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Abstract: In this paper, the parameters of a thermodynamically consistent k – ε model of turbulence are first determined, 
and the numerical values of the various model coefficients are evaluated. Limiting flows of a decaying homogeneous 
turbulence, turbulent flow in the inertial sublayer, and known properties of purely diffusive turbulence are used for this 
purpose. The thermodynamically consistent model is then incorporated into an enhanced version of the TEACH computer 
code called STARPIC. Finally, the modified computational code is used to simulate the flow through a channel to assess its 
capability in predicting turbulent flows. The computational results are compared with available experimental data, and 
found to have reasonable matching. The flows are also simulated using standard k – ε model, for comparison. It is observed 
that the present thermodynamically consistent modified k – ε model predictions are better compared to the standard k – ε 
model predictions.  
 
INTRODUCTION 
 

Turbulence modeling has attracted considerable 
attention in recent years for solving practical turbulent flow 
problems. Simplified one and two-equation models and 
more elaborate stress transport models were developed in 
the past. Extensive reviews were provided in the 
literature1–6. The k – ε model has been extensively used for 
solving practical industrial turbulent flow problems1–3,7,8. 
One reason for the popularity of the two-equation model is 
that it can be conveniently accommodated in the computer 
codes for solving the Navier-Stokes equation. However, 
several questions concerning the accuracy of the standard k 
– ε model have been raised. Especially, the closure 
assumptions involved in the ε-equation are not considered 
to be satisfactory9,10.  

The averaged form of the Clausius-Duhem inequality 
was derived by Ahmadi6 and its consequences on 
turbulence modeling were discussed. Based on the 
thermodynamical arguments a two-equation turbulence 
model was developed which resembles the k – ε model6,11. 
In the new model, the k-equation remains unchanged, 
while the ε-equation is quite different from the standard 
one. That is, the standard ε-equation is not consistent with 
the second law of thermodynamics, while the new ε-
equation is consistent.  

The purpose of this study is to first determine the 
parameters for the above model equations. Limiting flows 
of a decaying homogeneous turbulence and turbulent flow 
in the inertial sublayer are used for this purpose. The new 
model is then used to study a purely diffusive turbulence in 
the absence of a mean velocity field. The experimental 
results of Hopfinger and Toly12 are used to evaluate the 
values of some constants. Finally, the new model is 
incorporated into a computer code, and is used to simulate 
the flow through a channel to assess its capability in 
computing complex turbulent flows.  
 
BASIC EQUATIONS 
 
 The equations governing the mean turbulent motion 
of an incompressible fluid are given as6,11,  
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Equations (1) – (4) are the statements of conservation of 
mass, balance of linear momentum, conservation of 
thermal energy, and conservation of turbulence fluctuation 
energy. Eq. (5) which is a transport equation for dissipation 
rate was derived from the entropy inequality6,11. In these 
equations ρ is the mass density, vi is the mean velocity, fi is 
the body force per unit mass, µ is the coefficient of 
viscosity, µT is the coefficient of turbulent (eddy) viscosity, 
P is the total mean pressure, C is the averaged heat 
capacity, θ is the modified averaged temperature, κ is the 
heat conductivity, σθ and σk are the turbulent Prandtl 
numbers, ε is the dissipation rate, r is the internal heat 
source per unit mass, k is the fluctuation kinetic energy and 
σε is a turbulent Prandtl number corresponding to ε. In 
these equations regular tensor notation with Latin 
subscripts is employed. Thus, indices after a comma denote 
_______________________________________________ 
Nomenclature 
Cε1, Cε2, Cε3, Cµ  coefficients in turbulence model 
H  half-width of channel 
k  turbulent kinetic energy 
P  total mean pressure 
Re  Reynolds number 
vi  mean velocity 
U  mean axial velocity 
Uc  centerline mean velocity 
u*  shear velocity 
y  distance from channel wall 
ε  dissipation rate of turbulence kinetic energy 
µ  coefficient of viscosity 
µT  coefficient of turbulent or eddy viscosity 
ρ  mass density 
σk  turbulent Prandtl number corresponding to k 
σε  turbulent Prandtl number corresponding to ε 
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partial derivatives and a dot on the top of a letter stands for 
material derivative with respect to the mean flow. 

The constants Cε1, Cε2 and Cε3 in Eq. (5) are restricted 
to,  

,01 1 ≥≥ ε

α
C  ,12

α
ε ≥C  ,01 3 ≥≥ ε

α
C  α > 0  (6) 

The eddy viscosity is given as, 

ε
ρµ µ

2kCT =         (7) 

where Cµ is a constant. 
Equations (1) – (5) together with Eq. (7) form a 

complete set of seven transport equations for determining 
the seven unknowns vi, k, θ, ε and P. These equations are 
almost identical to those of the standard k – ε model3, 
except Eq. (5) which is somewhat different from the 
common ε-equation. The differences appear in the 
diffusion and destruction terms.  
 
CONSTRAINTS ON THE MODEL PARAMETERS 
 

The developed model involves several coefficients 
which must be estimated. Known properties of simple 
turbulent flows may be used to relate these coefficients.  

Decay Behind a Grid: Consider a homogeneous 
decaying turbulence behind a grid. For small axial 
diffusion. Eqs. (4) and (5) become, 
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where Uo is the constant axial mean velocity. Eqs. (8) and 
(9) accept the following solutions, 
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These results are identical to that of the standard k – ε 
model. Comparing Eq. (10) with the experimental data, it 
follows that1,3 Cε2 ≈ 2. The values of Cε2 =1.9 is 
recommended in more recent works2,4,13.  

Inertial Sublayer: In the inertial sublayer close to the 
wall, k becomes a constant, the production is equal to 
dissipation and Eqs. (4) and (5) may be restated as, 
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The turbulent flow in the inertial sublayer is 
characterized by a velocity scale u* (shear velocity) and a 
length scale y (distance from the wall). The flow field 
parameters are then given as1,14, 
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           (13) 
where κ is the Karman constant. Using Eq. (13), Eq. (11) is 
now identically satisfied. If σε be treated as a constant, Eq. 
(12) accepts the solution given by Eq. (13) if, 
Cε1   =   Cε2           (14) 

But with Eq. (14), it may be shown that the model 
predicts the existence of an equilibrium homogeneous 
uniform shear field. However, the existing experimental 
data show that such flows are continuously evolving15. To 

avoid Eq. (14), while still ensuring that the model accepts 
the inertial sublayer solutions given by Eq. (13), it is 
assumed that, 
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where β and σεo are some constants. Using Eq. (15), it 
follows that Eq. (13) satisfies Eq. (12) if,  
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Diffusive Homogeneous Turbulence: Sonin16 used 
the data of Thompson et al.17 and Hopfinger et al.12 for a 
purely diffusive homogeneous turbulence (with zero mean 
velocity) to calibrate the constants of the standard k – ε 
model. He also noted an inconsistency in the commonly 
used values of the constants. 

In the absence of a mean velocity field, Eqs. (4) and 
(5) may be restated as, 
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Eqs. (17) and (18) imply that the diffusions of k and ε 
must be, respectively, balanced by the dissipation rate and 
net destruction of ε. For σk constant and σε given by Eq. 
(15), from Eq. (17) the solutions are found as, 
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where Ko and Eo are some constants and their relation is 
also obtained as,  

2
3

00 7348.0 KE =         (20) 
Substituting Eq. (15) and Eq. (19) into Eq. (18) we get 

for n=2, 
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Here we have taken n=2, as experimental data of 
Hopfinger and Toly12 supports n=2. Eqs. (15), (16) and 
(21) then relates the parameters of the model. Now let, 

67.11 =εC , 92.12 =εC , 92.13 =εC , 42.0=κ , 
09.0=µC , 0.1=kσ        (22) 

Then from Eqs. (21) and (16) we obtain, 
257.00 =εσ , 109.0=β       (23) 

The constants in Eq. (23) are found for µT/µ = 1000. From 
Eq. (21), the value of Cε3 is obtained as,  
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92.13 =εC   when  1000≥
µ
µ T

     (25) 

These values are somewhat different from those used in the 
standard k – ε model. The coefficients satisfy the 
restrictions of Eq. (6).  

An enhanced version of the TEACH computer code 
called STARPIC is modified to account for the 
requirements of the above turbulence model based on the 
second law of thermodynamics. The computational model  
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is then used to simulate the turbulent flow through a 
channel. The modified computational code uses a 
staggered mesh finite volume method to discretize the 
governing differential equations. The computational 
domain is divided by a 46X34 non-uniform grid with finer 
spacing in the regions of large spatial gradients. The above 
differential equations are integrated over their appropriate 
staggered control volumes and discretized using a hybrid 
differencing scheme18. The discretized equations with 
boundary condition modifications are solved using the 
SIMPLE19 and TDMA algorithm. Here, semi-implicit line-
by-line relaxation method is employed to obtain converged 
solutions iteratively. Under relaxation factors are also used 
to promote computational stability. The results of 
computations are discussed in the subsequent sections.  
 
CHANNEL FLOW 
 

Turbulent flow through a channel has served as a 
primary benchmark for assessing the performance of 
various turbulence models in predicting turbulent flows. 
Using hot-film probes, the mean flow properties in a fully 
developed turbulent flow of oil in a channel were measured 
experimentally by Eckelmann20 and Kreplin and 
Eckelmann21. In these experiments a 22 cm wide and 79 
cm deep channel was used so that the flow may be 
considered as being roughly two-dimensional. The 
kinematic viscosity of the oil was 0.06 cm2/s. Eckelmann20 

performed the experiment at Reynolds number of 8200 
based on the channel width and centerline mean velocity. 
A Reynolds number of 7700 was used in the study of  
Kreplin and Eckelmann21.   

The computational code which incorporates the new 
modified k – ε model is used to simulate the turbulent 
channel flow of oil at a Reynolds number of 7700, for the 
above experimental conditions. The flow was also 
simulated using standard k–ε model for comparison. The 
predictions of the new model are compared with the 
experimental results20,21 and those by the standard k – ε 
model in Figs. 1 – 2. In these figures, the solid and dashed 
lines correspond to the predictions of the present model 
and those of the standard k – ε model, respectively, and the 
boxes correspond to the experimental data20,21.  

The variation of the nondimensional mean axial 
velocity U/Uc across the channel as predicted by the 
present model is shown in Fig. 1. Here, Uc is the centerline 
mean velocity, y is the distance from the channel wall and 
H is the half-width of the channel. The velocity distribution 
obtained using the standard k – ε model and the 
experimental data of Eckelmann20 for Reynolds number of 
8200 are also shown in this figure for comparison. It is 
observed that the predicted mean velocity distribution by 
both models is in good agreement with the experimental 
data, while the modified k – ε model doing slightly better.  

Fig. 2 shows the distribution of the predicted 
turbulence kinetic energy across the channel by both the 
new modified k – ε model and standard k – ε model, along 
with the experimental data of Kreplin and Eckelmann21. 
The turbulence kinetic energy k is nondimensionalized 
with the aid of the shear velocity u*. As mentioned above, y 
is the distance from the channel wall and H is the half-
width of the channel. The steep gradient of the velocity 
profile near the wall means shearing of the fluid layers 
which generates large amount of turbulence kinetic energy. 
But in the regions very close to the wall, dissipation rates 
are high as they are inversely proportional to the length 
scale (distance from the wall), and so turbulence kinetic 
energy profile very close to the wall goes down. It is 
observed that the predictions of the present model are in 
better agreement with the experimental data in comparison 
to those by the standard k – ε model.  

The presented results show that the 
thermodynamically consistent modified k – ε model is 
capable of predicting the features of turbulent flow through 
a channel.  

 
CONCLUSION 
 

Known properties of simple turbulent flows are first 
used to relate the coefficients of the thermodynamically 
consistent modified k – ε turbulence model. The numerical 
values of the model parameters are then evaluated.  

An enhanced version of the TEACH computer code 
called STARPIC, is modified to include this k – ε 
turbulence model based on the second law of 
thermodynamics. The modified computational code is then 
used to simulate the turbulent flow through a channel, and 
the results are compared with available experimental data. 
It is found that the model predictions have reasonable 
matching with the experimental data. The flow is also 
simulated using standard k – ε model, for comparison. It is 
observed that the present thermodynamically consistent 
modified k – ε model predictions are better compared to 
the standard k – ε model predictions.  

Figure 1: Comparison of dimensionless mean velocity 
profiles: □, experimental data of Eckelmann; 

_____, present model; -----, standard k-ε model.

Figure 2: Comparison of dimensionless turbulent 
kinetic energy profiles: □, experimental data of Kreplin 
et al.; _____, present model prediction; -----, standard 

k-ε model. 
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