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Abstract:  
An analysis is performed to study the thermal radiation and chemical reaction effects on coupled heat 

and mass transfer by MHD natural convective boundary-layer flow of a micropolar fluid over a 

permeable truncated cone with variable surface temperature and concentration. A suitable set of 

dimensionless variables is used to transform the governing equations of the problem into a non-

similar form. The resulting non-similar equations have the property that they reduce to various 

special cases previously considered in the literature. An adequate and efficient implicit, tri-diagonal 

finite difference scheme is employed for the numerical solution of the obtained equations. Various 

comparisons with previously published work are performed and the results are found to be in 

excellent agreement. A representative set of numerical results for the velocity, microrotation, 

temperature and concentration profiles as well as the local skin-friction coefficient, local wall couple 

stress, local Nusselt number and the local Sherwood number is presented graphically for various 

parametric conditions and discussed. 
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NOMENCLATURE 

 
ar Rosseland mean extinction coefficient 

B        spin gradient viscosity parameter 

Bo magnetic induction 

c         concentration 

cp specific heat at constant pressure 

Cf local skin-friction coefficient, 2
r0y U/)y/u(2   

D mass diffusivity 

f dimensionless stream function 

fo wall mass transfer coefficient, 4/1
ox

4
oo )Gr/x(/v   

g microrotation 

g
*
 gravitational acceleration 

*x
Gr  local Grashof number, gcosT(Tw-T)(x

*
)

3
 /

2 

h local heat transfer coefficient 

hm local mass transfer coefficient 

j        microinertia density 

K micropolar fluid vortex viscosity parameter 

k thermal conductivity 

kr        dimension of chemical reaction 

Ha Hartmann number, 2/12/1
x

4
o

2
o

* ))Gr/x)(/(B(
o

  

N component of the microrotation vector 

normal to x-y plane 

*x
Nu  local Nusselt number, hx

*
/k 

Pr Prandtl number,  

r local radius of the truncated cone 

rt surface temperature parameter, Tw/T 

Rd radiation-conduction parameter, )]a(k/[T4 sr
3  

 

Sc Schmidt number, /D 

Shx* local Sherwood number, hmx
*
/D 

T temperature 

u velocity component in the x-direction 

Ur reference velocity, [gcosT(Tw-T)x
*
]

1/2
 

v velocity component in the y-direction 

vo wall suction or injection velocity 

x streamwise coordinate 

xo distance of the leading edge of truncated 

cone measured from the origin 

x* distance measured from the leading edge of 

the truncated cone, x-xo 

y transverse coordinate 
 

Greek Symbols 

 thermal diffusivity 

c coefficient of concentration expansion 

mailto:achamkha@yahoo.com
mailto:elkabeir@yahoo.com
mailto:am_rashad@yahoo.com


A. J. Chamkha, S.M.M. EL-Kabeir, A.M. Rashad/ Journal of Naval Architecture and Marine Engineering 10(2013) 139-150 

 

Coupled heat and mass transfer by MHD natural convection of micropolar fluid about a truncated cone in the presence of... 158 

T coefficient of thermal expansion 

 dimensionless of chemical reaction 

 pseudo-similarity variable 

 concentration to thermal buoyancy ratio, 

))TT(/()cc( wTwc    

 dimensionless concentration, (c-c)/(cw-c) 

 dimensionless temperature, (T-T)/(Tw-T)  

 dimensionless distance 

 kinematic viscosity 

     half angle of the truncated cone 

 density 

 Stefan-Boltzmann constant 


 electrical conductivity  

s scattering coefficient 

 stream function 

Subscripts 
w condition at the wall 

 condition at infinity 

1. Introduction 

An important categories of non-Newtonian fluids include viscoelastic fluids which show partial elastic recovery 

on removal of the deforming stress, pseudoplastic fluids which exhibit a yield stress feature and represent 

accurately for example heavy crude oils with a high wax content, and Bingham plastics which do not flow until 

a certain critical yield stress is attained. Micropolar fluids are fluids with microstructure belonging to a class of 

fluids with nonsymmetrical stress sensor referred to as polar fluids. Physically, they represent fluids consisting 

of randomly oriented particles suspended in a viscous medium, and this fluid is the fluid with internal structures 

in which coupling between the spin of each particle and the macroscopic velocity field is taken into account. It 

is a hydrodynamical framework suitable for granular systems which consist of particles with macroscopic size, 

and they are important to engineers and scientists working with hydrodynamic-fluid problems and phenomena. 

Examples of the latter include metallic oxides, clay-water suspensions (e.g. river sediments), dental creams, 

paints and thickened hydrocarbon greases. The theory about micropolar fluids and the momicropolar fluids has 

been developed by Erigen (1966,1972), and excellent reviews about the applications of micropolar fluids have 

been written by Airman et al. (1973,1974). EL-Kabeir (2004) analyzed radiative effects on forced convection 

flows in micropolar fluids with variable viscosity. EL-Kabeir (2005) discussed the Hiemenz flow of a 

micropolar viscoelastic fluid in hydromagnetics. EL-Kabeir and Modather (2007) have also presented a study 

for chemical reaction, heat and mass transfer on MHD flow over a vertical isothermal cone surface in 

micropolar fluids with heat generation/absorption. Cheng (2008) presented a boundary-layer analysis about the 

natural convection heat transfer near a vertical truncated cone with power-law variation in surface temperature 

in a micropolar fluid. Chang (2008) discussed numerical simulation for natural convection of micropolar fluids 

flow along slender hollow circular cylinder with wall conduction effect. Rebhi et al. (2009) studied combined 

effect of heat generation or absorption and first-order chemical reaction on micropolar fluid flows over a 

uniformly stretched permeable surface. Modather et al. (2009) considered the effect of chemical reaction on the 

heat and mass transfer of micropolar fluids in a saturated porous medium over an infinite moving permeable 

plate. EL-Kabeir et al. (2010) investigated coupled heat and mass transfer on MHD stagnation-point flow of a 

power-law fluid towards a stretching surface with thermal radiation and chemical reaction effects. Pal and 

Chatterjee (2010) studied the heat and mass transfer in MHD non-Darcian flow of a micropolar fluid over a 

stretching sheet embedded in a porous media with non-uniform heat source and thermal radiation. Kishan and 

Amrutha (2011) studied the effects of thermal stratification and chemical reaction on MHD flow with heat and 

mass transfer over a stretching surface with heat source. EL-Kabeir et al. (2011) discussed the heat transfer in a 

micropolar fluid flow past a permeable continuous moving surface. Rashidi et al. (2011) studied the analytic 

approximate solutions for heat transfer of a micropolar fluid through a porous medium with radiation. Pal (2011) 

analyzed the combined effects of non-uniform heat source/sink and thermal radiation on heat transfer over an 

unsteady stretching permeable surface. The effects of Joule-heating, chemical reaction and thermal radiation on 

unsteady MHD natural convection from a heated vertical porous plate in a micropolar fluid are analyzed by 

Chamkha et al. (2011). Rashad (2013) studied the effect of thermal radiation on unsteady MHD flow of a 

rotating fluid from stretching surface in porous medium. 

 

Hence, the purpose of the present work is to study the effects of chemical reaction and thermal radiation on the 

coupled heat and mass transfer by MHD natural convection boundary-layer flow of a micropolar fluid over a 

permeable truncated cone with variable surface temperature and concentration. The governing boundary-layer 

equations have been transformed to a non-similar form, and these have been solved numerically. The effects of 

magnetic field, thermal radiation, chemical reaction, injection or suction and power-law variations of both the 

wall temperature and concentration on the velocity, microrotation, temperature and concentration profiles as 

well as the local skin-friction coefficient, local couple stress, local Nusselt number and local Sherwood number 

have been shown graphically and discussed. 
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3. Governing Equations 

Consider the problem of coupled heat and mass transfer by MHD natural convection, boundary layer flow of an 

electrically-conducting, optically dense and micropolar fluid about a truncated permeable cone in the presence 

of radiation and chemical reaction effects. Figure 1 shows the flow model and the physical coordinate system. 

The origin of the coordinate system is placed at the vertex of the full cone, where x is the coordinate along the 

surface of the cone measured from the origin and y is the coordinate normal to the surface, respectively. The 

cone surface is maintained at a variable temperature Tw(x) and a variable concentration cw(x) and the ambient 

temperature and concentration far away from the surface of the cone T and c are assumed to be uniform. For 

Tw>T and cw>c, an upward flow is induced as a result of the thermal and concentration buoyancy effects. Tw(x) 

and cw(x) are assumed to vary as power-law functions of the distance along the cone surface x. Fluid suction or 

injection is imposed at the cone surface. A uniform magnetic field is applied in the y-direction normal to the 

flow direction. The magnetic Reynolds number is assumed to be small so that the induced magnetic field is 

neglected. In addition, the Hall effect and the electric field are assumed negligible. The small magnetic 

Reynolds number assumption uncouples the Navier-Stokes equations from Maxwell’s equations. A first-order 

homogeneous chemical reaction is assumed to take place in the flow. The flow is assumed laminar, steady and 

all of the micropolar fluid properties are assumed to be constant except for the density variation in the buoyancy 

force term. By invoking all of the boundary layer, Boussineq and Rosseland diffusion approximations (see, for 

instance, Yih (1999) and Chamkha (2001)) the governing equations for this investigation can be written as; 

0
)()(











y

rv

x

ru
,                                                                                                 (1) 

* 22
* *

2
( )cos ( )cos o

T c

Bu u k u k N
u v g T T g c c u

x y y y


 

  
 

     
        

    

,             (2) 

2

2
2

N N N k u
u v N

x y j y j y



 

    
    

    

,                                                                                (3) 



































y

T
T

ycay

T

y

T
v

x

T
u

psr

3

2

2

)(3

16




 ,                                                                    (4) 

)(
2

2















cck

y

c
D

y

c
v

x

c
u r

,                                                                                                 (5) 

where all of the parameters are defined in ‘Nomenclature’. 
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Figure 1: Problem Schematics and Coordinate System 

 

The boundary and ambient conditions for this problem can be written as: 

1 10 : 0, , , ( ) ( ) , ( ) ( )n n

o w o w o

u
y u v v N m T T x T a x x c c x c b x x

y
 


             


        (6) 

: 0, 0,  ,y u N T T c c      ,                                                                          (7) 
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where vo represents the transpiration velocity of fluid through the surface of the cone or the permeability of the 

porous surface where its sign indicates suction or withdrawal of fluid (>0) , blowing or injection of fluid (<0) 

and (=0) is the case when the cone surface is impermeable. Here a1, b1 and n are constants. 

 

The boundary layer remains thin because it grows less quickly than does the radius of the cone. The local radius 

to a point in the boundary layer, therefore, can be replaced by the radius of the truncated cone r, i.e., r = x sin . 

Eqs. (1)-(7) are valid in x0<x <. The continuity equation may be satisfied by introducing a stream function by 

the customary definition. We follow the work of Rees and Bassom (1996) by assuming that γ
*
 is given by,  
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                                                                                         (8) 

The governing equations and boundary conditions can be made dimensionless by introducing the stream 

function such that 
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where Ur is a reference velocity. 

 

Substituting Equations (9) and (10) into Equations (1) through (7) yields the following non-similar 

dimensionless equations: 
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are the square of the Hartmann number, concentration to thermal buoyancy ratio, Prandtl number, radiation-

conduction parameter, spin gradient viscosity parameter, micropolar fluid vortex viscosity parameter, surface 

temperature parameter, Schmidt number, dimensionless chemical reaction parameter and mass transfer 
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coefficient, respectively. It is should be noted that positive values of f0 indicate fluid suction at the cone surface 

while negative values of f0 indicate fluid blowing or injection at the wall.  

       Equations (9) through (11) represent general equations which include various special cases. For example, by 

formally setting all of Ha, N and n equal to zero, Equations (9) and (10) reduce to those reported earlier by Yih 

(1999) in his work concerning laminar natural convection over a truncated cone with uniform wall temperature 

and concentration the absence of a magnetic field and mass diffusion effect. Also, in the absence of chemical 

reaction (= 0), for constant wall temperature and concentration (n=0), Equations (9) and (10) reduce to those 

reported by Chamkha (2001). 

 

The local skin-friction coefficient Cf, local Nusselt number Nux*, local wall couple stress Mw, and the local 

Sherwood number Shx* are important physical properties. These can be defined in dimensionless form below as 

given by Yih (1999) and Chamkha (2001). 
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3. Numerical Method 
 

The initial-value problem represented by Equations (11) through (16) with  playing the role of time is nonlinear 

and has no closed-form solution. Therefore, it must be solved numerically. The implicit, tri-diagonal, finite-

difference method discussed by Blottner (1970) has proven to be adequate for the solution of boundary-layer 

equations accurately. For this reason, it is adopted in this work. All first-order derivatives with respect to  are 

replaced by two-point backward difference quotients such that; 
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,               (19) 

where A is a typical independent variable; m and n indicate lines of constant  and constant , respectively. m-

1 is the  step size between the m-1 and m lines of constant Equation (9) is converted into a second-order partial 

differential equation by letting V = f. Then, all equations governing V,g,  and  can be written in the general 

form 

04321   ZZZ ,                            (20) 

where Z = V, g, , or  and the 's are constants, functions of the dependent variables, or functions of the 

independent variables.  These equations are discretized using three-point central-difference quotients and, as a 

consequence, a set of algebraic equations results at each line of constant . These algebraic equations are then 

solved by the well-known Thomas algorithm (see Blottner (1970)) with iteration to deal with the non-linearities 

of the problem.  When the solution at a specific line of constant  is obtained, the same solution procedure is 

used for the next line of constant . This marching process continues until the desired value of  is reached.  At 

each line of constant , when V is known, the equation f'= V is then solved for f using the trapezoidal rule.  The 

convergence criterion employed was based on the difference between the current and the previous iterations.  

When this difference reached 10
-5

, the solution was assumed converged and the iteration procedure was 

terminated.  Variable step sizes in the  direction and constant step sizes in the  direction were utilized in order 

to accommodate the sharp changes in the dependent variables especially in the immediate vicinity of the cone 

surface. The (, ) computational domain consisted of 101 and 196 points, respectively.  The constant step size 

in  was taken to be 10
-2

 while the initial step size in  was taken to be equal to 10
-3

 and the growth factor was 

taken to be 1.04. This gave  = 150. These values were found to give accurate grid-independent results as 

verified by the comparisons mentioned below. In order to access the accuracy of the numerical results, various 

comparisons with the previously published work of Yih (1999) and Chamkha (2001) for the cases of a vertical 

plate ( = 0) and a full cone ( = ) were performed.  These comparisons are presented in Tables 1 and 2. It is 

obvious from these tables that excellent agreement between the results exist. These favourable comparisons lend 

confidence in the graphical results to be reported in the next section. 
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Table 1: Comparison of values of  f(0,0) and -(0,0) for various values of Pr with fo = 0, n=0, Ha== 0, N = 0, 

=0 and Rd = 0. 

Pr 
f(0,0) -(0,0) 

Yih (1999) 
Chamkha 

(2001) 

Present 

results 
Yih (1999) 

Chamkha 

(2001) 

Present 

results 

0.0001 

0.001 

0.01 

0.1 

1 

10 

100 

1000 

10,000 

1.4998 

1.4728 

1.3968 

1.2144 

0.9084 

0.5927 

0.3559 

0.2049 

0.1161 

1.4997 

1.4727 

1.3965 

1.2151 

0.9081 

0.5927 

0.3558 

0.2049 

0.1161 

1.4997 

1.4727 

1.3965 

1.2151 

0.9081 

0.5927 

0.3558 

0.2049 

0.1161 

0.0060 

0.0189 

0.0570 

0.1629 

0.4012 

0.8266 

1.5493 

2.8035 

5.0127 

0.0059 

0.0188 

0.0574 

0.1630 

0.4015 

0.8274 

1.5503 

2.8044 

5.0131 

0.0059 

0.0188 

0.0574 

0.1630 

0.4015 

0.8274 

1.5503 

2.8044 

5.0131 

 

Table 2: Comparison of values of  f(,0)and -(,0) for various values of Pr with fo = 0, n=0, Ha == 0, N= 

0, =0 and Rd = 0. 

Pr 
f(,0) -(,0) 

Yih (1999) 
Chamkha 

(2001) 

Present 

results 
Yih (1999) 

Chamkha  

(2001) 

Present 

results 

0.0001 

0.001 

0.01 

0.1 

1 

10 

100 

1000 

10,000 

1.6006 

1.5135 

1.3551 

1.0960 

0.7699 

0.4877 

0.2896 

0.1661 

0.0940 

1.6005 

1.5133 

1.3549 

1.0962 

0.7697 

0.4877 

0.2895 

0.1661 

0.0940 

1.6005 

1.5133 

1.3549 

1.0962 

0.7697 

0.4877 

0.2895 

0.1661 

0.0940 

0.0079 

0.0246 

0.0749 

0.2116 

0.5109 

1.0339 

1.9226 

3.4696 

6.1984 

0.0078 

0.0245 

0.0751 

0.2116 

0.5111 

1.0342 

1.9230 

3.4700 

6.1988 

0.0078 

0.0245 

0.0751 

0.2116 

0.5111 

1.0342 

1.9230 

3.4700 

6.1988 

 

4. Results and Discussion 

In this section, a detailed parametric study has been performed for the effects of the Hartmann number Ha, 

micropolar vortex viscosity parameter K, wall temperature and concentration exponent n, thermal radiation 

parameter Rd, dimensionless chemical reaction parameter , and the suction/injection parameter fo on the 

velocity, microrotation, temperature, and concentration profiles as well as the local skin-friction coefficient, 

local wall couple stress, local Nusselt number and the local Sherwood number is presented graphically in 

Figures 2 through 19. All data are provided in the legends of these figures correspond to a micropolar fluid 

having a high vortex viscosity (K=2) i.e. is strongly non-Newtonian (unless otherwise indicated) with B=1.0. 

Since =1  in these figures, the thermal and species buoyancy forces are of the same order of magnitude and 

assist each other. Pr is set as 7.0 corresponding to water and Sc = 0.78 implies a dominance of momentum 

diffusivity over species diffusivity.  
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Figure 2: Effects of  Ha and  on velocity profiles Figure 4: Effects of Ha and   on temperature profiles 
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Figure 3: Effects of Ha and   on microrotation profiles Figure 5: Effects of Ha and  on concentration profiles 

 

Figures 2-5 show the effects of the Hartmann number Ha and the chemical reaction parameter  on the fluid 

velocity f', angular velocity field (microrotation) g, temperature  and concentration   profiles, respectively. 

The results show that the presence of the magnetic force causes retardation of the fluid motion represented by 

general decreases in the fluid velocity and angular velocity (except far away the wall which is governed by the 

special boundary condition there) and increases in its temperature and solute concentration. These behaviors in 

f', , and   are accompanied by increases in all of the hydrodynamic, thermal, and concentration boundary 

layers as Ha increases. On other hand, it is seen that the velocity, angular velocity (microrotation) and 

concentration profiles decrease with increases in the chemical reaction parameter, while a small increase in the 

temperature profiles occurs. This shows that the diffusion rates can be tremendously altered by chemical 

reactions. It is also important to note that increasing the chemical reaction parameter significantly alters the 

concentration boundary layer thickness without any significant effect on the momentum and thermal boundary 

layers. 
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Figure 6: Effects of Ha and  on development of skin-

friction coefficient 
Figure 7: Effects of Ha and  on development of wall 

couple stress  
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Figure 8: Effects of Ha and  on development of 

Nusselt number 
Figure 9: Effects of Ha and  on development of 

Sherwood number 
 

Figures 6-9 present the effects of the Hartmann number Ha on the local skin-friction coefficient Cf, local wall 

couple stress Mw, local Nusselt number Nux•, and the local Sherwood number Shx•, respectively. As seen from 

the definitions of Cf, Mw, Nux•, and Shx•, they are directly proportional to f"(,0), g' (,0), -'(,0) and -'(,0), 

respectively. For this reason, these are shown in Figures 6-9. It was observed from Figures 2-5 that the wall 
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slope of the velocity and microrotation profiles decreases while the slopes of the temperature and concentration 

profiles increase as Ha increases. This produces reductions in all of Cf, Mw, Nu x•, and Sh x• as Ha increases as 

depicted in Figures 6 through 9. It is also observed from these figures that in the presence of magnetic effect at 

Ha=1.0 and 2.0, all of f"(,0),-'(,0) and -',0) decrease with increasing values of  while g'(,0) increases 

and the opposite behavior occurs in the absence of magnetic effect for Ha= 0.  Further, it can be seen that as γ 

increases, the Sherwood number increases while the opposite effect is found for the skin-friction coefficient, 

wall couple stress and the Nusselt number. This is because as γ increases, the concentration difference between 

the cone surface and the fluid decreases and so the rate of mass transfer at the wall must increase while both of 

the skin-friction coefficient and wall couple stress decrease as a result of the decrease in the flow and the 

microrotation velocities of the fluid. 
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Figure 10: Effects of fo and Rd on velocity profiles Figure 11: Effects of fo and Rd on microrotation profiles 
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Figure 12: Effects of fo and Rd on temperature profiles Figure 13: Effects of fo and Rd on concentration profiles 
 

Figures 10-13 illustrate the velocity, angular velocity (microrotation), temperature and concentration profiles 

with variation in the wall suction/blowing parameter fo and the radiation-conduction parameter Rd, respectively. 

Imposition of fluid suction (fo>0) at the cone surface has a tendency to reduce all of the hydrodynamic, thermal 

and concentration boundary layers. This causes all of the velocity, temperature and concentration to decrease, 

whereas the micro-rotation increases with negative values at every point far from the surface. On the other hand, 

injection of fluid (fo<0) through the cone surface produces the opposite effect, namely increases in all of the 

velocity, temperature and concentration and decrease in the micro-rotation profiles. These behaviours are clearly 

shown in Figures 10 through 13. Consistent with the behaviour reported by Yih (1999) and Chamkha (2001), 

increasing the value of Rd results in increases in both the velocity and temperature profilers and the maximum 

velocity tends to move away from the cone surface, whereas the decrease. However, both of the angular velocity 

(microrotation) and concentration profiles tend to decrease as a result of increasing the radiation effect as 

observed from Figures 10 and 13. 

 

The effects of both fo and Rd on the development of the local skin-friction coefficient [or f"(,0)], the local wall 

couple stress [or g'(,0)], the local Nusselt number [or -'(,0)] and the local Sherwood number [or -'(,0)]  are 

displayed in Figures 14 through 17, respectively. It is predicted that as the wall suction/blowing parameter fo 

increases, the local skin-friction coefficient decreases (only in the absence of radiation effect) while the local 

wall couple stress coefficient, local Nusselt number and the local Sherwood number increase. In addition, it is 

observed from these figures that increasing the value of the radiation parameter Rd causes increases in the local 

skin friction coefficient, local wall couple stress, and the local Sherwood number. However, the local Nusselt 

number tends to decrease due to increases in the values of the radiation parameter Rd.  
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Figure 14: Effects of fo and Rd on development of skin-

friction coefficient 
Figure 16: Effects of fo and Rd on development of 

Nusselt number 
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Figure 15: Effects of fo and Rd on development of wall 

couple stress 
Figure 17: Effects of fo and Rd on Development of 

Sherwood number 
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Figure 18: Effects of K and n on velocity profiles Figure 19: Effects of K and n on temperature profiles 
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Figure 20: Effects of K and n on microrotation profiles Figure 21: Effects of K and n on concentration profiles 
 

In Figures 18-21, the effects of the wall temperature and concentration exponent n and the micropolar fluid 

vortex viscosity parameter K on the velocity, temperature, and concentration profiles are respectively presented. 

For a given value of K, an increase in the exponent n tends to decelerate the flow around the cone surface and 

the angular velocity with reductions in the temperature and concentration profiles as depicted in Figures 18 
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through 21. Furthermore, it is observed from these figures that for a given value of n, as the vortex viscosity 

parameter K increases, the angular velocity and the concentration profiles increase whereas both of the velocity 

and temperature profiles decrease. 
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Figure 22: Effects of K and n on development of skin-

friction coefficient 
Figure 24: Effects of K and n on development of 

Nusselt number 
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Figure 23: Effects of K and n on development of wall 

couple stress 
Figure 25: Effects of K and n on Development of 

Sherwood number 
 

In Figures 22 through 25, the effects of n and K on the values of Cf, Mw, Nux•, and Shx• are presented, 

respectively. In these figures, it is predicted that, regardless of the value of K, an increase in the value of n 

results in a decrease in both of the local friction coefficient Cf and the local wall couple stress Mw while higher 

heat transfer rates Nux• can be obtained by increasing the value of n for certain values of . Moreover, it is seen 

that the mass transfer is enhanced by increasing the value of n. In addition, as the vortex viscosity parameter K 

increases, all values of Cf, Mw, Nux•, and Shx• decrease. It should also be noted that the increase in the local wall 

couple stress due to decreasing the value of the viscosity parameter K is more pronounced than for the local 

friction coefficient, local Nusselt and Sherwood numbers.  

Conclusion  

In this paper, the effects of chemical reaction and thermal radiation on the coupled heat and mass transfer by 

MHD natural convection boundary-layer flow of a micropolar fluid over a permeable truncated cone with 

variable surface temperature and concentration were studied. The governing boundary-layer equations were 

transformed into a non-similar form, and these equations were solved numerically. The effects of magnetic field, 

thermal radiation, chemical reaction, injection or suction and power-law variations of both the wall temperature 

and concentration on the velocity, microrotation, temperature and concentration profiles as well as the local 

skin-friction coefficient, local couple stress, local Nusselt number and the local Sherwood number were shown 

graphically and discussed. Increasing the magnetic field parameter and the micropolar fluid vortex viscosity 

parameter resulted in decreases in all of the local skin-friction coefficient, local couple stress, local Nusselt and 

Sherwood numbers. The presence of a homogeneous chemical reaction led to decreases in the local skin-friction 

coefficient, local wall couple stress and the local Nusselt number while the local Sherwood number increased. 

Increasing the suction/injection parameter resulted in reduction in the local skin-friction coefficient whereas the 

local couple stress, local Nusselt and Sherwood numbers local couple stress, local Nusselt and Sherwood 

numbers enhanced. In addition, the presence of a thermal radiation led to increases in the local skin-friction 

coefficient, local couple stress, local Sherwood number while the local Nusselt number decreased. Increasing 

the wall temperature and concentration exponent reduced both the local skin-friction coefficient and the local 

couple stress whereas both the local Nusselt and Sherwood numbers increased 
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