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Abstract 
This paper theoretically analyzes three dimensional couette flow of a viscous incompressible electrically 
conducting fluid between two infinite horizontal parallel porous flat plates in presence of a transverse 
magnetic field. The stationary plate and the plate in uniform motion are, respectively, subjected to a 
transverse sinusoidal injection and uniform suction of the fluid. The governing equations of the flow field 
are solved by using series expansion method and the expressions for the velocity field, the temperature 
field, skin friction and heat flux in terms of Nusselt number are obtained. The effects of the flow parameters 
on the velocity, temperature, skin friction and heat flux have been studied and analyzed with the help of 
figures and tables. It is observed that the magnetic parameter (M) has a retarding effect on the main 
velocity (u) and an accelerating effect on the cross velocity (w1) of the flow field. The suction parameter 
(Re) has a retarding effect on the main velocity as well as on the temperature field. The Prandtl number (Pr) 
reduces the temperature of the flow field and increases the rate of heat transfer at the wall (Nu). The effect 
of suction parameter is to reduce the x-component of skin friction and to enhance the magnitude of z-
component of the skin friction at the wall. The problem is very much significant in view of its several 
engineering, geophysical and industrial applications. 
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NOMENCLATURE 
      B0     uniform magnetic field   
      l        distance between the plates 
      M      magnetic parameter 
      Nu      Nusselt number 
      Pr       Prandtl number 
      p*      pressure 

         Re       Reynold’s Number 
      T*      temperature 
      T        dimensionless temperature 
      T0       temperature at the lower plate 
      Tw       temperature at the upper plate 
     U         uniform velocity of the upper plate 
      u,v,w  dimensionless velocity components 

u*,v*,w*   velocity components along x*,y*,z*      
direction respectively 

V               constant suction velocity 
v*(z*)        sinusoidal injection velocity 
x,y,z           dimensionless Cartesian coordinates 
x*,y*,z*     Cartesian coordinates 
 
Greek Symbol 
α               thermal diffusivity 
ε                a small positive constant (0<ε<<1) 
ρ               density 
ν               kinematic viscosity 
σ               electrical conductivity 

 
1.   Introduction 

 
The problem of hydromagnetic couette flow with heat transfer has been a subject of interest of many researchers 
because of its possible applications in many branches of science and technology. Channel flows have several 
engineering and geophysical applications, such as, in the field of chemical engineering for filtration and purification 
processes; in the field of agricultural engineering to study the underground water resources; in petroleum industry to 
study the movement of natural gas, oil and water through the oil channels and reservoirs.   
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In view of these applications a series of investigations have been made by different scholars where the medium is 
either bounded by horizontal or vertical surfaces. Gersten and Gross (1974) studied the flow and heat transfer along 
a plane wall with periodic suction. Gulab and Mishra (1977) analyzed the unsteady MHD flow of a conducting fluid 
through a porous medium. Kaviany (1985) explained the laminar flow through a porous channel bounded by 
isothermal parallel plates. Vajravelu and Hadjinicolaou (1993) have investigated the heat transfer in a viscous fluid 
over a stretching sheet with viscous dissipation and internal heat generation. Attia and Kotb (1996) explained the 
MHD flow between two parallel plates with heat transfer. 
 
The unsteady hydromagnetic natural convection in a fluid saturated porous channel was studied by Chamkha (1996).  
Attia (1997) analyzed the transient MHD flow and heat transfer between two parallel plates with temperature 
dependent viscosity. Krishna et al. (2004) presented the hydromagnetic oscillatory flow of a second order Rivlin-
Erickson fluid in a channel. Sharma and Yadav (2005) analyzed the heat transfer through three dimensional couette 
flow between a stationary porous plate bounded by porous medium and a moving porous plate. Sharma et al. (2005) 
explained the steady laminar flow and heat transfer of a non-Newtonian fluid through a straight horizontal porous 
channel in the presence of heat source. Recently, Jain et al. (2006) discussed the three dimensional couette flow with 
transpiration cooling through a porous medium in the slip flow regime.  
 
The proposed study considers the three dimensional couette flow of a viscous incompressible electrically conducting 
fluid between two infinite horizontal parallel porous flat plates in presence of a transverse magnetic field. The 
stationary plate and the plate in uniform motion are, respectively, subjected to a transverse sinusoidal injection and 
uniform suction of the fluid. The governing equations of the flow field are solved by using series expansion method 
and the expressions for the velocity field, the temperature field, skin friction and heat flux in terms of Nusselt 
number are obtained. The effect of the flow parameters on the velocity field, temperature field, skin friction and 
Nusselt number have been studied and analyzed with the help of figures and tables.  
 

 
 

Fig. A:  Physical sketch and geometry of the problem 
 
2.   Formulation of the Problem 
 
Consider the three dimensional couette flow of a viscous incompressible electrically conducting fluid bounded 
between two infinite horizontal parallel porous plates in presence of a uniform transverse magnetic field B0. The 
physical model and geometry of the problem is shown in Fig. A. A coordinate system is chosen with its origin at the 
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lower stationary plate lying horizontally in x*-z* plane and the upper plate at a distance l from it is subjected to a 
uniform velocity U. 
 
The y*-axis is taken normal to the planes of the plates. The lower and the upper plates are assumed to be at constant 
temperatures T0 and Tw, respectively, with Tw > T0. The upper plate is subjected to a constant suction velocity V 
whereas the lower plate to a transverse sinusoidal injection velocity of the form: 
                   v*(z*) = V (1+εcosπz* / l),                                                                                                       (1) 
where ε (<<1) is a very small positive constant quantity, l is taken equal to the wavelength of the injection velocity.  
 
Due to this kind of injection velocity the flow remains three dimensional. All the physical quantities involved are 
independent of x* for this fully developed laminar flow. Denoting the velocity components u*, v*, w* in x*, y*, z* 
directions, respectively and the temperature by T *, the problem is governed by the following equations: 
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where  ρ is the density, σ is the electrical conductivity, p*is the pressure, ν is coefficient of the kinematic viscosity 
and α  is the thermal diffusivity. 
 
The boundary conditions of the problem are  
 u* = 0, v* = V (1+εcosπz*/l), w* = 0, T * = *T0  at  y* = 0,                     

 u*=U,    v* = V,   w*=0,  T *= *
wT   at  y*=l.                                                                                        (7) 

Introducing the following non-dimensional quantities, 

y = 
l
y*

  , z =
l
z *
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U
u *
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, p = 2

*

V
p
ρ

 ,   T = **
w

**

TT
TT

0

0

−
−

 ,                                      (8) 

Equations (2) - (6) reduce to the following forms 
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where    Re =
ν
Vl

, Reynolds number, 

    ,
22

02

νρ
σ lB

M =  Magnetic parameter, 

    
α
ν

=rP , Prandtl number.                                                                                                  (14) 

The corresponding boundary conditions become  
u = 0,   v = 1+εcosπz,   w = 0,   T = 0 at  y = 0,        
u=1,     v= 1,                 w= 0,    T=1 at  y =l.                                                                                  (15)                            
 
3.    Method of Solution 
 
In order to solve the problem, we assume the solutions of the following form because the amplitude        0< ε<<  1 of 
the permeability variation is very small: 

 u (y, z) = u0(y) + ε u1 (y, z) + ε2 u2 (y, z) +…… 
 v (y, z) = v0(y) + ε v1 (y, z) + ε2 v2 (y, z) +…… 
 w (y, z) = w0(y) + ε w1 (y, z) + ε2 w2 (y, z) +…… 
 p (y, z) = p0(y) + ε p1 (y, z) + ε2 p2 (y, z) +…… 

           T (y, z) = T0(y) + ε T 1 (y, z) + ε2 T 2 (y, z) +……                                                                    (16) 
        

When ε =0, the problem reduces to the two dimensional free convective MHD flow which is governed by the 
following equations: 
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The corresponding boundary conditions become  
 u0 = 0,    v0 = 1,   T 0 = 0 at  y = 0,    
 u0= 1,    v0=1,    T 0 = 1 at  y=1.                                                                                                               (20)                          
  
The solutions of these equations for this two dimensional problem are 
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with       v0 = 1, w0 =0,   p0 =constant,                                                                                               (23) 
where 

[ ]22
1 4

2
1 MRR ee ++=λ ,    [ ]22

2 4
2
1 MRR ee +−=λ . 

When   ε ≠ 0, substituting (16) into Equations (9) - (13) and comparing the coefficients of like   powers of ε, neglecting 
those of ε2, we get the following first order equations with the help of Equation (23): 
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The corresponding boundary conditions are  
u1 = 0,   v1 = cosπz,    w1=0,   T 1 = 0 at  y = 0, 
u1=0,    v1=0,             w1=0,   T 1 = 0 at  y =1.                                                                                    (29) 
 
Equations (24)-(28) are the linear partial differential equations which describe the MHD three-dimensional flow 
through a porous medium.  For solution we shall first consider three Equations (24), (26) and (27) being independent 
of the main flow component u1 and the temperature field T1. We assume v1, w1 and p1 of the following form: 

zcos)y(v)z,y(v π= 111 ,                                                                                                             (30)    

zsin)y(v)z,y(w π′
π

= 111
1 ,                                                                                                              (31) 

zcos)y(p)z,y(p π= 111 ,                                                                                                              (32) 

where the prime in )(11 yv′  denotes the differentiation with respect to y.  Expressions for v1(y, z) and w1(y, z) have 
been chosen so that the equation of continuity (24) is satisfied.  
 
Substituting these expressions (30)-(32) into (26) and (27) and solving under corresponding transformed boundary 
conditions, we get the solutions of v1, w1and p1 as: 
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( ) ( ) ( ) 2112
1212213

mmmm emmemmemmA +π−π− −π−π++π+−= , 

( ) ( ) ( ) 2112
1212214

mmmm emmemmemmA +π+π+ −π−π−−π−= . 
 
To solve Equations (25) and (28) for u1 and T1, we assume 
 zcos)y(u)y(u π= 111 ,                                                                                                              (36)                             

zcos)y(T)z,y(T π= 111 .                                                                                                              (37) 
 
Substituting the values of u1 and T1 from Equations (36) and (37) into Equations (25) and (28), we get 
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where the primes denote the differentiation with respect to y. 
 
The corresponding boundary conditions are  
y =0:  u11=0,   T11=0,  
y =1:  u11=0,   T11=0.                                                                                                                           (40) 
 
Solving Equations (38) and (39) under the boundary conditions (40) and using Equations (36) and (37), we get 
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Substituting the values of u0, u1, T 0 and T 1 from Equations (21), (41), (22) and (42) in Equation (16), the solutions 
for velocity and temperature are given by 
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Skin Friction 
 
The x- and z-components of skin friction at the wall are given by  
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Rate of Heat Transfer 
 
The rate of heat transfer i.e. heat flux at the wall in terms of Nusselt number (Nu) is given by  
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4.   Results and Discussion 
 
The hydromagnetic three dimensional couette flow of a viscous incompressible electrically conducting fluid 
between two infinite horizontal parallel porous flat plates with heat transfer has been analyzed. The governing 
equations of the flow field are solved by using series expansion method and the expressions for the velocity field, 
temperature field, skin friction and heat flux in terms of Nusselt number are obtained. The effect of the flow 
parameters on the velocity field and temperature field have been studied and discussed with the help of velocity 
profiles shown in Figs. 1-3 and temperature profiles shown in Figs. 4-5 and the effects of the flow parameters on the 
skin friction and heat flux have been discussed with the help of Tables 1 and 2 respectively. 
 
4.1.   Main velocity field 
 
The major change in the main velocity (u) of the flow field is due to the variation of magnetic parameter (M) and 
suction / injection parameter (Re). The magnetic parameter affects the main velocity of the flow field to a greater 
extent than the suction / injection parameter. The effects of these parameters have been presented in Figs. 1 and 2 
respectively. 
 
4.1.1.   Effect of suction / injection parameter (Re)  
 
In Fig. 1, we present the variation in the main velocity of the flow field due to the change of the suction / injection 
parameter keeping other parameters of the flow field constant. It is observed that the suction / injection parameter 
retards the velocity of the flow field at all points. As the suction / injection of the fluid through the plate increases, 
the plate is cooled down and in consequence of which the viscosity of the flowing fluid increases. Therefore, there is 
a gradual decrease in velocity of the fluid as Re increases. Further, the velocity increases slowly from zero to its 
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maximum value as we proceed from the inlet section. But in absence of suction / injection (Re=0), there is a rapid 
increase in velocity and the velocity is proportional to the distance from the inlet section. 
 

  
Fig. 1: Velocity Profile against y for different values of 

Re with z=0, ε=0.02, M=1 
 

Fig. 2: Velocity Profile against y for different values of 
M with z=0, ε=0.02, Re=0.2 

 
 
4.1.2. Effect of magnetic parameter (M) 
 
Fig. 2 depicts the effect of the magnetic parameter on the main velocity of the flow field. The curve with M=0 
corresponds to the flow in absence of magnetic field. The main velocity is observed to increase slowly from zero to 
its maximum value as we proceed from the inlet section. But in absence of magnetic field (M=0), there is a uniform 
variation in the velocity of the flow field. Comparing the curves of Fig. 2, it is observed that the magnetic parameter 
has a retarding effect on the main velocity of the flow field due to the action of Lorentz force on the flow field. 
Further, comparing the curves of Figs. 1 and 2 it is observed that the magnetic parameter has a very dominant effect 
on the main velocity field over the suction / injection parameter.  
 
4.2.   Cross flow velocity field 
 
The variation in the magnitude of the cross flow 
velocity (w1) of the flow field is shown in Fig. 3 for 
three different values of the magnetic parameter (M = 
3, 5, 10). The magnetic parameter has an accelerating 
effect on the cross velocity of the flow field near the 
lower plate. It is further observed that the cross 
velocity at first increases sharply to a peak value and 
then decreases to zero. 

 
4.3.   Temperature field 
 
The temperature of the flow field is affected by the 
variation of Prandtl number and the suction / 
injection parameter. These variations are shown in 
Figs. 4 and 5 respectively. The suction / injection 
parameter affects the temperature field to a greater 
extent than the Prandtl number. 

Fig. 3: Cross flow velocity profile against y for 
different values of M with z=0.5, ε=0.02, 
Re=0.2 
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4.3.1.   Effect of Prandtl number (Pr) 
 
In Fig. 4, we discuss the effect of Prandtl number (Pr) on the temperature of the flow field. Fig. 4 is a plot of 
temperature against the non-dimensional distance for three different values of Pr (=0.71, 1, 2). A comparison of the 
curves of the said figure shows that the Prandtl number decreases the temperature at all points of the flow field. 
With the increase of Prandtl number, the thermal conduction in the flow field is lowered and the viscosity of the 
flowing fluid becomes higher. Consequently, the molecular motion of the fluid elements is lowered down and 
therefore, the flow field suffers a decrease in temperature at all points as we increase Pr. 
 
4.3.2.   Effect of suction / injection parameter (Re)  
 

The effect of suction / injection parameter on the temperature of the flow field is shown in Fig. 5. The temperature 
of the flow field is found to decrease in presence of growing suction / injection. The temperature profile becomes 
very much linear in absence of suction / injection (Re=0). In presence of higher suction / injection more amount of 
fluid is pushed into the flow field through the plate due to which the flow field suffers a decrease in temperature of 
the flow field at all points.   
 

  
Fig. 4: Temperature profile against y for different 

values of Pr with z=0, ε=0.02, M=1, Re=0.5 
Fig. 5: Temperature profile against y for different 

values of Re with z=0, ε=0.02, M=1, Pr =0.71 
 

4.4. Skin friction 
 

The skin friction at the wall for different values of suction / injection parameter (Re) has been entered in Table 1.  
The suction / injection parameter reduces the skin friction at the wall in x-direction while it enhances the magnitude 
of z-component of the skin friction at the wall. 
 
Table 1: Values of skin friction at the wall for different 

values of suction / injection parameter (Re) 
 

 Re τx τz 

0 0.8509 -0.0773 
0.01 0.8467 -0.0817 
0.2 0.7616 -0.7228 
0.5 0.6785 1.3491 

 

Table 2: Values of rate of heat transfer at the wall 
for different values of Prandtl number (Pr) 

 

 Pr Nu 

0.71 -1.5030 
1 -0.7494 
2 0.0936 
7 0.1437 

 
4.5. Rate of heat transfer 
 

The rate of heat transfer in terms of Nusselt number (Nu) for different values of the Prandtl number (Pr) is presented 
in Table 2. The Prandtl number (Pr) is found to enhance the rate of heat transfer at the wall. It is interesting to 
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observe that for lower value of Pr (≤1), the rate of heat transfer assumes negative values while for higher values (Pr 

≥1), it takes positive values. 
 
5. Conclusion 
 

The present analysis brings out the following interesting results of physical interest on the velocity and 
temperature of the flow field:  
i)   The magnetic parameter (M) retards the main velocity (u) at all points of the flow field due to the magnetic 

pull of the Lorentz force acting on the flow field and accelerates the cross velocity (w1) of the flow field.      
ii) The suction / injection parameter (Re) decelerates the main velocity of the flow field while no appreciable 

effect is observed for cross velocity of the flow field. 
iii) The Prandtl number (Pr) reduces the temperature of the flow field at all points.   
iv) The suction / injection parameter (Re) diminishes the temperature of the flow field at all points. 
v) The suction / injection parameter reduces the x-component of skin friction and enhances the magnitude of z-

component of the skin friction at the wall. 
vi) The rate of heat transfer at the wall (Nu) increases with the increase of the Prandtl number (Pr) of the flow 

field. 
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