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Abstract: Instantaneous kinematics of a mechanism becomes undetermined when it is in a singular 
configuration; this indeterminacy has undesirable effects on static and motional behavior of the mechanism. So 
these configurations must be found and avoided during the design, trajectory planning and control stages of the 
mechanism. This paper presents a new geometrical method to find singularities of single-dof planar mechanisms 
using the concepts of mechanical advantage and instant centers.  
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INTRODUCTION 

The concept of instantaneous center of rotation 
(instant center) was introduced by Johann Bernoulli1. 
Instant centers are useful for velocity analysis of 
planar mechanisms and for determining motion 
transmission between links2. The method has proved 
to be efficient in finding the input-output velocity 
relationships of complex linkages3. 

Another application of instant centers is 
singularity analysis of planar mechanisms. Different 
approaches have been adopted in dealing with 
singularity analysis of planar mechanisms; 
considering a mechanism as an input–output device, 
Gosselin and Angeles4 identified three types of 
singularities: 

Type (I) singularities (inverse kinematic 
singularities) occur when inverse instantaneous 
kinematic problem is unsolvable. This type of 
singularities occurs when at least one out of the 
input-variable rates can be different from zero even 
though all the output-variable rates are zero. In one-
dof mechanisms, such singularities occur when the 
output link reaches a dead center, i.e. when an output 
variable reaches a border of its range; also for this 
type of mechanisms, in type (I) singularities 
mechanical advantage becomes infinite because in 
this configurations, at least one component of output 
torque (force), applied to the output link, is 
equilibrated by the mechanism structure without 
applying any input torque (force) in the actuated 
joints. 

Type (II) singularities (direct kinematic 
singularities) occur when direct instantaneous 
kinematic problem is unsolvable. This type of 
singularities occurs when at least one out of the 
output-variable rates can be different from zero even 
though all the input-variable rates are zero. In one-
dof mechanisms, such configurations occur when the 
input link reaches a dead center. In type (II) 
singularities, a (finite or infinitesimal) output torque 

(force), applied to the output link, need at least one 
infinite input torque (force) in the actuated joints to 
be equilibrated, which in one-dof mechanisms, 
corresponds to a zero mechanical advantage. 

Type (III) singularities (combined singularities) 
occur when both the inverse and the direct 
instantaneous kinematic problems are unsolvable, i.e. 
when two previous singularities occurs 
simultaneously; In this type of singularities the 
input–output instantaneous relationship, used out of 
such singularities, holds no longer and the 
mechanism behavior may change. In one-dof 
mechanisms, these singularities lead to one or more 
additional uncontrollable dofs. 

Many articles have been presented for singularity 
analysis of single5-6 or multi7-10 dof planar 
mechanisms; some of these articles have 
geometrically addressed the singularity analysis of 
planar mechanisms using instant centers. For 
instance, Daniali10 classified singularities of 3-dof 
planar parallel manipulators through instant centers. 
Di Gregorio6 presented an exhaustive analytical and 
geometrical study about the singularity conditions 
occurring in single-dof planar mechanisms, which is 
based on the instant centers. He also9 found singular 
configurations of multi dof planar mechanisms, 
considering the n dof mechanisms as the union of n 
one dof planar mechanisms and using the principle of 
superposition. 

There is a close relation between singularities of a 
one-dof mechanism and its stationary configurations; 
in this case, Yan and Wu11, 12 gave a geometric 
criterion to identify which instant centers coincide at 
a stationary configuration11 and developed a 
geometric methodology to generate planar one-dof 
mechanisms in dead center positions12. Here the 
author presents a method for singularity analysis of 
one-dof planar mechanisms using the concepts of 
mechanical advantage and instant centers. 
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This paper is organized as follows: some notations 
are presented in section 2; section 3 shows how 
instant centers can be used to calculate mechanical 
advantage of single dof planar mechanisms; in 
section 4, singularities of single dof planar 
mechanisms are analyzed using the results obtained 
in previous section; in section 5, two illustrative 
examples are presented to show the method; and 
finally section 6 presents some conclusions of this 
research activity. 

 
NOTATION 

As it is shown in the next section, mechanical 
advantage of a single dof mechanism can be 
computed using only the instant centers of the 
relative motions among the four links: input link (i), 
output link (o), reference link (1) used to evaluate the 
rate of the input and output variables and link (k) 
which is an arbitrary link except the three previous 
links. The input (output) variable is a geometric 
parameter that defines the pose (position and 
orientation) of link ‘‘i’’ (‘‘o’’) with respect to link 
‘‘1’’. 

For the four links mentioned above, the different 
relative motions are six, and they will be denoted ‘‘1i 
’’, ‘‘ok’’, ‘‘ik’’, ‘‘1k ’’, ‘‘oi’’ and ‘‘1o ’’ (the second 
letter indicates the link from which the motion of the 
link, denoted by the first letter, is observed). The 
instant centers of these six motions will be denoted 
as Cmn, where mn ∈ {ip, ok, ik, kp, oi, op }. Cmn will 
denote the position vector that locates the instant 
center Cmn in the plane of motion (it is meant that all 
the position vectors are defined in a unique reference 
system fixed to the plane of motion). According to 
the Aronhold–Kennedy theorem, these instant centers 
must lie on the straight lines shown in Fig. 1. 

In this paper, we just consider a single input-single 
output mechanism (SISO mechanism), however a 
one dof single input-multiple output mechanism 
(SIMO mechanism) can be considered as n 
independent SISO mechanisms working in parallel. 
 

 
Figure 1. Straight lines the six instant centers lie on. 

 
 
 
 

MECHANICAL ADVANTAGE AND INSTANT 
CENTERS 

If we assume that a mechanism is a conservative 
system (i.e. energy losses due to friction, heat, etc., 
are negligible compared to the total energy 
transmitted by the system), and if we assume that 
there are no inertia forces, input power (Pin) is equal 
to output power (Pout), i.e., 

 
outin PP =  

 
Also, if we consider a single-dof mechanism as an 

input-output device, the input and output powers can 
be calculated in different ways according to type of 
input and output variables.  
If the variable is rotational, then the power is 
 

∗∗∗∗∗∗ == ωω FrTP  (1a) 
 
And if the variable is translational, then the power is 
 

∗∗∗ = VFP  (1b) 
 

Where (∗) can be “in” or “out” which are the 
summarized form of the words “input” and “output”, 
respectively and α∗, α ∈{P, T, r, F, ω, V}, denotes 
the input or output part of parameter “α”. P∗ is 
referred to as power. T∗ is representative of input and 
output torques, ω∗ is angular velocity of the 
correspondent input and output links, r∗ is the 
torque’s arm, F∗ is the magnitude of force applied on 
the input and output links and finally V∗ is velocity of 
input and output links. 

It is worth noting that in the case, the variable is 
translational (i.e. Eq. (1b)), the direction of force F∗ 
is considered to be parallel to the direction of motion 
of the correspondent link. 

According to the type of input or output variables, 
we can classify single-dof mechanisms in four 
groups: mechanisms in which (i) both the input and 
the output variables are rotational (rot–rot 
mechanisms), (ii) the input variable is a rotational 
angle and the output variable is a translational (rot–
tra mechanisms), (iii) the input variable is a 
translational and the output variable is a rotational 
angle (tra–rot mechanisms), and, finally, (iv) both 
input and output variables are translational (tra–tra 
mechanisms). In the following subsections, 
mechanical advantage is obtained for the each group. 

 
Rot–rot mechanisms 

In this group of mechanisms both the input and 
output variables are rotational, so following relations 
can be written. 

 
outoutoutininin PTTP === ωω  (2) 

 
or 

Cko 

Cik 

C1k 

C1i C1o 

Coi 
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Therefore, mechanical advantage is obtained as 
follows. 
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Figure 1 shows the geometric relationship among 

the six instant centers. With reference to Fig. 1, 
velocity of instant center Cio, ioC& , can be written as 
 

outiooinioiioC ωω CCCC −=−= 11
&  (5) 

 
which results in 
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Rot–tra mechanisms 

In this group of mechanisms, the input variable is 
rotational and the output variable is translational and 
following relation can be written. 
 

outoutoutinininininin PVFFrTP ==== ωω  (8) 
 

 
 

Figure 2. Straight lines the instant centers lie on 
when C1o is at infinity. 

 
According to Fig. 2, instant center C1o is located at 

infinity. Velocity of the output link is equal to the 
Velocity of instant center Cio, So 
 

inioioutV ωCC −= 1  (9) 

 
Introducing Eq. (9) into the Eq. (8) leads to, 
 

inioioutininin FFr ωω CC −= 1  (10) 
 
So mechanical advantage for this group of 
mechanisms is 
 

ioi

in

in

out r
F
F

AM
CC −

==
1

..  (11) 

 
Tra–rot mechanisms 

In this type of mechanisms, the input variable is 
translational and the output variable is rotational and 
following relation can be written. 

 
outoutoutoutoutoutininin PFrTVFP ==== ωω  (12) 

 

 
Figure 3. Straight lines the instant centers lie on 

when C1i is at infinity. 
 

As it is shown in Fig. 3 instant center C1i is 
located at infinity. Velocity of the input link is equal 
to the velocity of instant center Cio, so 
 

outiooinV ωCC −= 1  (13) 
 
Introducing Eq. (13) into the Eq. (12) leads to 
 

outoutoutoutiooin FrF ωω =− CC1  (14) 
 
So mechanical advantage is obtained as; 
 

out

ioo

in

out

rF
F

AM
CC −

== 1..  (15) 

 
Tra–tra mechanisms 

In this group of mechanisms, both the input and 
output variables are translational and following 
relation can be written. 
 

outoutoutininin PVFVFP ===  (16) 
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With reference to Fig. 4, the instant centers C1i, 
C1oand Cio are located at infinity, so different method 
must be used to compute the mechanical advantage. 

Every point on input link has the same velocity as 
the instant center Cik , so 
 

kikkinV ωCC −= 1  (17) 
 

Also every point on output link has the same 
velocity as the instant center Cok , so 
 

kokkoutV ωCC −= 1  (18) 
 

Where ωk is angular velocity of link k. 
Introducing Eq. (17) and (18) into the Eq. (16) results 
in 

 

kokkoutkikkin FF ωω CCCC −=− 11  (19) 
 
So mechanical advantage is 
 

okk

ikk

in

out

F
F

AM
CC
CC

−

−
==

1

1..  (20) 

 

 
Figure 4. Straight lines the instant centers lie on 

when C1i and C1o are at infinity. 
 
SINGULARITY ANALYSIS OF PLANAR 
MECHANISMS WITH ONE DEGREE OF 
FREEDOM 

According to the classification presented in [4], 
there exist three types of singularities: 
(1) Type (I) singularities in which mechanical 

advantage becomes infinite.  
(2) Type (II) singularities in which mechanical 

advantage theoretically1 become zero. 
(3) Type (III) singularities in which two previous 

singularities occur simultaneously. 
In the following subsections, the above conditions 

will be applied on Eqs. (7), (11), (15) and (20) and 
geometric conditions identifying singularities will be 
given for all groups of mechanisms. 
 
 
                                                 
1 Note that long before mechanical advantage 
becomes zero, the mechanism breaks down. 
 

Rot–rot mechanisms 
The analysis of Eq. (7) brings to the conclusion 

that an inverse kinematic singularity (M.A.=∞) 
occurs when (Fig. 5).  

 
ioi CC =1  (21) 

 
On the other side, Eq. (7) shows that a direct 

kinematic singularity (M. A.=0) occurs when (Fig. 6).  
 

ioo CC =1  (22) 
 

Finally, combined singularity occurs when Eqs. 
(21) and (22) are satisfied simultaneously for the 
same configuration of the mechanism.  
 

 
Figure 5. An example of type-(I) singularities of the 

rot–rot mechanisms in which condition (21) is 
matched. 

 

 
 

Figure 6. An example of type-(II) singularities of the 
rot–rot mechanisms in which condition (22) is 

matched. 
 
Rot–tra mechanisms 

Since denominators in Eqs. (7) and (11) are 
identical, geometric condition (21) identifies the 
inverse kinematic singularities for this case too. 
However, in the rot–tra mechanisms, the 
configuration of mechanism corresponding to Eq. 
(21) is different from the one of the same equation in 
the rot–rot mechanisms. For Example, Fig. 5 
becomes Fig. 7 in the rot–tra mechanisms. 

On the other side, Eq. (11) brings to the conclusion 
that direct kinematic singularitis (M.A.=0) occur 
when Cio locates at infinity. Note that, according to 
Aronhold–Kennedy theorem, instant centers Cio, C1o 
and C1i lie on the same line; therefore this type of 
singularities occurs when the following geometric 
condition is matched (See Fig. 8). 

C1o 

Cik, Cio, C1i, 

C1k Cko 

C1o 

Coi 

C1i 

Cik 

C1k 

 ∞ 

 ∞ Cok 

 ∞ 

C1i 

Coi, Cok, C1o 
C1k 

Cik 
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∞== oio 1CC  (23) 

 
Finally, combined singularity occurs when Eq. 

(21) together with Eq. (23) are satisfied for the same 
configuration of the mechanism. 

 
 

 
Figure 7. An example of type-(I) singularities of the 

rot–tra mechanisms in which condition (21) is 
matched. 

 
 

 
 
Figure 8. An example of type-(II) singularities of the 
rot–tra mechanisms in which condition (23) is 
matched. 
 
Tra–rot mechanisms 

The analysis of Eq. (15) brings to the conclusions 
that an inverse kinematic singularity occurs when Cio 
locates at infinity. Again, according to Aronhold–
Kennedy theorem, this condition leads to (Fig. 9). 
 

∞== iio 1CC  (24) 
 

Comparing Eq. (15) and (7), one can see that 
geometric condition (22) identifies the direct 
kinematic singularities for this case too. However, in 
the tra–rot mechanisms, the graphic representations 
of Eq. (22) are different from the ones of the same 
equations in the rot–rot mechanisms. For instance, 
Fig. 6 becomes Fig. 10 in the tra–rot mechanisms. 

Finally, type-(III) singularities occur when Eq. 
(22) together with Eq. (24) are satisfied for the same 
configuration of the mechanism. 

 
Figure 9. An example of type-(I) singularities of the 

tra–rot mechanisms in which condition (24) is 
matched. 

 

 
Figure 10. An example of type-(II) singularities of 
the tra–rot mechanisms in which condition (22) is 

matched. 
 

 
Figure 11. An example of type-(I) singularities of the 

tra–tra mechanisms in which condition (25) is 
matched. 

 
Tra–tra mechanisms 

Considering Eq. (20), inverse kinematic singularity 
occurs when (Fig. 11). 
 

okk CC =1  (25) 
 
and direct kinematic singularity occurs when (Fig. 
12). 
 

ikk CC =1  (26) 
 

Finally, combined singularities occur when both 
conditions (25) and (26) are satisfied for the same 
configuration of the mechanism. 

Now singularities of single-dof planar mechanisms 
can be found using the above conditions.  
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 ∞ 
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Figure 12. An example of type-(II) singularities of 
the tra–tra mechanisms in which condition (26) is 

matched. 
 
ILLUSTRATIVE EXAMPLES 

In the following subsections, singularities of two 
single-dof planar mechanisms are analyzed to show 
the method presented. 
 
Singularity analysis of an intersecting four bar 
mechanism 

This mechanism is shown in Fig. 13. With 
reference to Fig. 13, Link 2 is the input link; link 4 is 
the output link and link 1 is the reference link used to 
evaluate the rate both of the input variable and of the 
output variable. θ21 and θ41 are the input and output 
variables, respectively, so ‘‘i’’ = 2, ‘‘o’’ = 4 and the 
mechanism is in the group of rot–rot mechanisms. 
 

 
 

Figure 13. The intersecting four bar mechanism at a 
generic configuration with its instant centers. 

 
According to the condition (21), type (I) 

singularities occur when Cio coincides with C1i, i.e. 
when C24 coincides with C12. An example of this type 
of singularities is shown in Fig. 14, in which links 2 
and 3 are collinear.  

The condition (22) shows that type (II) 
singularities occur when C24 coincides with C14. 
Figure 15 shows an example of this type of 
singularities for the mechanism under study in which 
links 3 and 4 are collinear.  

Type (III) singularities occur when two previous 
singularities occur simultaneously which is 
equivalent to coincidence of C12, C24 and C14; this 
condition is satisfied when C24 is not determined and 
identifies a configuration in which the mechanism is 
flattened, see Fig. 16. 
 

 
 

Figure 14. The intersecting four bar mechanism at a 
type (I) singularity. 

 

 
 

Figure 15. The intersecting four bar mechanism at a 
type (II) singularity. 

 

 
 
Figure 16. The intersecting four bar mechanism at a 

type (III) singularity. 
 
Singularity analysis of a six bar single-dof 
mechanism 

Figure 17 shows a six bar single-dof mechanism 
together with its instant centers. Link 2 is the input 
link; link 6 is the output link; link 1 is the reference 
link used to evaluate the rate both of the input and 
output variables. Arbitrary point A is fixed to link 1. 
θ21 is the input variable; S61 is the output variable; 
Therefore, ‘‘i’’ = 2, ‘‘o’’ = 6, and the mechanism is 
included in the group of the rot–tra mechanisms.  

Singularity condition (21) brings to the conclusion 
that type-(I) singularities occur when C26 coincides 
with C12. Considering Fig. 17 one can see that 
coincidence of these two instant centers occur when 
link 2 is perpendicular to link 4 which is the known 
geometric condition identifying the dead-center 
positions of S61. Fig. 18 shows the mechanism at a 
type-(I) singularity. 

According to condition (23), type (II) singularities 
occur when C26 coincides with C16. With reference to 
Fig. 17, C26 coincides with C16 when the direction of 
motion of link 6 is parallel to link 4 and θ12 is at its 
dead-center position, See Fig. 19. 

Finally type (III) singularities occur when both 
previous singularities occur simultaneously, i.e. C26 
must coincide with C12 and C16 simultaneously; this 
condition is satisfied when the position of C26 is not 
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determined and mechanism gains one degree of 
freedom, see Fig. 20. 
 

 
Figure 17. The six bar mechanism at a generic 

configuration with its instant centers. 

 
Figure 18. The six bar mechanism at a type (I) 

singularity. 
 

 
Figure 19. The six bar mechanism at a type (II) 

singularity. 
 
 

 

 
Figure 20. The six bar mechanism at a type (III) 

singularity. 
 
CONCLUSION 

A geometric method for singularity analysis of 
single dof planar mechanisms was presented. First, 
one dof planar mechanisms were classified into four 
groups, based on the type of input and output 
variables; then mechanical advantage for each group 
of the mechanisms was obtained using the concept of 
instant centers and geometric conditions 
corresponding to different types of singularities were 
found for each group. Finally two illustrative 
examples were presented to show the method. 

The method is simple and comprehensive and can 
be used to find singular configurations of all types of 
single dof planar mechanisms. 
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