This module maintains coefficients of this linear system of 
equations. Similarly the above process repeats for the remaining Equations (23) and (22) to obtain the values of 
u and T. 

Module 3: Comparison, It compares the numerical solution with the analytical solution at every time step level. 
By making use of T and C into Equation (22), the numerical solutions for ‘u’ are obtained. 

To ensure the validity of our numerical solutions, we have compared this numerical solution for temperature, 
velocity and concentration for the case of suction for different Prandtl numbers with the available exact 
solutions in the literature. Table 1 and Table 2 show comparisons between the numerical values of temperature 
and velocity for PBr B =6.75 and 0.733 respectively obtained from the present study. It is clearly seen from these 
tables that results are in excellent agreement. The comparison tables Table 1 and Table 2 have been plotted and 
shown in Fig. 3 and Fig. 4. As the accuracy of the numerical solutions is very good, the curves corresponding to 
exact and numerical solutions are laying very close to the other.  To ensure the efficiency of our code for 
velocity, we have given a table of numerical solution for velocity for water (PBr B=6.75) for the cases of suction. 
These values have been plotted under Fig. 4. 
 

5. Results and Discussion 
 
For the purpose of discussing the results some numerical solutions are obtained for non-dimensional   
temperature T, velocity u concentration C.  By using temperature the rate of heat transfer and by using 
concentration rate of mass transfer is obtained. The numerical solutions for the case of suction for temperature 
have been shown in Table 1.  It can be seen from the table that the transient temperature decreases for the 
increase of y. Similarly temperature field due to variation in Pr for air, water, mercury etc has been found and 
observed that mercury has a stationary temperature. The numerical solutions for the case of suction for 
concentration have been shown in Table 5.  It can be seen from the table that the transient concentration profiles 
decreases for the increase of y. The concentration profiles due to variation of Sc for gases like hydrogen, oxygen 
and water vapor has been found but not giving here due to almost similar calculations. It can be found that 
hydrogen can be used for maintaining effective concentration field. The numerical solutions for the case of 
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suction for velocity have been shown in Table 2.  It can be seen from the table that the transient velocity profiles 
decrease for the increase of y. While finding velocity profiles numerical values for Gr, Gm, M have been chosen 
suitably. 
 
Table 1: Comparison of Temperature profiles for PBr B=6.75, t=0.1 for the case of suction 

y 
Analytical 
Solution 

Numerical 
Solution 

0 1 1
0.05 0.408622 0.409811

0.1 0.168723 0.167945
0.15 0.689642 0.068825

0.2 0.021486 0.028205
0.25 0.011598 0.011558

0.3 0.004986 0.004736
0.35 0.001875 0.001940

0.4 0.000985 0.000793
0.45 0.000456 0.000321

0.5 0.000369 0.000030
0.55 0.000892 0.000032

0.6 0.000098 0.000021
0.65 0.000069 0.000011

0.7 0.000086 0.000001
0.75 0.0000045 0.00000001

0.8 0.0000001 0.1E-07
0.85 0.1E-05 0.1E-08

0.9 0.1E-06 0.1E-09
0.95 0.1E-06 0.1E-11

1 0 0
 
 

Table 2:  Comparison of velocity for Pr =0.733, M=2, Gr=4, Gm=2, T=0.0975 

y Analytical 
Solution 

Numerical 
Solution 

0 1 1 
0.05 0.952677 0.909804 
0.1 0.896203 0.820757 
0.15 0.832823 0.733967 
0.2 0.764716 0.650451 
0.25 0.693946 0.571107 
0.3 0.62241 0.49668 
0.35 0.551797 0.427745 
0.4 0.483555 0.364691 
0.45 0.418869 0.307724 
0.5 0.358648 0.256872 
0.55 0.303532 0.211999 
0.6 0.253906 0.172823 
0.65 0.20992 0.138938 
0.7 0.171526 0.109839 
0.75 0.138509 0.084943 
0.8 0.11053 0.063609 
0.85 0.08716 0.04516 
0.9 0.067916 0.02889 
0.95 0.05229 0.014079 

1 0.039778 0 
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Table 3: Numerical values of rate of heat transfer 
 

t 
Numerical values 

of NBu B 

0.0025 18.69578 

0.005 16.4067 

0.0075 14.66101 

0.01 13.29947 

0.0125 12.21477 

0.015 11.33348 

0.0175 10.60449 

0.02 9.991646 

0.0225 9.468969 

0.025 9.017448 

0.0275 8.622961 

0.03 8.274846 

0.0325 7.964935 

0.035 7.686876 

0.0375 7.435664 

0.04 7.207309 

0.0425 6.998585 

0.045 6.806863 

0.0475 6.629974 

0.05 6.466115 
 

Table 4:.Numerical solutions of Mass Transfer 

S.No Sc Sh 
1 0.22 0.74986 
2 0.60 0.59846 
3 0.78 0.77986 

 
Table 5: Comparison of concentration profiles for 

water vapor Sc=0.60, t=0.0025 

y 
Analytical 
Solution 

Numerical 
Solution 

0 1 1 
0.05 1.14693 1.14682 

0.1 0.307983 0.30729 
0.15 0.08635 0.0823382 

0.2 0.022062 0.0220624 
0.25 0.005986 0.00591161 

0.3 0.001258 0.00158401 
0.35 0.0001148 0.00011372 

0.4 0.000985 0.00003044 
0.45 0.000456 8.06984E-6 

0.5 0.000369 1.83187E-6 
0.55 0.000892 7.4E-7 

0.6 0.000098 4.8E-6 
0.65 0.000069 0.6E-4 

0.7 0.000086 0.2E-3 
0.75 0.0000045       0.1E-4 

0.8 0.0000001 0.1E-07 
0.85 0.1E-05 0.1E-08 

0.9 0.1E-06 0.1E-09 
0.95 0.1E-06 0.1E-11 

1 0 0 

From the technological point of view, it is important to know the rate of heat transfer between the plate and the 
fluid. This can be found by using the non-dimensional quantity, the Nusselt number, Nu. The Nusselt number is 
defined as –ve gradient of the temperature. The numerical values of the Nusselt number against time t are shown 
in Table 3. As t increases, the rate of heat transfer at the plate decreases gradually. Finally for mass transfer we 
need the –ve gradient of concentration. This is denoted and defined as Schmidt number Sc. The numerical values 
of rate of mass transfer Sh in terms of Sherwood number are obtained and have been shown in Table 4. From this 
table it can be observed that rate of mass transfer first increases gradually and then decreases as per gradual 
increase of the Schmidt number. 
 
6. Conclusions 
 
The heat and mass transfer in an unsteady MHD free convective flow past an infinite vertical plate with constant 
suction is studied numerically. From the above study, following conclusions can be drawn: 
 

i) The transient temperature decreases for the increase of y. 
ii) The transient concentration profiles decreases for the increase of y. 
iii) The transient velocity profiles decreases for the increase of y. 
iv) The rate of heat transfer at the plate decreases gradually. 
v) The rate of mass transfer first increases gradually and then decreases. 
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